Theta lifts of automorphic forms and applications to paramodularity

L. Dembélé

Warwick University

September 9, 2014
Modularity of elliptic curves

<table>
<thead>
<tr>
<th>Classical newforms of weight 2</th>
<th>Abelian varieties defined over (\mathbb{Q})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-CM Hecke newforms</td>
<td>Elliptic curves (E) defined over (\mathbb{Q})</td>
</tr>
<tr>
<td>(g(z) := \sum_{n \geq 1} a_n q^n), with (a_n \in \mathbb{Z})</td>
<td>with (\text{End}_{\mathbb{Q}}(E) = \mathbb{Z})</td>
</tr>
</tbody>
</table>

\(g \) level \(N \)

\(E \) s.t. \(\text{cond}(E) = N \),
\[L(E, s) = L(g, s) \]
Motivation

Modularity of elliptic curves

<table>
<thead>
<tr>
<th>Classical newforms of weight 2</th>
<th>Abelian varieties defined over \mathbb{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-CM Hecke newforms $g(z) := \sum_{n \geq 1} a_n q^n$, with $a_n \in \mathbb{Z}$</td>
<td>Elliptic curves E defined over \mathbb{Q} with $\text{End}_{\mathbb{Q}}(E) = \mathbb{Z}$</td>
</tr>
<tr>
<td>g level N</td>
<td>E s.t. $\text{cond}(E) = N$, $L(E, s) = L(g, s)$</td>
</tr>
</tbody>
</table>

Eichler-Shimura construction
Motivation

Modularity of elliptic curves

<table>
<thead>
<tr>
<th>Classical newforms of weight 2</th>
<th>Abelian varieties defined over \mathbb{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-CM Hecke newforms $g(z) := \sum_{n \geq 1} a_n q^n$, with $a_n \in \mathbb{Z}$</td>
<td>Elliptic curves E defined over \mathbb{Q} with $\text{End}_\mathbb{Q}(E) = \mathbb{Z}$</td>
</tr>
<tr>
<td>g level N</td>
<td>E s.t. $\text{cond}(E) = N$, $L(E, s) = L(g, s)$</td>
</tr>
</tbody>
</table>

Eichler-Shimura construction

Modularity: Shimura-Taniyama-Weil, Wiles et al.
Motivation

There are (at least) two ways in which one could generalise this picture:

1. A non-CM elliptic curve E/\mathbb{Q} is an abelian variety of GL_2-type, i.e. $\text{End}_\mathbb{Q}(E) = \mathbb{Z}$ is an order in \mathbb{Q}! This approach leads to the so-called Eichler-Shimura and Shimura-Taniyama-Weil type conjectures.
Motivation

There are (at least) two ways in which one could generalise this picture:

1. A non-CM elliptic curve E/\mathbb{Q} is an abelian variety of GL_2-type, i.e. $\text{End}_{\mathbb{Q}}(E) = \mathbb{Z}$ is an order in \mathbb{Q}! This approach leads to the so-called Eichler-Shimura and Shimura-Taniyama-Weil type conjectures.

2. A non-CM elliptic curve E/\mathbb{Q} is a curve of genus one such that $\text{Jac}(E) = E$ and $\text{End}_{\mathbb{Q}}(E) = \mathbb{Z}$ is trivial! This approach leads to the so-called Paramodularity Conjecture.
Motivation

There are (at least) two ways in which one could generalise this picture:

1. A non-CM elliptic curve E/\mathbb{Q} is an abelian variety of GL_2-type, i.e. $\text{End}_{\mathbb{Q}}(E) = \mathbb{Z}$ is an order in \mathbb{Q}! This approach leads to the so-called Eichler-Shimura and Shimura-Taniyama-Weil type conjectures.

2. A non-CM elliptic curve E/\mathbb{Q} is a curve of genus one such that $\text{Jac}(E) = E$ and $\text{End}_{\mathbb{Q}}(E) = \mathbb{Z}$ is trivial! This approach leads to the so-called Paramodularity Conjecture.

