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4. Diophantine Equations

A Diophantine Equation is simply an equation in one or more variables for which integer (or
sometimes rational) solutions are sought. For example:

• x2 + y2 = z2 has solutions (x, y, z) = (3, 4, 5), (5, 12, 13), . . . ;
• x3 + y3 = z3 has no solutions with x, y, z positive integers;
• x2 − 61y2 = 1 has infinitely many solutions with x, y > 0; the smallest has x = 1766319049

and y = 226153980.

We will use the techniques we have developed in earlier chapters, as well as one new one, to solve
a number of Diophantine equations all of which have had some historical interest. Their solution
has led to the development of much of modern algebra and number theory. The new technique
we will use is called the Geometry of Numbers.

4.1. Geometry of Numbers and Minkowski’s Theorem. We will use the geometry of Rn

and of certain subsets of it:

Definition 4.1.1. A lattice in Zn is a subgroup L ⊆ Zn of finite index.

The lattices we will use are all defined using congruence conditions on the coordinates of vectors
in Zn, and the index of the lattice will be determined from the moduli of these congruences
(example to follow soon). There are more general subsets of Rn called lattices, but we will not
need them.

Our general strategy will be to set up a lattice so that the coordinates give a “modular approxi-
mation” to the equation being solved; then to get an exact solution we require a second condition,
that the vector of coefficients is “small” in some sense. Minkowski’s Theorem will show that
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(under certain conditions) there are short lattice vectors, and we win. Its statement requires the
following definitions.

Definition 4.1.2. A subset S ⊆ Rn is symmetric if x ∈ S ⇐⇒ −x ∈ S, and convex if
x, y ∈ S =⇒ tx + (1− t)y ∈ S for all t with 0 ≤ t ≤ 1.

Here is the result from the geometry of numbers we will use to deduce the existence of solutions
to several Diophantine Equations:

Theorem 4.1.3. [Minkowski] Let L ≤ Zn be a lattice of index m, and let S ⊆ Rn be a bounded
convex symmetric domain. If S has volume v(S) > 2nm, then S contains a nonzero element
of L.

The same conclusion holds when v(S) = 2nm, provided that S is compact.

4.2. Sums of squares. In this section we will give an answer to the questions “which positive
integers can be expressed as a sum of 2 squares (S2S), or a sum of 3 squares (S3S), or a sum of
4 squares (S4S)”? In the 3-squares case we will only give a partial proof, since the full proof uses
concepts which we will not cover. The reason for the S3S case being harder is that the set of S3S
numbers is not closed under multiplication, while for S2S and S4S it is, which then essentially
reduces the question to the case of primes.

4.2.1. Sums of two squares. To ask whether an integer n is a sum of two squares, n = a2 + b2,
is the same as to ask whether it is the norm of a Gaussian Integer: n = a2 + b2 = N(α) where
α = a+ bi ∈ Z[i]. Using Theorem 1.5.14 on Gaussian primes, such an integer must be a product
of norms of Gaussian primes which are: 2, p for any prime p ≡ 1 (mod 4), and q2 for any
prime q ≡ 3 (mod 4). This proves the following:
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Theorem 4.2.1. The positive integer n may be expressed as a sum of two squares, n = x2+ y2,
if and only if ordq(n) is even for all primes q ≡ 3 (mod 4), or equivalently if and only if n = ab2

where a has no prime factors congruent to 3 (mod 4).

Remarks: One can similarly characterize positive integers of the form n = x2+2y2 as those such
that ordq(n) is even for all primes q ≡ 5, 7 (mod 8). Either a direct proof or one based on unique
factorization in the Euclidean Domain Z[

√
−2] is possible. A similar result holds for n = x2+3y2

(though is slightly harder to prove since Z[
√
−3] is not Euclidean). But the pattern does not

continue, and for general m it is a very hard problem to determine exactly which integers n, or
even which primes p, have the form x2 +my2. The study of this question leads on to algebraic
number theory, and in particular to the study of the arithmetic properties of quadratic number
fields.

