
Computing the modular curves Xsp(13), Xns(13)

and XA4(13) using modular symbols in Sage

J. E. Cremona, B. S. Banwait

August 16, 2013

Abstract

This document is an annotated version of a Sage script which computes
the three genus 3 modular curves Xsp(13), Xns(13) and XA4(13) of level 13.

1 Preliminaries: defining the congruence sub-
group and modular symbol space

We set the level and define the congruence subgroup G = Γ̃(13) = Γ0(132) ∩
Γ1(13), which is conjugate to Γ(13):

N = 13

G = GammaH(N^2,[N+1])

Next we define the associated modular symbol space MG (with sign 0), and its
cuspidal subspace C.

M = ModularSymbols(G,sign=0)

C = M.cuspidal_subspace()

d = C.dimension()

The dimension of C is d = 100 which is twice the genus of the associated modular
curve X̃(13). For future reference we will need the basis for C in terms of the
ambient modular symbols space M which has dimension 183, and the matrix
defining C as a subspace of M .

Cb = C.basis()

Cmat = Matrix([c.list() for c in Cb]).transpose()

Next we decompose the cuspidal space into old and new subspaces, then decom-
pose the new part into simple components with respect to the Hecke action:

Cold = C.old_subspace()

Cnew = C.new_subspace()

Cnew_dec = Cnew.decomposition()

1

The number of simple new summands is 10 and their dimensions are

sage: [c.dimension() for c in Cnew_dec]

[4, 4, 4, 6, 6, 8, 12, 12, 12, 24]

Important remark on row and column vectors and matrices: I think of ele-
ments of the modular symbol space (specifically C) as represented by column
vectors (of length 100 for C), and so the matrices which represent operators
act by multiplying these vectors on the left. We construct T and Conj like this
below. However, Sage’s default is that matrices act by right multiplication of
row vectors. So when we compute W13 using Sage’s atkin lehner function
we have to transpose it to be compatible with the T we compute “manually”.
Later, we form various subspaces of Q100 (and F 100 for various fields F), which
are always given by a basis matrix of size d× 100 (where d is the dimension of
the subspace) whose rows are an echelon basis.

Also, Sage makes no distinction between row and column vectors.

2 Computation of Hecke and other operators
to get the representation of PSL(2, 13) on the
modular symbol space

Computation of T̃ =

(
1 1/13
0 1

)
: the images of the generating symbols are:

T_ims = [C(sum([s[0] * sum([mm[0]*mm[1].manin_symbol_rep()

for mm in s[1].apply([1,1/N,0,1])])

for s in c.modular_symbol_rep()]))

for c in Cb]

We use these to construct the matrix:

T = Matrix([(Cmat\vector(im.list())).list() for im in T_ims]).transpose()

and check it does what it should:

sage: all([T_ims[j] == sum([T[i,j]*Cb[i] for i in range(d)]) for j in range(d)])

True

Next we compute the matrix of complex conjugation:

Conj = C.star_involution().matrix().transpose()

Next we compute the matrix of S̃ =

(
0 −1

121 0

)
, the Atkin-Lehner involu-

tion. Note that the built-in operators (including T2 below) need to be transposed
before they act on the left on column-vectors, since they are designed to act on

2

the right on row-vectors. From now on we will use the notation S, T instead of
S̃, T̃ . The Sage identifiers S, T refer to the 100× 100 matrices giving the action
of these on C, identified with Q100.

W13 = C.atkin_lehner_operator()

S = W13.matrix().transpose()

Again we check that the action is as expected:

sage: all([W13(Cb[j]) == sum([S[i,j]*Cb[i] for i in range(d)]) for j in range(d)])

True

As a consistency check we check that that all these 100× 100 matrices have the
right properties: they are the images of the standard generators of PSL(2,Z)
under the 100-dimensional represntation on the cuspidal modular symbol space,
which factors through PSL(2, 13).

sage: I = S.parent()(1)

sage: S^2 == T^N == (T*S)^3 == Conj^2 == I

True

Note that conjugating with Conj inverts T and fixes S.

sage: Conj*T*Conj*T==I and Conj*S*Conj==S

True

We are interested in the subspace fixed by a subgroup of PSL(2, 13) isomor-
phic to A4. Such a subgroup is defined by taking two generating matrices in
PSL(2, 13); we choose one such subgroup (among possible conjugates) to con-

tains S =

(
−1 0
0 1

)
so the corresponding congruence subgroup will be of real

type. We lift the generators to PSL(2,Z), express them as words in the usual
generators S, T of PSL(2,Z), and then take the same words in our 100 × 100
matrices S,T .

The first generator A is

(
−5 0

0 5

)
∈ PSL(2, 13) which lifts to the element

T 5ST−2ST 2ST 3ST−5 =

(
−70 377
−13 70

)
of order 2 in PSL(2,Z).

A = T^5*S*T^(-2)*S*T^2*S*T^3*S*T^(-5)

The second generator B is

(
−2 −2
−3 3

)
∈ PSL(2, 13) which lifts to the element

T 4ST 3ST−3S =

(
−37 −11
−10 −3

)
of order 3 in PSL(2,Z).

B = T^4*S*T^3*S*T^(-3)*S

3

We now verify that the group A4 generated by A and B is normalised by
conjugation, and that various other identities hold. Here Ad= A′ = B−1AB ≡(

0 1
1 0

)
(mod 13), so that A,A′ commute and generate the Klein 4-subgroup

of A4 whose third element is AA′ = A′A =

(
0 1
−1 0

)
= S.

sage: Ad = B^(-1)*A*B

sage: Conj*A*Conj==A and Conj*B*Conj == A*B*A and A*Ad==Ad*A and A*Ad==S

True

To obtain the A4-invariant subspace we construct the associated idempotent
(scaled by the group order 12). Now the subspace of A4-invariant vectors is
spanned by the columns of sigma.

sage: sigma = (I+A)*(I+Ad)*(I+B+B^2)

sage: sigma.rank() == 6 and (sigma-12).rank() == d-6 and sigma*(sigma-12)==0

True

sage: A4_inv = sigma.column_space()

sage: A4_inv_bas = A4_inv.basis_matrix().transpose()

The (doubled) dimension of this A4-invariant subspace is 6. We wish to
know which of the old and new simple components this intersects. To do this
we project onto each of them using the dual basis. First, the old space contains
nothing A4-invariant:

sage: oldproj = Cold.dual_free_module().basis_matrix()*Cmat

sage: oldproj*A4_inv_bas == 0

True

Next we see that two of the new components will be involved:

sage: newproj = [comp.dual_free_module().basis_matrix()*Cmat for comp in Cnew_dec]

sage: new_A4_components = [i for i,v in enumerate(newproj) if v*A4_inv_bas != 0]

sage: new_A4_components

4

[3, 8]

In order to compute the equation of the modular curve we could work ex-
clusively with the sum of these two new components, which will be denoted S3

and S8 below. The first of these has trivial character and Hecke eigenvalues in
the cubic field Q(ζ+7), while the second is the sum of its twists by the order 3
character modulo 13 (denoted chi later). These two twists are combined here as
the decomposition has been carried out over Q. But it will be more convenient
(specifically when computing the coordinates of the seven cusps) to work in a
larger space which is PSL(2,Z)-invariant: this is the sum of all the twists of S3
under all the characters modulo 13, which form a cyclic group of order 12 with
generator denoted eps.

S3=Cnew_dec[3]

S8=Cnew_dec[8]

comps = [3,4,6,7,8,9]

These components have (doubled) dimensions [6, 6, 12, 12, 12, 24] .
Identifying the cupidal modular symbol space C with Q100, we denote by

V3 the subspace of Q100 corresponding to S3, and by W the PSL(2,Z)-invariant
sum:

Q100 = QQ^100

V3 = Q100.subspace([C.free_module().coordinates(v)

for v in S3.free_module().basis()])

W = Q100.subspace(sum([[C.free_module().coordinates(v)

for v in Cnew_dec[c].free_module().basis()]

for c in comps],[]))

These have (doubled) dimensions 6 and 72 respectively. Note that these sub-
spaces of Q100 are “row subspaces”, spanned by the rows of their basis matrices,
while our 100×100 matrices S,T,A0,B0,Conj act on the left on column vectors.
This explains the transposing which goes on in what follows.