The first attempt to generalise this to abelian surfaces is due to Yoshida (81). But this was quickly proved to be wrong: The level structure was incorrect!
Motivation

Paramodularity conjecture

Conjecture (Brumer-Kramer)

Let g be a paramodular Siegel newform of genus 2, weight 2 and level N, with integer Hecke eigenvalues, which is not in the span of Gritsenko lifts. Then there exists an abelian surface B defined over \mathbb{Q} of conductor N such that $\text{End}_\mathbb{Q}(B) = \mathbb{Z}$ and $L(g, s) = L(B, s)$.

Conversely, let B be an abelian surface defined over \mathbb{Q} with $\text{End}_\mathbb{Q}(B) = \mathbb{Z}$. Then there exists an integer $N > 1$, a Siegel newform g of genus 2, weight 2 and paramodular level N such that $L(g, s) = L(B, s)$.
Paramodularity conjecture

<table>
<thead>
<tr>
<th>Siegel modular forms of genus 2, weight 2</th>
<th>Abelian varieties defined over \mathbb{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hecke eigenforms g with $\lambda_g(p), \lambda_g(p^2) \in \mathbb{Z}$</td>
<td>Abelian surfaces B defined over \mathbb{Q} with $\text{End}_{\mathbb{Q}}(B) = \mathbb{Z}$</td>
</tr>
<tr>
<td>not Gritsenko lifts</td>
<td></td>
</tr>
<tr>
<td>g level N</td>
<td>B s.t. $\text{cond}(B) = N$, $L(B, s) = L(g, s)$</td>
</tr>
</tbody>
</table>
Motivation

Paramodularity conjecture

<table>
<thead>
<tr>
<th>Siegel modular forms of genus 2, weight 2</th>
<th>Abelian varieties defined over \mathbb{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hecke eigenforms g with $\lambda_g(p), \lambda_g(p^2) \in \mathbb{Z}$, not Gritsenko lifts</td>
<td>Abelian surfaces B defined over \mathbb{Q} with $\text{End}_{\mathbb{Q}}(B) = \mathbb{Z}$</td>
</tr>
<tr>
<td>g, level N</td>
<td>B s.t. $\text{cond}(B) = N$, $L(B, s) = L(g, s)$</td>
</tr>
</tbody>
</table>
Motivation

Paramodularity conjecture

<table>
<thead>
<tr>
<th>Siegel modular forms of genus 2, weight 2</th>
<th>Abelian varieties defined over \mathbb{Q}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hecke eigenforms g with $\lambda_g(p), \lambda_g(p^2) \in \mathbb{Z}$ and not Gritsenko lifts</td>
<td>Abelian surfaces B defined over \mathbb{Q} with $\text{End}_{\mathbb{Q}}(B) = \mathbb{Z}$</td>
</tr>
<tr>
<td>g level N</td>
<td>B s.t. $\text{cond}(B) = N$, $L(B, s) = L(g, s)$</td>
</tr>
</tbody>
</table>

L. Dembélé ()

Paramodularity September 9, 2014
Motivation

Paramodularity conjecture

Let B be an abelian surface defined over \mathbb{Q} of conductor N such that $\text{End}_{\mathbb{Q}}(B) = \mathbb{Z}$, and $p \geq 5$ a prime.

- Under some technical conditions, Tilouine shows that the Galois representation on the p-adic Tate module of A comes from an overconvergent Siegel cusp form g of weight 2.
Motivation

Paramodularity conjecture

Let B be an abelian surface defined over \mathbb{Q} of level N such that $\text{End}_\mathbb{Q}(B) = \mathbb{Z}$, and $p \geq 5$ a prime.

- Under some technical conditions, Tilouine shows that the Galois representation on the p-adic Tate module of A comes from an overconvergent Siegel cusp form g of weight 2.
Motivation

Paramodularity conjecture

Let \(B \) be an abelian surface defined over \(\mathbb{Q} \) of level \(N \) such that \(\text{End}_{\mathbb{Q}}(B) = \mathbb{Z} \), and \(p \geq 5 \) a prime.