Recall from Chapter 1 that the key to determining the Gaussian primes was a fact which we only
proved later (Theorem 2.4.2): that if p is a prime such that p ≡ 1 (mod 4) then p is a sum of
two squares. We proved this in Chapter 2 by using facts about Gaussian Integers, together with
the fact that for such primes the congruence x2 ≡ −1 (mod p) has a solution. Now we give a
different proof that p ≡ 1 (mod 4) =⇒ p = a2 + b2, as a first application of the Geometry of
Numbers.

Theorem 4.2.2. [=Theorem 2.4.2 again] Let p be a prime such that p ≡ 1 (mod 4). Then
there exist integers a and b such that p = a2 + b2.

Before applying Minkowski again to prove the four-square theorem below, we will briefly (and
incompletely) look at sums of three squares.
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4.2.2. Sums of three squares.

Proposition 4.2.3. Let n be a positive integer with n ≡ 7 (mod 8). Then n is not a sum of
three squares, and nor is any integer of the form 4kn with n ≡ 7 (mod 8).

The converse of this result is true: every positive integer not of the form 4kn with n ≡ 7
(mod 8) can be written as a sum of three squares. But this is harder to prove and we omit it.
Instead we turn to sums of four squares.

4.2.3. Sums of four squares.

Theorem 4.2.4. [Lagrange] Every positive integer may be expressed as a sum of four squares.

Note that 0 is allowed as one of the squares. The theorem will follow from the following
Lemma 4.2.5, which reduces the problem to expressing all primes as S4S, and Proposition 4.2.6
which shows that all primes are S4S.

Lemma 4.2.5. If m = a21+ a
2
2+ a

2
3+ a

2
4 and n = b21+ b

2
2+ b

2
3+ b

2
4 then mn = c21+ c

2
2+ c

2
3+ c

2
4

where

c1 = a1b1 + a2b2 + a3b3 + a4b4
c2 = a1b2 − a2b1 + a3b4 − a4b3
c3 = a1b3 − a3b1 − a2b4 + a4b2
c4 = a1b4 − a4b1 + a2b3 − a3b2.

Proposition 4.2.6. Every prime number may be expressed as a sum of four squares.
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4.3. Legendre’s Equation. Here is an example of an equation with no nontrivial solutions.

Example: The equation x2 + y2 = 3z2 has no integer solutions except x = y = z = 0.
For suppose that (x, y, z) is a nonzero solution. Then we may assume that gcd(x, y) = 1 since

if both x and y were divisible by some prime p, then p2|3z2 and so p|z, so we could divide through
by p2 to get the smaller nontrivial solution (x/p, y/p, z/p). Next, neither x nor y is divisible
by 3 (since if either is then so would the other be). This implies x ≡ ±1 (mod 3) and y ≡ ±1
(mod 3), so x2 + y2 ≡ 1 + 1 = 2 6≡ 0 (mod 3), contradicting x2 + y2 = 3z2.

We have used two properties of the number 3 here: that it is square-free (so p2|3z2 =⇒ p|z)
and that x2 + y2 ≡ 0 (mod 3) =⇒ x ≡ y ≡ 0 (mod 3). So the same argument works for the
equations x2 + y2 = qz2 where q is any prime congruent to 3 (mod 4).

The general equation

(4.3.1) ax2 + by2 = cz2

with a, b, c ∈ N has been studied since the 19th century, and is known as Legendre’s Equation.
There is a simple criterion for the existence of nontrivial solutions in terms of congruences modulo
a, b and c. By a solution to (4.3.1) we will always mean a solution other than the trivial one
(x, y, z) = (0, 0, 0). By homogeneity, (x, y, z) satisfies (4.3.1) if and only if (rx, ry, rz) also does
for any r 6= 0; a solution will be called primitive if gcd(x, y, z) = 1.