We cut down to the +1-eigenspaces for complex conjugation (using the trans-
pose of Conj for the reason just given):

V3plus = (Conj-1).transpose().kernel_on(V3)

Wplus = (Conj-1).transpose().kernel_on(W)

These have half the dimensions of V3 and W, namely 3 and 36.
We compute the Hecke operator T2 (which is already transposed) and its

resrictions to the two subspaces:

T2 = C.hecke_matrix(2)

T2V3plus = T2.restrict(V3plus)

T2Wplus = T2.restrict(Wplus)

5

3 Definition of various number fields

Now we define various cyclotomic fields, all contained in Q(ζ1092) (note that
1092 = 22 · 3 · 7 · 13), with embeddings between them and some automorphisms:

Q1092.<zeta1092> = CyclotomicField(1092)

conj1092 = Q1092.hom([zeta1092^(-1)]) # complex conjugation on Q1092

Q13.<zeta13> = CyclotomicField(13, embedding=zeta1092^84)

eQ13Q1092 = Q13.hom([Q1092(zeta13)]) # embedding Q13 into Q1092

Q13sigma = Q13.hom([zeta13^4]) # auto of order 3 of Q13

Q13aut = Q13.hom([zeta13^2]) # auto of order 6 of Q13

Q91.<zeta91> = CyclotomicField(91,embedding=zeta1092^12)

eQ91Q1092 = Q91.hom([zeta1092^12]) # embedding Q91 into Q1092

eQ13Q91 = Q13.hom([zeta91^7]) # embedding Q13 into Q91

Q91aut = Q91.hom([zeta91^53]) # auto of order 3 of Q91 fixing Q13

Q84.<zeta84> = CyclotomicField(84, embedding=zeta1092^13)

conj84 = Q84.hom([zeta84^(-1)]) # complex conjugation on Q84

Q12.<zeta12> = CyclotomicField(12, embedding=zeta84^7)

Q7.<zeta7> = CyclotomicField(7, embedding=zeta84^12)

Inside Q(ζ7) we define the cubic real subfield Q(ζ+7), and inside Q(ζ13) the
cubic subfield Q(ζ++

13) and the quartic subfield Q(ζc13):

zeta7p=zeta7+1/zeta7

Q7p.<zeta7p>=NumberField(zeta7p.minpoly(), embedding=zeta7+1/zeta7)

zeta13pp = zeta13+zeta13^5+zeta13^8+zeta13^12 # generates cubic subfield

Q13pp.<zeta13pp> = NumberField(zeta13pp.minpoly(), embedding=zeta13pp)

eQ13ppQ13 = Q13pp.hom([Q13(zeta13pp)])

zeta13c = zeta13+zeta13^3+zeta13^9 # generates quartic subfield

Q13c.<zeta13c> = NumberField(zeta13c.minpoly(), embedding=zeta13c)

eQ13cQ13 = Q13c.hom([Q13(zeta13c)])

For computations with q-expansions we define some power series rings:

ps_prec = 200

Q1092q.<q> = PowerSeriesRing(Q1092,ps_prec)

Q91q.<q> = PowerSeriesRing(Q91,ps_prec)

Q13q.<q> = PowerSeriesRing(Q13,ps_prec)

QQq.<q> = PowerSeriesRing(QQ,ps_prec)

Q13ppq.<q> = PowerSeriesRing(Q13pp,ps_prec)

6

4 Hecke eigenvalues and eigenvectors, and twist-
ing operators

Now we start to compute Hecke eigenvalues (of T2) and associated eigenvectors.
The eigenvalues of T2 on V3 are in Q(ζ+7) (this will be verified later). We define
the first of these a, then find its three Galois conjugates, and reorder them to
make sure that a is first in the list. The list of 3 conjugate eigenvalues is called
eig3:

a=1/zeta7p

eig3 = a.galois_conjugates(Q7p) # this does not put a first

eig3.remove(a)

eig3=[a]+eig3

Here is the promised verification that a and its conjugates really are the 3
eigenvalues of T2 on V3plus:

sage: Set(eig3) == Set(T2V3plus.change_ring(Q7p).eigenvalues())

True

To get all 36 eigenvalues of T2 on Wplus we multiply these by the 12th roots of
unity:

eig12 = [a*zeta12^j for j in range(12)]

eig36 = sum([[Q84(ai)*zeta12^j for j in range(12)] for ai in eig3],[])

eig9 = sum([[eig36[12*i+4*j] for i in range(3)] for j in range(3)],[])

sage: all([T2Wplus.charpoly()(l)==0 for l in eig36])

True

Here

eig12 =
[
−ζ2284 + ζ884 + ζ684 − 1, ζ1384 − ζ784 + ζ84, ζ

20
84 − ζ1484 + ζ884, ζ

23
84 − ζ1784 + ζ1384 + ζ1184 − ζ784 − ζ584 + ζ84, ζ

22
84 + ζ2084 − ζ1484 − ζ684 + 1, ζ2384 − ζ1784 + ζ1184 − ζ584, ζ2284 − ζ884 − ζ684 + 1,−ζ1384 + ζ784 − ζ84,−ζ2084 + ζ1484 − ζ884,−ζ2384 + ζ1784 − ζ1384 − ζ1184 + ζ784 + ζ584 − ζ84,−ζ2284 − ζ2084 + ζ1484 + ζ684 − 1,−ζ2384 + ζ1784 − ζ1184 + ζ584

]
are the eigenvalues of T2 on the 12-dimensional space spanned by the newform
with a2 = a and its twists; this 12-dimensional space is an irredicible PSL(2, 13)-
module over Q(ζ+7). The longer list eig36 includes all Galois conjugates over Q,
and is the list of all 36 eigenvalues of T2 on Wplus. Lastly, eig9 is a list of the
T2-eigenvalues on the space V3 and its Galois conjugates.

Now for the eigenvectors. We compute the first three T2-eigenvectors with
respect to the basis of V3plus, and check that their eigenvalues are the elements
of eig3 in the correct order.

evec3 = [(T2V3plus-e).kernel().basis()[0] for e in eig3]

sage: all([v*T2V3plus==e*v for e,v in izip(eig3,evec3)])

7

True

The list of these 3 eigenvectors is called evec3; each has length 3 and entries in
Q(ζ+7).

Next, multiplying by the basis matrix for V3 as a subspace of Q100 we obtain
the corresponding three eigenvectors for T2.

longevec3 = [e*V3plus.basis_matrix() for e in evec3]

sage: all([v*T2==ev*v for v,ev in izip(longevec3,eig3)])

True

The list of these 3 eigenvectors is called longevec3; each has length 100 and
entries in Q(ζ+7).

To compute the remaining eigenvectors which are an eigenbasis for the 36-
dimensional space Wplus, we apply the twisting operator Rε to these; this is
quicker than calling kernel() many more times, and also ensures that the
conjugate eigenvectors are coherently scaled.

To do this we first need to define the characters modulo 13. The character
group is generated by eps= ε of order 12, normalised so that ε(2) = ζ12. We
also use chi= χ = ε4 of order 3. We ensure that their values are in the field
Q(ζ12) ⊂ Q(ζ1092) as constructed earlier.

eps = [eps for eps in DirichletGroup(13,base_ring=Q12)

if eps(2)==zeta12][0]

chi = eps^4

chibar = chi^2

epsbar = eps^(-1)

Next we compute the Gauss sum for ε and its conjugate, which lie in Q(ζ84):

geps = sum([zeta13^i*eps(i) for i in range(13)])

gepsbar = sum([zeta13^i*epsbar(i) for i in range(13)])

The following vectors of scalings will be used to attach the correct weights
to eigenforms. The point is that we will express A4-invariant eigenvectors in
the space of cuspidal modular symbols as linear combinations of the Hecke
eigenvectors, and want to get hold of the q-expansions of the corresponding
cusp forms as linear combinations of the (normalized) eigenforms; but there is
not obvious way of normalizing elements of the modular symbol space. The
mathematics behind this scaling has been written up separately.

gepsvec = vector([geps^i for i in range(12)])

gepsvecm = vector([(-geps)^i for i in range(12)])

Now we use iteration to find T i for 0 ≤ i < 13, as 100×100 matrices over Q,
then base-change these to 100× 100 matrices over Q(ζ12) so we can take linear
combinations of them with coefficients which are character values.