- Under some technical conditions, Tilouine shows that the Galois representation on the \(p \)-adic Tate module of \(A \) comes from an \textit{overconvergent} Siegel cusp form \(g \) of weight 2.

- It remains to show that \(g \) is \textit{classical}! In that direction, there is work of Tilouine, Pilloni et al.
Brumer and Kramer: Conjecture 1 should be verifiable for abelian surfaces B over \mathbb{Q} with $\text{End}_{\mathbb{Q}}(B) \supseteq \text{End}_{\mathbb{Q}}(B) = \mathbb{Z}$.

From now on, assume that:

1. F is a quadratic field;
2. $A = B \otimes_{\mathbb{Q}} F$ is of GL_2-type over F: $\text{End}_F(A)$ is an order in a quadratic field.

Question: What can we say about Brumer-Kramer’s observation?
Conjecture (**GL**₂-modularity)**

Let A be an abelian surface of **GL**₂-type. Then, there exists a cuspidal automorphic form f of level \mathfrak{N} and weight 2 on **GL**₂(\mathbb{A}_F) such that

$$L(A, s) = L(f, s)L(f^\tau, s),$$

where K is the quadratic field generated by the coefficients of f and $\text{Gal}(K/\mathbb{Q}) = \langle \tau \rangle$.

The form f is a:

- **Hilbert cusp form** when F is real.
- **Bianchi cusp form** when F is imaginary.
So when B is an abelian surface over \mathbb{Q} such that

1. $\text{End}_\mathbb{Q}(B) = \mathbb{Z}$, and
2. $\text{End}_F(A)$ is an order in a quadratic field,

one expects that Conjectures 1 and 2, and hence the forms f and g, to be related.

Indeed, fix a prime p and consider the Galois representations

$$
\rho_{A,p} : \text{Gal}(\overline{\mathbb{Q}}/F) \to \text{GL}_2(\overline{\mathbb{Q}}_p)
$$

$$
\rho_{B,p} : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \text{GSp}_4(\overline{\mathbb{Q}}_p).
$$

Then, we see that $\rho_{B,p} = \text{Ind}^G_{G_F} \rho_{A,p}$.

So when $\rho_{A,p}$ is automorphic, we expect g to be a lift of f!
Theorem (Johnson-Leung-Roberts)

Let F / \mathbb{Q} be a real quadratic field of discriminant D. Let \mathcal{O}_F be the ring of integers of F, and $\mathfrak{N} \subseteq \mathcal{O}_F$ an ideal. Let f be a Hilbert newform of level \mathfrak{N}, weight $(2, 2k - 2)$ and trivial central character where $k \geq 2$. Then, there exists a Siegel newform F of weight (k, k) and paramodular level $N = D^2 \mathcal{N}_{F/\mathbb{Q}}(\mathfrak{N})$ with Hecke eigenvalues, epsilon factor and (spinor) L-function determined explicitly by those of f.
Theorem (Berger-D-Pacetti-Şengün)

Let F/\mathbb{Q} be an imaginary quadratic field of discriminant D. Let \mathcal{O}_F be the ring of integers of F, and $\mathfrak{N} \subseteq \mathcal{O}_F$ an ideal. Let f be a Bianchi newform of level \mathfrak{N}, (even) weight $k \geq 2$ and trivial central character. Then, there exists a Siegel newform F of weight $(k,2)$ and paramodular level $N = D^2 N_{F/\mathbb{Q}}(\mathfrak{N})$ with Hecke eigenvalues, epsilon factor and (spinor) L-function determined explicitly by those of f.
Corollary (D.-Kumar)

Assume that Conjecture 2 is true. Let B be an abelian surface defined over \mathbb{Q} such that $\text{End}_{\mathbb{Q}}(B) = \mathbb{Z}$, and the base change of B to some quadratic field is of GL_2-type. Then, B is paramodular.
Proposition (D.-Kumar)

Let B be the Jacobian of the curve

\[C : \ y^2 = -8x^6 + 220x^5 - 44x^4 - 14828x^3 - 4661x^2 - 21016x + 10028. \]

Then B is a paramodular surface of conductor 193^2.