First we reduce to the case where a, b, c are pairwise coprime and square-free:

• If d = gcd(a, b) > 1 then (x, y, z) satisfies (4.3.1) if and only if (dx, dy, z) satisfies the similar
equation with coefficients (a/d, b/d, cd). Similarly if gcd(a, c) > 1 or gcd(b, c) > 1. Note
that the product abc is reduced (by a factor d) in each case, so after a finite number of such
steps we may assume that a, b, c are pairwise coprime.
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• If d2|a then (x, y, z) satisfies (4.3.1) if and only if (dx, y, z) satisfies the similar equation with
coefficients (a/d2, b, c). Similarly with square factors of b or c, so we can assume that each
of a, b, c is square-free.

Theorem 4.3.1. Let a, b, c ∈ N be pairwise coprime and square-free. Then a non-trivial solution
to (4.3.1) exists if and only if each of the quadratic congruences

x2 ≡ bc (mod a), x2 ≡ ac (mod b), x2 ≡ −ab (mod c)

has a solution.

Our proof just fails to show that there always is a solution satisfying the inequalities |x| ≤
√
bc,

|y| ≤ √ac, |z| ≤
√
ab, because of the adjustment needed at the end; however there is always

such a “small” solution (proof omitted).

To make the proof constructive, we would need to have a method for finding short vectors in
lattices. Such methods do exist (the most famous is the LLL method named after Lenstra, Lenstra
and Lovasz) and have a huge number of applications in computational number theory and crypto-
graphy. One reason that lattice-based methods are becoming popular in cryptography is that they
are “quantum-resistant”, meaning that no-one (yet!) knows how to solve problems such as the
SVP (Shortest Vector Problem) using a quantum computer, unlike the case for factorization-based
methods such as RSA.

4.4. Pythagorean Triples. A classical problem is to find all right-angled triangles all of whose
sides have integral length. Letting the sides be x, y and z this amounts (by Pythagoras’s Theorem)
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to finding positive integer solutions to the Diophantine equation

(4.4.1) x2 + y2 = z2.

A solution (x, y, z) is called a Pythagorean Triple. For example, (3, 4, 5) is a Pythagorean Triple.
Clearly if (x, y, z) is a Pythagorean Triple then so is (kx, ky, kz) for all k ≥ 1, and to avoid

this trivial repetition of solutions we will restrict to Primitive Pythagorean Triples which have the
additional property that gcd(x, y, z) = 1. From (4.4.1) it then follows that x, y, z are pairwise
coprime, since a prime divisor of any two would have to divide the third.

Finally, in any primitive Pythagorean Triple, exactly one of x and y is even, the other odd; for
they are not both even by primitivity, and cannot both be odd for then x2 + y2 ≡ 2 (mod 4), so
x2 + y2 could not be a square. By symmetry we only consider triples with x and z odd, y even.

The following result shows how to parametrize all primitive Pythagorean Triples.

Theorem 4.4.1. Let u and v be positive coprime integers with u 6≡ v (mod 2) and u > v. Set

x = u2 − v2; y = 2uv; z = u2 + v2.

Then (x, y, z) is a primitive Pythagorean Triple. Conversely, all primitive Pythagorean Triples are
obtained in this way for suitable u and v.

We will see an application of our parametrization of Pythagorean triples to the Fermat equation
x4 + y4 = z4 in the next section. This case of Fermat’s Last Theorem says that there are no
Pythagorean Triples with all three integers perfect squares.

An alternative approach to the previous Theorem is to use the Gaussian Integers Z[i]. Suppose
x2 + y2 = z2 with gcd(x, y) = 1 and z odd. Then z2 = (x+ yi)(x− yi), and the factors on the
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right are coprime: for if α|x + yi and α|x − yi for some α ∈ Z[i], then α|2x and α|2yi, from
which α|2 since gcd(x, y) = 1 and i is a unit. But gcd(z, 2) = 1 so α is a unit.