8

Tpowers=[I]

while len(Tpowers)<13: Tpowers+=[T*Tpowers[-1]]

TpowersQ12 = [M.change_ring(Q12) for M in Tpowers]

Using these powers of T , we form the twisting operators:

Repsbar = sum([eps(i)*TpowersQ12[i] for i in range(13)])

Reps = sum([epsbar(i)*TpowersQ12[i] for i in range(13)])

Rchibar = sum([chi(i)*TpowersQ12[i] for i in range(13)])

Rchi = sum([chibar(i)*TpowersQ12[i] for i in range(13)])

sage: Conj*Reps==-Reps*Conj and T*Reps==Reps*T and Conj*Rchi==Rchi*Conj and T*Rchi==Rchi*T

True

Note that T commutes with both Reps and Rchi, but that Conj commutes
with Rchi but anticommutes with Reps. This is because ε(−1) = −1 while
χ(−1) = +1.

Now we compute the 12 eigenvectors as twists of the first one, each as a list
representing an elements of Q(ζ84)100:

longevec12=[(longevec3[0]).change_ring(Q84)]

R=Repsbar.change_ring(Q84)

while len(longevec12)<12: longevec12+=[R*longevec12[-1]]

If we twist one further time we will get a multiple of the original vector,
since R12

ε is a scalar multiple of the identity.

sage: r = -1894464*zeta12^3 + 396825*zeta12^2 + 161460*zeta12 + 4259255

sage: R*longevec12[11]==r*longevec12[0]

True

sage: r.norm().factor()

1324

We now have 12 eigenvectors in Q(ζ84)100 spanning a 12-dimensional space
called W1. The 36-dimensional space Wplus we had earlier is the sum of this and
its (cubic) Galois conjugates.

W1=longevec12[0].parent().subspace(longevec12)

Mlongevec12 = Matrix(longevec12)

The rows of the 12×100 matrix Mlongevec2 are the eigenvectors in longevec12,
which span W1: note that W1.basis matrix() will not be equal to this as it has
been echelonised when the space W1 was constructed.

W1 is an irreducible representation space for PSL(2, 13), which happens to
have a 1-dimensional A4-invariant subspace. It is really defined over the cubic
field Q(ζ+7), but we have extended scalars to Q(ζ84) which contains Q(ζ+7)(ζ12).

On the 12-dimensional space W1, the action of PSL(2, 13) is via the images
of S and T , and A4 acts as before using its generators A,B:

9

TW1 = T.transpose().change_ring(Q84).restrict(W1)

SW1 = S.transpose().change_ring(Q84).restrict(W1)

AW1 = A.transpose().change_ring(Q84).restrict(W1)

BW1 = B.transpose().change_ring(Q84).restrict(W1)

AW1d = BW1^(-1)*AW1*BW1

sigmaW1 = (1+AW1)*(1+AW1d)*(1+BW1+BW1^2)

sage: sigmaW1.rank()

1

sage: sigmaW1*(sigmaW1-12) == 0

True

As with sigma earlier, sigmaW1 is the sum of the A4-action matrices, and
projects W1 onto the 1-dimensional A4-invariant subspace. (Strictly, sigmaW1 is
12 times the projector.)

The A4-invariant subspace of W1 is 1-dimensional, so we pick its first basis
vector and name it Aw4 inv W1, then check that it really is A4-invariant:

sage: sigmaW1.row_space().dimension()

1

sage: A4_inv_W1 = sigmaW1.row_space().basis()[0]

sage: all([A4_inv_W1*g == A4_inv_W1 for g in [AW1,BW1]])

True

The coordinates of A4 inv W1 are with respect to the echelon basis of W1, but
we want its coordinates with respect to our original basis of Hecke eigenvectors
(each the image of the previous under the twist Repsbar) which are the rows
of Mlongevec12. We compute this by solving a linear system, giving a new
coordinate vector of the same length, called A4 inv 1:

A4_inv_1 = Mlongevec12.solve_left(A4_inv_W1*W1.basis_matrix())

From earlier calculations we know that the only twists which appear here, i.e.
the only nonzero entries in the vector A4 inv 1, are those indexed by multiples
of 4, i.e. the twists by powers of χ = ε4:

sage: all([A4_inv_1[i]==0 for i in [1,2,3, 5,6,7, 9,10,11]])

True

We pick out the nonzero coordinates of this A4-invariant vector, which give its
coordinates with respect to the 1, χ, χ2 twists:

10

coeffs1=[A4_inv_1[4*i] for i in range(3)]

We compute an automorphism of Q(ζ84) which fixes ζ12 and acts nontrivially
on ζ+7 . Those which fix ζ12 form a group of order 6, of which 2 fix ζ+7 , leaving 4,
with only 2 different restrictions to Q(ζ+7), one the inverse of the other. Some
experimentation was needed to get the 3-cycle the right way round here which
turned to be with the automorphism indexed 1:

aut7 = [aut for aut in Q84.automorphisms()

if aut(zeta12)==zeta12 and aut(zeta7p)!=zeta7p][1]

We check that our automorphism called aut7 cycles round the basic 3 T2-
eigenvalues in the right direction:

sage: all([aut7(eig3[i])==eig3[(i+1)%3] for i in range(3)])

True

Recall that coeffs1 gives the 3 coefficients of an A4-invariant vector in
terms of the 1, χ, χ2 twists of the original T2-eigenvector. To get the other two
A4-invariant vectors we apply our automorphism to these:

coeffs2 = [aut7(c) for c in coeffs1]

coeffs3 = [aut7(c) for c in coeffs2]

coeffs = [coeffs1,coeffs2,coeffs3]

Each of these coefficient vectors gives the coefficients of an A4-invariant
vector with respect to vectors in the modular symbol space which are each
Hecke eigenvectors, but whose relative scaling is such that the twisting opera-
tor Repsbar maps them round cyclically. The theory of twisting operators (see
Atkin and Li) tells us that the corresponding A4-invariant linear combinations
of the normalised newforms must use as coefficients not these coefficients ex-
actly, but these scaled by powers of the Gauss sum: this is because the twisting
operators takes a normalised eigenform to another eigenform which is not nor-
malised but scaled by a Gauss sum. We have already computed the required
powers. So each of the three elements of the list coeffs scaled is a list of
three coefficients such that when we take these linear combinations of the new-
forms, we will get an A4-invariant q-expansion. [In fact they will also need to
be complex-conjugated later.]

coeffs_scaled=[[c*geps^(4*i) for i,c in enumerate(co)] for co in coeffs]

5 q-expansions of newforms and A4-invariant cusp
forms

Now we construct the q-expansion of a basis for the A4-invariant cusp forms,
starting with the q-expansion of the newforms and taking appropriate linear
combinations.

11

The 9 relevant newforms have q-expansions which are power series in Q(ζ1092)[[q]].
They actually have coefficients in Q(ζ12, ζ

+
7) ⊂ Q(ζ84), but we need to extend

scalars to include ζ13 so that we can take linear combinations weighted by powers
of Gauss sums, so we will embed them in Q(ζ1092)[[q]].

f = S3.q_eigenform(ps_prec,’alpha’)

g = S8.q_eigenform(ps_prec,’beta’)

The coefficient field Q(f) = Q(α) = Q(ζ+7) is a subfield of Q(ζ1092). We
order the embeddings Q(α) ↪→ Q(ζ1092) so that the i’th one takes α to eig3[i]

for i = 0, 1, 2.

Kf=f.parent().base_ring()

alpha=Kf.gen()

embsKfQ84=Kf.embeddings(Q84)

emb3=[[e for e in embsKfQ84 if e(alpha)==ev][0] for ev in eig3]

sage: all([e(alpha)==ev for e,ev in izip(emb3,eig3)])

True

Similarly, Q(g) = Q(β) = Q(ζ+7 , ζ3) is also a subfield of Q(ζ1092). We order
the embeddings Q(β) ↪→ Q(ζ1092) so that the i’th one takes β to eig9[i+3] for
0 ≤ i < 6.

Kg=g.parent().base_ring()

beta=Kg.gen()

embsKgQ84=Kg.embeddings(Q84)

emb8=[[e for e in embsKgQ84 if e(beta)==ev][0] for ev in eig9[3:]]

sage: assert all([e(beta)==ev for e,ev in izip(emb8,eig9[3:])])

To get q-expansions for all 9 newforms in Q(ζ1092)[[q]], we apply the three
embeddings of Q(α) to the coefficients of f , and the six embeddings of Q(β)
to g. The resulting list of 9 q-expansions will be called f conjs.

f_conjs = [Q1092q([Q1092(e(c)) for c in f.list()]) for e in emb3]

g_conjs = [Q1092q([Q1092(e(c)) for c in g.list()]) for e in emb8]

f_conjs = f_conjs + g_conjs

Now these 9 f conjs are q-expansions of the 9 normalized newforms, in
Q(ζ1092)[[q]]. Each q-expansion starts q+eq2 + . . . where e is the T2-eigenvalue:

sage: all([fi.list()[:3]==[0,1,e] for fi,e in izip(f_conjs,eig9)])

True

We also verify that twisting by χ cycles the newforms round as it should, at
least for the first 20 q-coefficients:

12

sage: all([gi==chi(i)*fi for i,fi,gi in izip(range(20),list(f_conjs[j]),list(f_conjs[(j+3)%9])) for j in range(9)])

True

We now construct a basis for the A4-invariant cusp forms by taking suitable
linear combinations of the 9 newforms. Then we will find the algebraic relation
between them which gives a model for the associated modular curve.

