Algebraic Number Theory Solutions to Example Sheet 1

- 3. Suppose d_1 , d_2 are squarefree integers $\neq 0, 1$.
 - (i) Show $\mathbb{Q}(\sqrt{d_1}) = \mathbb{Q}(\sqrt{d_2})$ if and only if $d_1 = d_2$.
 - (ii) Suppose $d_1 \neq d_2$ and let $K = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_2})$.
 - Write down a basis for K/\mathbb{Q} .
 - Show that $K = \mathbb{Q}(\sqrt{d_1} + \sqrt{d_2})$.

Answer:

(i) Suppose $\mathbb{Q}(\sqrt{d_1}) = \mathbb{Q}(\sqrt{d_2})$. Then $\sqrt{d_2} \in \mathbb{Q}(\sqrt{d_1})$ and so $\sqrt{d_2} = a + b\sqrt{d_1}$ where $a, b \in \mathbb{Q}$. Squaring and rearranging we obtain

$$(a^2 + b^2 d_1 - d_2) + 2ab\sqrt{d_1} = 0.$$

However 1, $\sqrt{d_1}$ are linearly independent over \mathbb{Q} . Thus

$$a^2 + b^2 d_1 = d_2, \qquad ab = 0.$$

If b = 0 then $\sqrt{d_2} = a \in \mathbb{Q}$ giving a contradiction. Hence a = 0. So $b^2d_1 = d_2$. Write $b^2 = c_1^2/c_2^2$ where c_1 , c_2 are coprime integers. Thus

$$c_1^2 d_1 = c_2^2 d_2$$

Now c_1^2 must divide d_2 which is squarefree, so $c_1^2 = 1$, and similarly $c_2^2 = 1$. Hence $d_1 = d_2$.

- (ii) Suppose $d_2 \neq d_1$. The above argument shows that $\sqrt{d_2} \notin \mathbb{Q}(\sqrt{d_1})$. Thus $\sqrt{d_2}$ has minimal polynomial $X^2 - d_2$ over $L = \mathbb{Q}(\sqrt{d_1})$. Hence a basis for K/L is 1, $\sqrt{d_2}$. We know that a basis for L/\mathbb{Q} is 1, $\sqrt{d_1}$. By the tower law, a basis for K/\mathbb{Q} is 1, $\sqrt{d_1}$, $\sqrt{d_2}$, $\sqrt{d_1}\sqrt{d_2}$.
 - Now let $\alpha = \sqrt{d_1} + \sqrt{d_2} \in K$. Let $M = \mathbb{Q}(\alpha) \subseteq K$. If $\alpha = 0$ then $d_1 = d_2$ giving a contradiction, so $\alpha \neq 0$. Now

$$\alpha^2 - 2\sqrt{d_1}\alpha + d_1 = (\alpha - \sqrt{d_1})^2 = d_2.$$

Thus

$$\sqrt{d_1} = \frac{\alpha^2 + d_1 - d_2}{2\alpha} \in M.$$

Similarly $\sqrt{d_2} \in M$. Thus $K \subseteq M$. Hence $K = M = \mathbb{Q}(\sqrt{d_1} + \sqrt{d_2})$.

Alternative:

 $\alpha^2 = d_1 + 2\sqrt{d_1d_2} + d_2$ so $\sqrt{d_1d_2} \in K$. Hence $\alpha\sqrt{d_1d_2} = d_2\sqrt{d_1} + d_1\sqrt{d_2} \in K$. Now (d_2, d_1) is not proportional to (1, 1), so we can combine this with $\sqrt{d_1} + \sqrt{d_2} \in K$ and solve linear equations to show that $\sqrt{d_1}, \sqrt{d_2} \in K$. 5. Again let p be a prime number and $\zeta_p = \exp(2\pi i/p)$. Let $K = \mathbb{Q}(\zeta_p)$ and $\alpha = 1 + \zeta_p$. Calculate $\operatorname{Nm}_{K/\mathbb{Q}}(\alpha)$ by using the minimal polynomial of α .