Now each of x ± yi must be a square or a unit times a square, since they are coprime and
their product is a square and Z[i] is a UFD. If x + yi = ±(u + vi)2 then x = ±(u2 − v2)
and y = ±2uv; if x + yi = ±i(u + vi)2 then x = ∓2uv and y = ±(u2 − v2). The proof that
gcd(u, v) = 1 and u 6≡ v (mod 2) is as before, or follows from the fact that u + vi and u − vi
are coprime in Z[i].

Other similar equations may be solved by the same method. For example, all primitive solutions
to x2 + 2y2 = z2 are obtained from (x, y, z) = (±(u2 − 2v2),±2uv,±(u2 + 2v2)). This can be
proved using the UFD Z[

√
−2] or by elementary means.

4.5. Fermat’s Last Theorem. After our success in finding all solutions to the equation x2+y2 =
z2, it is natural to turn to analogous equation for higher powers. So we ask for solutions in positive
integers to the equation

(4.5.1) xn + yn = zn with n ≥ 3.

Fermat claimed, in the famous marginal note to his edition of the works of Diophantus, that
there are no solutions to (4.5.1). The result is known as Fermat’s Last Theorem: it is the last of
Fermat’s unproved claims to be proved (or disproved). Since 1994 it has become possible to state
the result as a Theorem:

Theorem 4.5.1. [Fermat’s Last Theorem; Wiles and Taylor–Wiles, 1994] Let n ≥ 3. Then there
are no solutions in positive integers to the equation xn + yn = zn.
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The only case which we know that Fermat proved is n = 4, which we will prove below. Euler
proved the case n = 3, using arithmetic in the ring Z[

√
−3], though there is some doubt as to

the validity of Euler’s argument at a crucial step where he tacitly assumed that this ring had
unique factorization (which it does not). Subsequent work by Dirichlet, Legendre, Kummer and
many others settled many more exponents, at the same time creating most of modern algebraic
number theory and algebra. By 1987, the Theorem was known to be true for all n ≤ 150000. In
1986, an unexpected connection was found, by Frey, between the Fermat equation and another
class of Diophantine equation called Elliptic curves. A solution to Fermat’s equation would lead
to the existence of an elliptic curve with properties so strange that they would contradict widely-
believed, but then unproved, conjectures about elliptic curves. This connection was proved by
Ribet. Finally, Andrew Wiles, with the help of Richard Taylor, proved the elliptic curve conjecture,
firmly establishing the truth of Fermat’s Last theorem.

We will prove the case n = 4 of the theorem.

Theorem 4.5.2. [Fermat’s Last Theorem for exponent 4] The equation x4 + y4 = z4 has no
solutions in positive integers.

We will prove a stronger statement: x4 + y4 cannot be a square, let alone a 4th power:

Theorem 4.5.3. The equation x4 + y4 = z2 has no solutions in positive integers.

Corollary 4.5.4. Let n ∈ N be a multiple of 4. Then there are no solutions in positive integers
to the equation xn + yn = zn.



MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 55

Now to prove Fermat’s Last Theorem in general it suffices to show that the equation xp+yp = zp

has no positive integer solutions for each odd prime p, since every n ≥ 3 is divisible either by 4 or
by an odd prime, and impossibility for a divisor of n implies impossibility for n itself.

4.6. Proof of Minkowski’s Theorem. There are several ways to prove Minkowski’s Theo-
rem 4.1.3, all of which are based on a continuous analogue of the pigeon-hole principle. We’ll use
a preliminary result called Blichfeld’s Theorem:

Theorem 4.6.1. [Blichfeld’s theorem] Let S be a bounded subset of Rn whose volume v(S)
exists and satisfies v(S) > m for some integer m ≥ 1. Then there exist m + 1 distinct points
x0, x1, . . . , xm ∈ S such that xi − xj ∈ Zn for all i, j.