Recall that the first A4-invariant cusp form is a linear combination of f and
its twists by the cubic character χ. The coefficients in this linear combination
have been computed above as coeffs scaled, but they also need to be complex
conjugated. See Corollary 3.16 in my notes for this; it is not easy to see why this
complex conjugation is necessary, but it concerns the duality between modular
symbols and cusp forms which is a duality over R but not quite over C.

coeffs_scaled_conj = [[conj1092(c) for c in ci] for ci in coeffs_scaled]

Now, at last, we can form three q-expansions giving a basis for the A4-
invariant cusp forms.

hs = [sum([coeffs_scaled_conj[j][i]*f_conjs[3*i+j]

for i in range(3)]) for j in range(3)]

These q-expansions (in hs) have coefficients in Q(ζ1092), and in fact they lie in
a subfield of Q(ζ1092) of degree 9, namely the composite Q(ζ+7 , ζ

++
13). But there

is a basis which has coefficients in the smaller field Q(ζ++
13) (though not over Q)

which we find by Galois theory. At the same time we make a second change
of basis over Q which (as it will turn out) simplifies the quartic equation for
the modular curve, moving three of its rational points to [1 : 0 : 0], [0 : 1 : 0]
and [0 : 0 : 1].

MK7 = Matrix([[e^j for j in range(3)] for e in eig3])

MM = Matrix([[1,4,3],[-4,-3,1],[6,-2,5]]) * MK7^(-1)

hh = list(MM * vector(hs))

6 Finding the quartic relation giving the equa-
tion for XA4

(13)

The three new q-expansions in hh still have Q(ζ1092)[[q]] as their parent though
they do in fact lie in Q(ζ++

13); we use the embedding Q(ζ13) ↪→ Q(ζ1092) to
redefine them as elements of Q(ζ13)[[q]]. This gives a new triple of q-expansions
called ff which are mathematically the same as hh but are in Q(ζ13)[[q]].

A4_forms = [Q13q([eQ13Q1092.preimage(c) for c in h]) for h in hh]

Using these we find a quartic algebraic relation between them, by finding a
linear relation between all the 15 monomials.

13

RXYZ.<X,Y,Z> = QQ[]

mons4 = ((X+Y+Z)^4).monomials()

Form the 15 monomial combinations of the A4 forms and check that there
is a unique linear relation between them (using the first 30 coefficients in the
q-expansions):

h4s = [m(A4_forms) for m in mons4]

relmat = Matrix([[list(G)[i] for i in range(30)] for G in h4s])

sage: relmat.nullity()

1

Now compute that relation. In fact, although we have been doing linear algebra
over Q(ζ13), the coefficients are in Q (and even in Z after scaling by a factor 4):

polA4 = sum([c*m for c,m in izip(relmat.kernel().basis()[0],mons4)])

polA4 = 4*polA4.change_ring(QQ)

We check that the polynomial relation holds to the q-adic precision used.

sage: polA4(A4_forms).valuation() > ps_prec

True

The polynomial we find is

4X3Y−3X2Y 2+3XY 3−X3Z+16X2Y Z−11XY 2Z+5Y 3Z+3X2Z2+9XY Z2+Y 2Z2+XZ3+2Y Z3.

Using this homogeneous quartic we construct the curve XA4
(13) as a plane

curve, check that it is smooth and has genus 3 (as it must, though I do not have
a way of showing a priori that it is not hyperelliptic). Here we construct the
curve over Q(ζ13) and not over Q since we will later construct some points on
it, including the cusps, and these are not rational but defined over Q(ζ13).

XA413=Curve(polA4.change_ring(Q13))

We check that theis plane quartic is smooth and of genus 3:

sage: XA413.is_smooth()

True

sage: XA413.genus()

3

14

7 Points on XA4
(13): I

Before computing all the 7 cusps, we construct some “easy” points, including 4
rational points. Three of these four rational points have the simplest possible
coordinates only because of the change of basis we used earlier:

sage: PtsQ = [XA413(1,0,0), XA413(0,1,0), XA413(0,0,1), XA413(1,3,-2)]

sage: PtsQ [
(1 : 0 : 0) , (0 : 1 : 0) , (0 : 0 : 1) ,

(
−1

2
: −3

2
: 1

)]
In fact, searching for rational pointsup to bound 5 finds no more points:

sage: [XA413(list(p)) for p in Curve(polA4).rational_points(bound=5)][(
−1

2
: −3

2
: 1

)
, (0 : 0 : 1) , (0 : 1 : 0) , (1 : 0 : 0)

]
Next, the cusp infinity is easy to compute as its coordinates are simply the

leading coefficients of the three q-expansions. This gives a point of degree 3,
defined over Q(ζ++

13), and we also compute its Galois conjugates (which are also
cusps):

pt = [f[1] for f in A4_forms]

PtsQ13 = [XA413(pt), XA413([Q13sigma(c) for c in pt]),

XA413([Q13sigma(Q13sigma(c)) for c in pt])]

Pts = PtsQ + PtsQ13

So far we have 7 points, of which 4 are rational and 3 are defined over Q(ζ13)
(in fact over Q(ζ++

13)):

sage: PtsQ13[0](
4

5
ζ1113 +

4

5
ζ1013 +

1

5
ζ913 +

1

5
ζ713 +

1

5
ζ613 +

1

5
ζ413 +

4

5
ζ313 +

4

5
ζ213 −

4

5
: −7

5
ζ1113 −

7

5
ζ1013 −

3

5
ζ913 −

3

5
ζ713 −

3

5
ζ613 −

3

5
ζ413 −

7

5
ζ313 −

7

5
ζ213 +

2

5
: 1

)
sage: PtsQ13[1](
−3

5
ζ1113 −

3

5
ζ1013 −

4

5
ζ913 −

4

5
ζ713 −

4

5
ζ613 −

4

5
ζ413 −

3

5
ζ313 −

3

5
ζ213 −

8

5
:

4

5
ζ1113 +

4

5
ζ1013 +

7

5
ζ913 +

7

5
ζ713 +

7

5
ζ613 +

7

5
ζ413 +

4

5
ζ313 +

4

5
ζ213 +

9

5
: 1

)
sage: PtsQ13[2](
−1

5
ζ1113 −

1

5
ζ1013 +

3

5
ζ913 +

3

5
ζ713 +

3

5
ζ613 +

3

5
ζ413 −

1

5
ζ313 −

1

5
ζ213 − 1 :

3

5
ζ1113 +

3

5
ζ1013 −

4

5
ζ913 −

4

5
ζ713 −

4

5
ζ613 −

4

5
ζ413 +

3

5
ζ313 +

3

5
ζ213 + 1 : 1

)

15

8 Points on XA4
(13): II cusps

We have an explicit model for the modular curve XA4(13), defined over Q, and
a parametrization of it (in fact the “canonical embedding” into P2) using the
three cusp forms of weight 2, A4 forms= (f1, f2, f3), which can be evaluated
at any point τ in the upper half-plane to give a point α(τ) = [f1(τ) : f2(τ) :
f3(τ)] ∈ XA4

(13)(C). The image of the upper half-plane under this map α is an
open subset of XA4

(13), omitting the cusps. The image of the cusp ∞ is easy
to determine, since q is a local parameter there and the three q-expansions fi
are expansions of the coordinate functions X,Y, Z of our model in term of this

parameter. Bearing in mind that the fi are cusp forms and so start q+a
(i)
2 q2 . . .

we see that α(∞) = [a
(1)
2 : a

(2)
2 : a

(3)
2] as evaluated above.