Proof.

The proof of this combines Johnson-Leung-Roberts’ result with Conjecture 2.
Proposition (Berger-D.-Pacetti-Şengün)

Let B the Jacobian of the curve C given by

$$C : y^2 = 31x^6 + 952x^5 - 5764x^4 - 3750x^3 + 5272x^2 - 7060x + 4783,$$

Then, B is a paramodular abelian surface of conductor 223^2.

L. Dembélé ()

Paramodularity

September 9, 2014
Let $F = \mathbb{Q}(\sqrt{-223})$ and $w = \frac{1+\sqrt{-223}}{2}$, and consider the curve

$$C' : y^2 + Q(x)y = P(x),$$

where

$$P := -8x^6 + (54w - 27)x^5 + 9103x^4 + (-14200w + 7100)x^3 - 697185x^2$$
$$+ (326468w - 163234)x + 3539399,$$

$$Q := x^3 + (2w - 1)x^2 - x.$$

The curve C' is a global minimal model for the base change of C to F and it has everywhere good reduction.

We have $A = \text{Jac}(C').$
The modularity of B is deduced from Theorem 4 and the following result.

Theorem (Berger-D.-Pacetti-Şengün)

The surface A has real multiplication by $\mathbb{Z}[\sqrt{2}]$, and there exists a Bianchi newform f of level (1) and weight 2 and trivial central character such that $f^\sigma = f^\tau$ and

$$L(A, s) = L(f, s)L(f^\tau, s),$$

*where $\langle \sigma \rangle = \text{Gal}(F/\mathbb{Q})$ and $\langle \tau \rangle = \text{Gal}(\mathbb{Q}(\sqrt{2})/\mathbb{Q})$."

Proof.

To prove Theorem 8, we use the so-called Faltings-Serre methods. This is due to the lack of modularity results for imaginary quadratic fields.
The modularity of B is deduced from Theorem 4 and the following result.

Theorem (Berger-D.-Pacetti-Şengün)

The surface A has real multiplication by $\mathbb{Z}[\sqrt{2}]$, and there exists a Bianchi newform f of level (1) and weight 2 and trivial central character such that $f^\sigma = f^\tau$ and

$$L(A, s) = L(f, s)L(f^\tau, s),$$

where $\langle \sigma \rangle = \text{Gal}(F/\mathbb{Q})$ and $\langle \tau \rangle = \text{Gal}({\mathbb{Q}(\sqrt{2})}/\mathbb{Q})$.

Proof.

To prove Theorem 8, we use the so-called Faltings-Serre methods. This is due to the lack of modularity results for imaginary quadratic fields.
Table: Examples of curves with paramodular Jacobians

<table>
<thead>
<tr>
<th>N</th>
<th>Hyperelliptic Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>193^2</td>
<td>$-8x^6 + 220x^5 - 44x^4 - 14828x^3 - 4661x^2 - 21016x + 10028$</td>
</tr>
<tr>
<td>223^2</td>
<td>$31x^6 + 952x^5 - 5764x^4 - 3750x^3 + 5272x^2 - 7060x + 4783$</td>
</tr>
<tr>
<td>233^2</td>
<td>$-8x^6 + 172x^5 + 1760x^4 + 6296x^3 - 44531x^2 - 19128x + 134836$</td>
</tr>
<tr>
<td>277^2</td>
<td>$-96x^6 + 2092x^5 - 11820x^4 + 516x^3 + 36076x^2 + 3916x + 14297$</td>
</tr>
<tr>
<td>349^2</td>
<td>$-1336x^6 - 336x^5 - 7592x^4 - 11244x^3 - 9998x^2 - 37361x - 21356$</td>
</tr>
</tbody>
</table>