Answer:

From question 4, the minimal polynomial of ζ_p is $f(X) = X^{p-1} + X^{p-2} + \cdots + X + 1$. Then g(X) = f(X-1) is a monic irreducible polynomial which has $\alpha = 1 + \zeta_p$ as a root, hence g(X) is the minimal polynomial of α over \mathbb{Q} . We can calculate $g(X) = (X-1)^{p-1} + (X-1)^{p-2} + \cdots + (X-1) + 1$. The constant coefficient is

$$a_0 = (-1)^{p-1} + (-1)^{p-2} + \dots + (-1) + 1 = \begin{cases} 0 \text{ if } p \text{ is even,} \\ 1 \text{ if } p \text{ is odd.} \end{cases}$$

Since $K = \mathbb{Q}(\alpha)$, we have $\operatorname{Nm}_{K/\mathbb{Q}}(\alpha) = (-1)^{p-1}a_0$. Thus

$$\operatorname{Nm}_{K/\mathbb{Q}}(\alpha) = \begin{cases} 0 \text{ if } p = 2, \\ 1 \text{ if } p \text{ is odd.} \end{cases}$$

6. Let $f(X) = X^3 - 2X - 2$.

- (i) Show that f is irreducible.
- (ii) Let θ be a root of f. Find the minimal polynomial for $1 + \theta + \theta^2$.

Answer:

- (i) Note $f(X) = a_0 + a_1X + a_2X^2 + a_3X^3$ with $a_0 = a_1 = -2$, $a_2 = 0$ and $a_3 = 1$. Let p = 2. Thus $p \nmid a_3$, $p \mid a_0$, $p^2 \nmid a_0$ and $p \mid a_1$, a_2 . By Eisenstein's criterion with p = 2 the polynomial f is irreducible.
- (ii) Let $\alpha = 1 + \theta + \theta^2$. We calculate matrices with respect to the basis $1, \theta, \theta^2$ for $\mathbb{Q}(\theta)$. We have

$$m_{\theta}(1) = \theta, \qquad m_{\theta}(\theta) = \theta^{2}, \qquad m_{\theta}(\theta^{2}) = \theta^{3} = 2 + 2\theta,$$

$$m_{\theta^{2}}(1) = \theta^{2}, \qquad m_{\theta^{2}}(\theta) = 2 + 2\theta, \qquad m_{\theta^{2}}(\theta^{2}) = \theta.\theta^{3} = \theta(2 + 2\theta) = 2\theta + 2\theta^{2}$$

so

$$M_{\theta} = \begin{pmatrix} 0 & 0 & 2 \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{pmatrix}, \quad M_{\theta^2} = \begin{pmatrix} 0 & 2 & 2 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix}.$$

Hence

$$M_{\alpha} = I + M_{\theta} + M_{\theta^2} = \begin{pmatrix} 1 & 2 & 2 \\ 1 & 3 & 4 \\ 1 & 1 & 3 \end{pmatrix}.$$

Thus

$$\chi_{K,\alpha}(X) = \det(XI - M_{\alpha}) = X^3 - 7X^2 + 7X - 3.$$

Let μ be the minimal polynomial of α over \mathbb{Q} . Then $\chi_{K,\alpha} = \mu^n$ where $n = [K : \mathbb{Q}(\alpha)]$ which divides $[K : \mathbb{Q}] = 3$. If n = 3 then $\mathbb{Q}(\alpha) = \mathbb{Q}$ and so $\alpha \in \mathbb{Q}$, contradicting the fact that $1, \theta, \theta^2$ are linearly independent over \mathbb{Q} . Hence $\alpha \notin \mathbb{Q}$ so

$$\mu(X) = \chi_{K,\alpha}(X) = X^3 - 7X^2 + 7X - 3.$$

Alternative:

A quicker way to calculate the matrix M_{α} (instead of using the hint) is just to work out:

$$m_{\alpha}(1) = 1 + \theta + \theta^{2},$$

$$m_{\alpha}(\theta) = \theta + \theta^{2} + \theta^{3} = 2 + 3\theta + \theta^{2},$$

$$m_{\alpha}(\theta^{2}) = 2\theta + 3\theta^{2} + \theta^{3} = 2 + 4\theta + 3\theta^{2},$$

Then you can read off M_{α} .

Feedback

Solutions were generally very good. The most common places to lose marks were: Q3. When you have $b^2d_1 = d_2$ and want to deduce that $d_1 = d_2$, it is not enough to say that d_2 is square-free, you have to use that d_1 is also square-free (because *b* is only a rational number, not necessarily an integer.

Q5. Many people forgot the p = 2 case.

Q6. You have to give some argument for why the minimal polynomial of α is equal to $\chi_{K,\alpha}$. There are a variety of ways to do this: you can show that $K = \mathbb{Q}(\alpha)$, or you can prove that $\chi_{K,\alpha}$ is irreducible (e.g. by shifting and using Eisenstein) or that it is not the cube of a polynomial (because the constant term is not a cube).