What about the other cusps? These have the form c = g(∞) for g ∈
PSL(2,Z), so

α(c) = [f1(g(∞)) : f2(g(∞)) : f3(g(∞))]

= [(f1|g)(∞)) : (f2|g)(∞)) : (f3|g)(∞))]

= [(f1|g)[1] : (f2|g)[1] : (f3|g)[1])]

where the notation f [1] means the coefficient of q1 in a q-expansion.
The cusp forms fi|g which appear in this formula are in the 50-dimensional

space of cusp forms of weight 2 for G, and even in the 36-dimensional subspace
dual to the modular symbol space Wplus, but do not lie in the 9-dimensional
subspace (spanned by f conjs) we used to find the equation. This is why we
constructed Wplus. If we can express each fi|g explicitly as a linear combination
of newforms then, since newforms are by definition normalized, we can extract
the coefficient of q1 in their expansion simply by adding the coefficients in the
linear combination, without needing to know all the newforms’ q-expansions at
all.

We now define a function to carry this plan out. By reverting from the
basis (f1, f2, f3) to the first basis we found for the A4-invariants, we are able to
replace one 36-dimensional computation by three 12-dimensional ones, which are
conjugate over Q(ζ+7) so in fact do a single 12-dimensional computation followed
by Galois conjugation. As before, we do most of the work in the modular symbol
space. Suppose that gam is the 12 × 12 matrix giving the action of an element
g ∈ PSL(2,Z) on the 12-dimensional modular symbol space W1, viewed as a
subspace of Q(ζ84)100. For example, the generators S and T of PSL(2,Z) act
via the matrices SW1 and TW1. More generally, we construct such gam by writing
g as a word in S, T and setting gam to be the same word in SW1, TW1.

Given the 12× 12 matrix gam we proceed as follows:

1. Multiply gam by the A4-invariant vector A4 inv W1 in W1, and then by the
basis matrix of W1 to get a vector in Q(ζ84)100, then express this as a linear
combination of the eigenbasis for W1.

2. Apply the order 3 Galois automorphism to the resulting vector (denoted
v1 in the code below, and of length 12) get two more vectors (denoted v2

16

and v3); these three vectors are a basis for the image of the A4-invariant
vectors under gam.

3. Change basis (using matrix MM) and scale by Gauss sums and complex
conjugation to get the coordinates of the images of f1, f2, f3 under g with
respect to the newform basis, and add up these coordinates to obtain the
q1-coefficient. (In the code below this is done using an inner product.)

4. This gives a vector of three homogeneous coordinates, in Q(ζ84), of the
desired point; finally divide by the last nonzero coordinate and pull back
to Q(ζ13) to get a point in XA4

(13)(Q(ζ13)).

This is achieved by the following Sage function:

def get_cusp(gam): # returns coords of cusp gam(infinity)

v1 = Mlongevec12.solve_left(A4_inv_W1*gam*W1.basis_matrix())

v2 = [aut7(c) for c in v1]

v3 = [aut7(c) for c in v2]

p2 = list(MM*Matrix([v1,v2,v3])*gepsvecm)

p2 = [conj1092(c) for c in p2] # complex conjugation

p2 = [c/p2[2] for c in p2] # normalize so last coordinate is 1

assert polA4(p2)==0

p2 = [eQ13Q1092.preimage(c) for c in p2] # pull back to Q13

assert polA4(p2)==0

return p2

For example, the cusp ∞ itself maps to

α(∞) =

(
4

5
ζ1113 +

4

5
ζ1013 +

1

5
ζ913 +

1

5
ζ713 +

1

5
ζ613 +

1

5
ζ413 +

4

5
ζ313 +

4

5
ζ213 −

4

5
: −7

5
ζ1113 −

7

5
ζ1013 −

3

5
ζ913 −

3

5
ζ713 −

3

5
ζ613 −

3

5
ζ413 −

7

5
ζ313 −

7

5
ζ213 +

2

5
: 1

)
.

All but one of the 7 cusps for G are represented by integers in P1(Q): one
can check that modulo G we have

0 ∼ ∞, 1 ∼ 5 ∼ 8 ∼ 12, 2 ∼ 7, 3 ∼ 4, 6 ∼ 11, 9 ∼ 10;

we represent these as g(∞) where g = T jS. The last cusp is 7/6 = g(∞) for
g = TST−6S. (The computation of cusp equivalences was done separately.)
Here is a function for the integral cusps:

def get_integral_cusp(j):

return get_cusp(TW1^j*SW1)

which we apply to get 6 of the 7 cusps:

XA413_cusps = [XA413(get_integral_cusp(j)) for j in [0,1,2,9,6,3]]

For the last cusp we have

gam = TW1*SW1*TW1^(-6)*SW1

P = XA413(get_cusp(gam))

XA413_cusps.insert(2,P)

17

So we now have all 7 as points in XA4(13)(Q(ζ13)):

sage: XA413_cusps[0](
4

5
ζ1113 +

4

5
ζ1013 +

1

5
ζ913 +

1

5
ζ713 +

1

5
ζ613 +

1

5
ζ413 +

4

5
ζ313 +

4

5
ζ213 −

4

5
: −7

5
ζ1113 −

7

5
ζ1013 −

3

5
ζ913 −

3

5
ζ713 −

3

5
ζ613 −

3

5
ζ413 −

7

5
ζ313 −

7

5
ζ213 +

2

5
: 1

)
sage: XA413_cusps[1](
−3

5
ζ1113 −

3

5
ζ1013 −

4

5
ζ913 −

4

5
ζ713 −

4

5
ζ613 −

4

5
ζ413 −

3

5
ζ313 −

3

5
ζ213 −

8

5
:

4

5
ζ1113 +

4

5
ζ1013 +

7

5
ζ913 +

7

5
ζ713 +

7

5
ζ613 +

7

5
ζ413 +

4

5
ζ313 +

4

5
ζ213 +

9

5
: 1

)
sage: XA413_cusps[2](
−1

5
ζ1113 −

1

5
ζ1013 +

3

5
ζ913 +

3

5
ζ713 +

3

5
ζ613 +

3

5
ζ413 −

1

5
ζ313 −

1

5
ζ213 − 1 :

3

5
ζ1113 +

3

5
ζ1013 −

4

5
ζ913 −

4

5
ζ713 −

4

5
ζ613 −

4

5
ζ413 +

3

5
ζ313 +

3

5
ζ213 + 1 : 1

)
sage: XA413_cusps[3](
−1

3
ζ1113 −

1

3
ζ913 −

1

3
ζ813 −

1

3
ζ713 +

1

3
ζ613 +

1

3
ζ513 −

1

3
ζ313 +

1

3
ζ213 −

1

3
ζ13 − 1 :

1

9
ζ1113 −

5

9
ζ913 +

1

9
ζ813 +

1

9
ζ713 +

2

9
ζ613 +

2

9
ζ513 −

5

9
ζ313 +

2

9
ζ213 −

5

9
ζ13 : 1

)
sage: XA413_cusps[4](
2

3
ζ913 +

1

3
ζ613 +

1

3
ζ513 +

2

3
ζ313 +

1

3
ζ213 +

2

3
ζ13 −

2

3
: −2

3
ζ1113 +

1

9
ζ913 −

2

3
ζ813 −

2

3
ζ713 −

1

9
ζ613 −

1

9
ζ513 +

1

9
ζ313 −

1

9
ζ213 +

1

9
ζ13 −

1

9
: 1

)
sage: XA413_cusps[5](
2

3
ζ1113 +

1

3
ζ913 +

2

3
ζ813 +

2

3
ζ713 +

1

3
ζ313 +

1

3
ζ13 −

2

3
:

7

9
ζ1113 +

5

9
ζ913 +

7

9
ζ813 +

7

9
ζ713 +

2

3
ζ613 +

2

3
ζ513 +

5

9
ζ313 +

2

3
ζ213 +

5

9
ζ13 +

5

9
: 1

)
sage: XA413_cusps[6](
−1

3
ζ1113 −

2

3
ζ913 −

1

3
ζ813 −

1

3
ζ713 −

2

3
ζ613 −

2

3
ζ513 −

2

3
ζ313 −

2

3
ζ213 −

2

3
ζ13 −

4

3
: −2

9
ζ1113 −

1

9
ζ913 −

2

9
ζ813 −

2

9
ζ713 −

7

9
ζ613 −

7

9
ζ513 −

1

9
ζ313 −

7

9
ζ213 −

1

9
ζ13 −

2

9
: 1

)
Their degrees are

sage: [max([co.minpoly().degree() for co in list(c)]) for c in XA413_cusps]

[3, 3, 3, 4, 4, 4, 4]

18

9 The j-map XA4
(13) −→ X(1)

We now find an expression for the rational map j of degree 91 from XA4(13) to
the j-line X(1).

The poles of j are at the 7 cusps which we have computed exactly, each
with multiplicity 13. The zeroes of j are harder to pin down. One approach, as
used by Burcu Baran for Xsp(13) and Xns(13), is to use the parametrisation of
XA4

(13) by modular functions on the upper half-plane. Write X,Y, Z for the
three cusp forms denoted A4 forms above. Then the parametrizing map

ϕ : H → XA4
(13)(C)

is given by τ 7→ [X(q) : Y (q) : Z(q)] with q = exp(2πiτ). We can extend this
map to the cusps as indicated in the previous section. Now the zeroes of j are
the points ϕ(τ) such that j(τ) = 0: there are 91 of these, counting multiplicities
(in fact 29 have multiplicity 3 and 4 have multiplicity 1), coming from the elliptic
points of order 3 on the upper half-plane H.

Baran’s approach is to compute ϕ(τ) numerically from the q-expansions for
91 (or in fact 29+4 = 33) elliptic points τ and hence recognise these as algebraic
points. If successful, then one has the complete divisor of j as a rational function
on the curve and can use Riemann-Roch to find j.

Instead we proceed as follows. First we find a polynomial in X,Y, Z passing
through the 7 cusps. There are no quadratics through these points:

sage: mons2 = ((X+Y+Z)^2).monomials()

sage: matrix([[m(list(c)) for c in XA413_cusps] for m in mons2]).nullity()

0

but there are cubics:

sage: mons3 = ((X+Y+Z)^3).monomials()

sage: ker = matrix([[m(list(c)) for c in XA413_cusps] for m in mons3]).left_kernel()

sage: ker.dimension()

3

We find an LLL-reduced basis for the integral cubics in this 3-dimensional space:

M = ker.basis_matrix()

M = (M*M.denominator()).change_ring(ZZ)

Sm,U,V = M.smith_form()

M = (Sm.submatrix(ncols=3)^(-1)*U*M).change_ring(ZZ)

M = (M*M.transpose()).LLL_gram().transpose() * M

cubs = [sum([c*m for c,m in izip(r,mons3)]) for r in M.rows()]

This gives the following cubics:

19

sage: cubs[0]

−7X3 +X2Y − 18X2Z + 6XY Z − 2Y 2Z − 17XZ2 + Y Z2 − 3Z3

sage: cubs[1]

7X3 + 16XY 2 + 3Y 3 + 15X2Z − 18XY Z + 21Y 2Z − 7XZ2 + 6Y Z2 − 3Z3

sage: cubs[2]

5X3−19X2Y −6XY 2 +9Y 3 +X2Z−23XY Z−16Y 2Z+8XZ2−22Y Z2 +3Z3

We do not use the first two of these as they pass through some of the rational
points we know on the curve, which will cause problems later when we try to
evaluate j on these points:

sage: cub = cubs[0]

sage: [cub(list(p)) for p in PtsQ]

[−7, 0,−3, 0]

Hence we use a cubic which does not have this issue

sage: cub = cubs[2]

sage: [cub(list(p)) for p in PtsQ][
5, 9, 3,−305

8

]
Now we convert the q-expansions of the three A4-invariant cusp forms to lie

in Q(ζ++
13)[[q]]; at the same time we divide each by q (otherwise all the power

series exponents later will be unnecessarily shifted by 39).

ffq = [Q13ppq([eQ13ppQ13.preimage(c) for c in list(f)[1:]]).add_bigoh(ps_prec)

for f in A4_forms]

xq,yq,zq = ffq

The denominator of j may be taken to be the 13th power of the cubic through
the cusps:

denj13 = cub(ffq)^13

For j itself we must evaluate the standard q-expansion for the j-function at q13:

jq = j_invariant_qexp(20, Q13pp)

jq13 = jq(Q13ppq.gen()^13)

Now the numerator of the rational function is a homogeneous polynomial of
degree 39 whose coefficients we must determine so that when evaluated at the
q-expansions of X,Y, Z equals j(q13) times the denominator:

20

numjq39 = jq13*denj13

We set up a system of linear equations to solve for the unknown coefficients.
We do not need to use all monomials of degree 39 since the curve equation can
be used to reduce the numerator polynomial.

sage: mons39 = ((X+Y+Z)^39).monomials()

sage: len(mons39)

820

sage: mons39r = [m for m in mons39 if m.degrees()[0]<3 or m.degrees()[1]==0]

sage: len(mons39r)

154

So we need at least 154 coefficients of the q-expansions. For efficiency, instead of
simply evaluating all the monomials at X,Y, Z we first find all necessary powers
of each variable and then combine these.

xpowers = [xq.parent()(1)]

ypowers = [yq.parent()(1)]

zpowers = [zq.parent()(1)]

while len(xpowers)<40:

xpowers += [xq*xpowers[-1]]

ypowers += [yq*ypowers[-1]]

zpowers += [zq*zpowers[-1]]

mons39q = [xpowers[m.degrees()[0]]*ypowers[m.degrees()[1]]*zpowers[m.degrees()[2]] for m in mons39r]

We extract the array of the relevant coefficients; it is enough to look at the
coefficients of qn for n < 160. Significantly, since we know that the solution
will be 1-dimensional and with coordinates in Q we can save a lot of time by
reducing to linear algebra over Q:

arr = [[mq[i] for i in range(160)] for mq in mons39q] + \

[[-numjq39[i] for i in range(160)]]

relmatQ = Matrix([flatten([list(aij) for aij in ai]) for ai in arr])

ker = relmatQ.left_kernel()

If all is well the dimension of the solution space should be 1:

sage: ker.dimension()

1

We extract the coefficients from the coordinates of the solution vector:

b = ker.basis()[0]

b *= b.denominator()

d = b[-1]

21

and form the numerator and denominator of the rational function we have been
seeking:

jnum = sum([bi*m for bi,m in zip(list(b)[:-1],mons39r)])

jden = d*cub^13

The images of the rational points on XA4
(13) give rational j-invariants of elliptic

curves whose projective mod-13 Galois representation is contained in S4 (and
in A4 after base change to Q(

√
13)):

sage: [(jnum(list(p))/jden(list(p))) for p in PtsQ][
0,

11225615440

1594323
,−160855552000

1594323
,

90616364985637924505590372621162077487104

197650497353702094308570556640625

]

10 The Split Cartan case: Xs(13)

This is the simplest of the three cases, since the space of cusp forms invariant
under the split Cartan normaliser is spanned by 3 conjugate newforms with
trivial character. We choose the split Cartan subgroup to be the subgroup of
diagonal matrices: then a cusp form is invariant under the split Cartan if and
only if it has trivial character, and is also invariant under the normalizer of the
split Cartan if it has eigenvalue +1 for the Atkin-Lehner involution. The space
of such forms is 3-dimensional and is the space spanned by the first three of the
q-expansions denoted f conjs above.

10.1 An equation for the curve

We make a change of basis here so that the equation we obtain agrees with that
obtained by Burcu Baran.

M1 = Matrix(QQ,3,3,[-1, 1, -3, -1, 0, -1, 0, 0, 1])

SC_forms = M1 * MK7^(-1) * vector(f_conjs[:3])

SC_forms = [QQq(list(gi)).add_bigoh(ps_prec) for gi in SC_forms]

We find a quartic relation between these just as before; the computation is
simpler since these q-expansions have rational coefficients.

g4s=[m([f.add_bigoh(40) for f in SC_forms]) for m in mons4]

relmat = Matrix([[list(G)[i] for i in range(30)] for G in g4s])

We find the polynomial (changing its sign so that polSC is exactly the same as
Burcu’s defining polynomial):

sage: relmat.nullity()

1

sage: polSC = -sum([c*m for c,m in zip(relmat.kernel().basis()[0],mons4)])

22

sage: polSC(SC_forms).valuation() > ps_prec

True

sage: polSC

−X3Y +2X2Y 2−XY 3−X3Z+X2Y Z+XY 2Z−2XY Z2+2Y 2Z2+XZ3−3Y Z3

Now we construct the curve (over Q(ζ13) to accommodate the cusps) and check
that it is smooth and of genus 3:

sage: XSC13 = Curve(polSC.change_ring(Q13))

sage: XSC13.is_smooth()

True

sage: XSC13.genus()

3

10.2 Cusps and rational points

The cusps are computed as before.

SC_inv_W1 = vector(W1.coordinates(longevec12[0]))

def get_SC_cusp(gam): # returns coords of cusp gam(infinity)

v1 = Mlongevec12.solve_left(SC_inv_W1*gam*W1.basis_matrix())

v2 = [aut7(c) for c in v1]

v3 = [aut7(c) for c in v2]

p2 = list(M1*MK7^(-1)*Matrix([v1,v2,v3])*gepsvecm)

p2 = [conj1092(c) for c in p2] # complex conjugation

if p2[2]!=0: # normalize so last coordinate is 1

p2 = [c/p2[2] for c in p2]

else:

if p2[1]!=0:

p2 = [c/p2[1] for c in p2]

else:

p2 = [c/p2[0] for c in p2]

assert polSC(p2)==0

p2 = [eQ13Q1092.preimage(c) for c in p2] # pull back to Q13

assert polSC(p2)==0

return p2

def get_integral_SC_cusp(j):

return get_SC_cusp(TW1^j*SW1)

XSC13_cusps = [XSC13(get_integral_SC_cusp(j)) for j in range(7)]

23

This really does find the 7 cusps, since the integers {0, 1, 2, 3, 4, 5, 6} represent
the 7 cusps, each of width 13.

A quick search find a few rational points:

sage: XSC13Q = [XSC13(list(P)) for P in Curve(polSC).rational_points(bound=5)]

sage: XSC13Q[
(−1 : 0 : 1) , (0 : 0 : 1) , (0 : 1 : 0) ,

(
0 :

3

2
: 1

)
, (1 : 0 : 0) , (1 : 0 : 1) , (1 : 1 : 0)

]
Only one cusp is rational, the others are conjugate over Q(ζ+13):

sage: [P for P in XSC13_cusps if P in XSC13Q]

[(1 : 1 : 0)]

sage: XSC13_cusps[:2][
(1 : 1 : 0) ,

(
−ζ1113 − ζ1013 − ζ713 − ζ613 − ζ313 − ζ213 : −ζ1013 − ζ913 − ζ813 − ζ713 − ζ613 − ζ513 − ζ413 − ζ313 : 1

)]
sage: [max([co.minpoly().degree() for co in list(c)]) for c in XSC13_cusps]

[1, 6, 6, 6, 6, 6, 6]

10.3 Map to the j-line

Now we find the rational function giving the map to the j-line. For the denom-
inator, we check that there are no quadratics through the seven cusps:

sage: matrix([[m(list(c)) for c in XSC13_cusps] for m in mons2]).nullity() == 0

True

So we find the cubics, which again form a 3-dimensional space:

sage: ker = matrix([[m(list(c)) for c in XSC13_cusps] for m in mons3]).left_kernel()

sage: ker.dimension()

3

We clear denominators, saturate and LLL-reduce:

M = ker.basis_matrix()

M = (M*M.denominator()).change_ring(ZZ)

Sm,U,V = M.smith_form()

M = (Sm.submatrix(ncols=3)^(-1)*U*M).change_ring(ZZ)

M = (M*M.transpose()).LLL_gram().transpose() * M

cubs = [sum([c*m for c,m in izip(r,mons3)]) for r in M.rows()]

24

There is a rational cusp, and we will want to choose a cubic for the denominator
which does not pass through any of the other rational points:

XSC13Q_noncusp = [P for P in XSC13Q if not P in XSC13_cusps]

sage: cubs[0], [cubs[0](list(p)) for p in XSC13Q_noncusp](
−X2Y +XY 2 +XY Z − Y 2Z − 2XZ2 + 2Y Z2 − Z3,

[
1,−1, 0,−1

4
, 0,−3

])
sage: cubs[1], [cubs[1](list(p)) for p in XSC13Q_noncusp](
−X3 −X2Y + 2XY 2 + 3X2Z − 2XY Z − Y 2Z + Y Z2 − Z3,

[
3,−1, 0,−7

4
,−1, 1

])
sage: cubs[2], [cubs[2](list(p)) for p in XSC13Q_noncusp](

2X2Y − 3XY 2 + Y 3 + 2X2Z + 2XY Z − 3Y 2Z +XZ2 + Y Z2,

[
1, 0, 1,−15

8
, 0, 3

])
sage: cub=cubs[1]+cubs[2]

sage: all([cub(list(p))!=0 for p in XSC13Q_noncusp])

True

sage: all([cub(list(p))==0 for p in XSC13_cusps])

True

To solve for the numerator we first shift the q-expansions (dividing by q), eval-
uate our cubic at the resulting point and multiply by j(q13):

ffq = [f.shift(-1) for f in SC_forms]

denj = cub(ffq)

denj13 = denj^13

jq = j_invariant_qexp(20)

q = jq.parent().gen()

jq13 = jq(q^13)

numjq39 = jq13*denj13

We compute an independent set of monomials of degree 39 in the q-expansions:

xq,yq,zq = ffq

xpowers = [xq.parent()(1)]

ypowers = [yq.parent()(1)]

zpowers = [zq.parent()(1)]

while len(xpowers)<40:

xpowers += [xq*xpowers[-1]]

ypowers += [yq*ypowers[-1]]

zpowers += [zq*zpowers[-1]]

mons39r = [m for m in mons39 if m.degrees()[0]<2 or m.degrees()[1]<2]

mons39q = [xpowers[m.degrees()[0]]*ypowers[m.degrees()[1]]*zpowers[m.degrees()[2]] for m in mons39r]

25

Extract the coefficients and form the matrix whose kernel gives the coefficients
of the solution:

relmatQ = Matrix([[mq[i] for i in range(190)] for mq in mons39q])

sol = relmatQ.solve_left(vector([numjq39[i] for i in range(190)]))

Using these coefficients we form the numerator and denominator as polynomials
in Q[X,Y, Z]:

c0 = sol.denominator()

c = list(c0*sol)

jnum = sum([ci*m for ci,m in zip(c,mons39r)])

jden = c0*cub^13

We do not display the rational function since it is huge, but we do evaluate it
at some points on the curve.

10.4 j-invariants of rational points

Now we evaluate the map at the rational points (excluding the cusp):

sage: jlist = [QQ(jnum(list(p))/jden(list(p))) for p in XSC13Q_noncusp]

sage: jlist

[287496,−12288000, 54000, 0,−884736000, 1728]

It appears that these j-invariants are all CM, which we check:

sage: [j for j in jlist if not j in cm_j_invariants(QQ)]

[]

Finally we check that the corresponding orders agree with Burcu Baran’s
Table 1.1:

sage: CMQ = cm_j_invariants_and_orders(QQ)

sage: [(P,d*f^2) for P,jj in izip(XSC13Q_noncusp,jlist) for (d,f,j) in CMQ if j==jj][
((−1 : 0 : 1) ,−16) , ((0 : 0 : 1) ,−27) , ((0 : 1 : 0) ,−12) ,

((
0 :

3

2
: 1

)
,−3

)
, ((1 : 0 : 0) ,−43) , ((1 : 0 : 1) ,−4)

]

26

11 The Nonsplit Cartan case: Xns(13)

The space of cusp forms invariant under the split Cartan normaliser is a 3-
dimensional subspace of the 36-dimensional space of cusp forms spanned by
newforms: f conjs and all 12 twists of each.

We choose the nonsplit Cartan subgroup as follows.

B=A

A=T*S*T^(-1)*S*T*S*T^(-5)*S*T^(-1)

Recall that these are 100× 100 matrices giving the action of PSL(2, 13) on the
full modular symbol space. Their restrictions to the irreducible 12-dimensional
space defined over the cubic field Q(ζ++

13) are

A2W1=TW1*SW1*TW1^(-1)*SW1*TW1*SW1*TW1^(-5)*SW1*TW1^(-1)

B2W1=AW1

which we check satisfy the defining relations for the nonsplit Cartan normaliser
which is isomorphic to the dihedral group of order 14:

sage: (A2W1^7)==1 and (B2W1^2)==1 and (B2W1*A2W1)^2==1

True

We construct the projector onto the invariant subspace:

sage: sigmaW1 = (1+A2W1+A2W1^2+A2W1^3+A2W1^4+A2W1^5+A2W1^6)*(1+B2W1)

sage: sigmaW1.rank()==1 and sigmaW1*(sigmaW1-14)==0

True

Check that the invariant subspace is 1-dimensional and extract a basis vector:

sage: sigmaW1.row_space().dimension()

1

sage: NS_inv_W1 = sigmaW1.row_space().basis()[0]

sage: [NS_inv_W1*g == NS_inv_W1 for g in [A2W1,B2W1]]

[True,True]

The coordinates of NS inv W1 are with respect to the echelon basis of W1, but
we need the coordinates with respect to the eigenvector basis:

v = Mlongevec12.solve_left(NS_inv_W1*W1.basis_matrix())

In fact only the even twists occur here:

sage: all([(v[i]==0)==(i%2==1) for i in range(12)])

True

27

11.1 q-expansions

We find the q-expansions of all 12 twists of the first newform:

f12_conjs = [Q1092q([(eps^j)(n)*(an)

for n,an in enumerate(list(f_conjs[0]))]).add_bigoh(ps_prec)

for j in range(12)]

Using the coefficient vector v we form the q-expansion of a cusp form invariant
under the nonsplit Cartan normalizer. This has been constructed with coeffi-
cients in Q(ζ1092) but in fact has coefficients in Q(ζ91), so we pull it back to
Q(ζ91)[[q]], and then form the three Galois conjugates:

h0 = sum([conj1092(v[i]*gepsvec[i])*f12_conjs[i] for i in range(12)])

h0 = Q91q([eQ91Q1092.preimage(c) for c in list(h0)]).add_bigoh(ps_prec)

h1 = Q91q([Q91aut(c) for c in list(h0)]).add_bigoh(ps_prec)

h2 = Q91q([Q91aut(c) for c in list(h1)]).add_bigoh(ps_prec)

hh=[h0,h1,h2]

By taking suitable linear combinations we arrive at a basis in Q(ζ13)[[q]]:

a0=eQ91Q1092.preimage(Q1092(1/zeta7p))

a1=Q91aut(a0)

a2=Q91aut(a1)

MK7 = Matrix([[a^j for a in [a0,a1,a2]] for j in range(3)])

hh = MK7 * vector(hh)

hh = [Q13q([eQ13Q91.preimage(c)for c in h]).add_bigoh(ps_prec) for h in hh]

Finally we make a change of basis so that the quartic equation we find later is
exactly the same as that obtained by Burcu Baran:

MBB = Matrix([[2,1,1],[-6,4,-3],[11,-5,2]])

NS_forms = list(MBB^(-1)*vector(hh))

11.2 Equation of the curve

We find a quartic relation between the three q-expansions in the same way as
before.

sage: h4s=[m([h.add_bigoh(40) for h in NS_forms]) for m in mons4]

sage: relmat = Matrix([[list(G)[i] for i in range(30)] for G in h4s])

sage: relmat.nullity()

1

sage: polNS = -sum([c*m for c,m in zip(relmat.kernel().basis()[0], mons4)])

sage: polNS = polNS.change_ring(QQ)

28

sage: polNS == polSC

True

Now we construct the curve (over Q(ζ13) to accommodate the cusps again) and
check that it is smooth and of genus 3. Although it is the same curve as before
we’ll construct it anyway.

sage: XNS13 = Curve(polNS.change_ring(Q13))

sage: XNS13.is_smooth()

True

sage: XNS13.genus()

3

11.3 Cusps and rational points

The rational points again:

sage: XNS13Q = [XNS13(list(p)) for p in Curve(polNS).rational_points(bound=5)]

sage: XNS13Q[
(−1 : 0 : 1) , (0 : 0 : 1) , (0 : 1 : 0) ,

(
0 :

3

2
: 1

)
, (1 : 0 : 0) , (1 : 0 : 1) , (1 : 1 : 0)

]
Computing the cusps is easier than before, since they are all Galois conjugates
of the cusp at ∞ which is easy to obtain from the q-expansions.

XNS13_cusps = [XNS13([(Q13aut^j)(h[1]) for h in NS_forms]) for j in range(6)]

The first cusp is(
3ζ1113 + ζ1013 + 2ζ913 + ζ813 + 2ζ713 + 2ζ613 + ζ513 + 2ζ413 + ζ313 + 3ζ213 + 2 : 2ζ1113 + ζ1013 + 2ζ913 + ζ813 + 2ζ713 + 2ζ613 + ζ513 + 2ζ413 + ζ313 + 2ζ213 + 2 : 1

)
.

11.4 Map to the j-line

As before there are no quadratics through the cusps:

sage: matrix([[m(list(c)) for c in XNS13_cusps] for m in mons2]).nullity()

0

so we look for cubics. As there are only 6 cusps now, the space of cubics through
them has dimension 10− 6 = 4:

sage: ker = matrix([[m(list(c)) for c in XNS13_cusps] for m in mons3]).left_kernel()

29

sage: ker.dimension()

4

We find a small Z-basis as before:

M = ker.basis_matrix()

M = (M*M.denominator()).change_ring(ZZ)

Sm,U,V = M.smith_form()

M = (Sm.submatrix(ncols=4)^(-1)*U*M).change_ring(ZZ)

M = (M*M.transpose()).LLL_gram().transpose() * M

cubs = [sum([c*m for c,m in izip(r,mons3)]) for r in M.rows()]

cub = cubs[0]

The first cubic is

X3 − 3XY 2 + Y 3 + 3X2Z − Y 2Z + 2XZ2 − Z3

which will serve as it does not pass through any of the rational points:

sage: [cub(list(p)) for p in PtsQ][
1, 1,−1,−29

8

]
sage: all([cub(list(p))!=0 for p in XNS13Q])

True

sage: all([cub(list(p))==0 for p in XNS13_cusps])

True

To ease the linear algebra it is worthwhile to convert the cusp forms to lie
in Q(ζ+13)[[q]] instead of Q(ζ13)[[q]]. We have not used this field before so need
to set this up:

z13p = zeta13+zeta13^12 # generates sextic subfield

Q13p.<z13p> = NumberField(z13p.minpoly(), embedding=z13p)

eQ13pQ13 = Q13p.hom([Q13(z13p)])

Q13pq.<q> = PowerSeriesRing(Q13p,ps_prec)

Now we do the conversion, dividing each q-expansion by q at the same time:

ffq = [Q13pq([eQ13pQ13.preimage(c) for c in list(f)[1:]]).add_bigoh(ps_prec-1)

for f in NS_forms]

Compute the denominator, the q-expansion of j(q13) in the sextic field, and
their product:

30

denj = cub(ffq)

denj13 = denj^13

jq = j_invariant_qexp(20, Q13p)

q = jq.parent().gen()

jq13 = jq(q^13)

numjq39 = jq13*denj13

Compute the degree 39 monomials:

xq,yq,zq = ffq

xpowers = [xq.parent()(1)]

ypowers = [yq.parent()(1)]

zpowers = [zq.parent()(1)]

while len(xpowers)<40:

xpowers += [xq*xpowers[-1]]

ypowers += [yq*ypowers[-1]]

zpowers += [zq*zpowers[-1]]

mons39q = [xpowers[m.degrees()[0]]*ypowers[m.degrees()[1]]*zpowers[m.degrees()[2]] for m in mons39r]

Set up and solve the linear equations over Q:

arr = [[-numjq39[i] for i in range(160)]] \

+ [[mq[i] for i in range(160)] for mq in mons39q]

relmatQ = Matrix([flatten([list(aij) for aij in ai]) for ai in arr])

ker = relmatQ.left_kernel()

The solution space has dimension 1 and we extract the coefficient vector:

b = ker.basis()[0]

b *= b.denominator()

jnum = sum([bi*m for bi,m in zip(list(b)[1:],mons39r)])

jden = b[0]*cub^13

These are the numerator and denominator of the j-map, each expressed as a
polynomial of degree 39 in Q[X,Y, Z].

11.5 j-invariants of rational points

Now we evaluate the map at the rational points:

sage: jlist = [QQ(jnum(list(p))/jden(list(p))) for p in XNS13Q]

sage: jlist

[−3375,−147197952000,−32768,−262537412640768000, 8000, 16581375,−884736]

It appears that these j-invariants are all CM, which we check:

sage: [j for j in jlist if not j in cm_j_invariants(QQ)]

31

[]

Finally we check that the corresponding orders agree with Burcu Baran’s
Table 1.1:

sage: CMQ = cm_j_invariants_and_orders(QQ)

sage: [(P,d*f^2) for P,jj in izip(XNS13Q,jlist) for (d,f,j) in CMQ if j==jj][
((−1 : 0 : 1) ,−7) , ((0 : 0 : 1) ,−67) , ((0 : 1 : 0) ,−11) ,

((
0 :

3

2
: 1

)
,−163

)
, ((1 : 0 : 0) ,−8) , ((1 : 0 : 1) ,−28) , ((1 : 1 : 0) ,−19)

]

32

