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1. Factorization

1.1. Divisibility in Z.

Definition 1.1.1. Let a, b ∈ Z. Then we say that a divides b and write a|b if b = ac for some
c ∈ Z:

a|b ⇐⇒ ∃c ∈ Z : b = ac.

Alternatively, we may say that “b is a multiple of a”. If a 6= 0 this is equivalent to the statement
that the rational number b/a is an integer c. If a does not divide b we write a6 |b.
Lemma 1.1.2. [Easy facts about divisibility] For all a, b, . . . ∈ Z:
(1) a|b =⇒ a|kb (∀k ∈ Z);
(2) a|b1, a|b2 =⇒ a|b1± b2; hence if b1 and b2 are multiples of a, then so are all integers of the

form k1b1 + k2b2.
(3) a|b, b|c =⇒ a|c;
(4) a|b, b|a ⇐⇒ a = ±b;
(5) a|b, b 6= 0 =⇒ |a| ≤ |b|; so nonzero integers have only a finite number of divisors;
(6) If k 6= 0 then a|b ⇐⇒ ka|kb;
(7) Special properties of ±1: ±1|a (∀a ∈ Z), and a| ± 1 ⇐⇒ a = ±1;
(8) Special properties of 0: a|0 (∀a ∈ Z), and 0|a ⇐⇒ a = 0.

Proposition 1.1.3 (Division Algorithm in Z). Let a, b ∈ Z with a 6= 0. There exist unique
integers q, r such that

b = aq + r with 0 ≤ r < |a|.
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Notation: the set of all multiples of a fixed integer a is denoted (a) or aZ:

(a) = aZ = {ka | k ∈ Z}.
Then we have a|b ⇐⇒ b ∈ (a) ⇐⇒ (a) ⊇ (b): “to contain is to divide”. From Lemma 1.1.2(4)
we have (a) = (b) ⇐⇒ a = ±b.

An ideal in a commutative ring R is a subset I of R satisfying
(i) 0 ∈ I ;

(ii) a, b ∈ I =⇒ a± b ∈ I ;
(iii) a ∈ I , r ∈ R =⇒ ra ∈ I .
Notation: I / R. For example, the set of all multiples of a fixed element a of R is the principal
ideal denoted (a) or aR. We say that a generates the principal ideal (a). The other generators
of (a) are the associates of a: elements b = ua where u is a unit of R.

Proposition 1.1.4. Every ideal in Z is principal.

Definition 1.1.5. A Principal Ideal Domain or PID is a (nonzero) commutative ring R such that
(i) ab = 0 ⇐⇒ a = 0 or b = 0;

(ii) every ideal of R is principal.

So Z is a principal ideal domain. Every nonzero ideal of Z has a unique positive generator.

1.2. Greatest Common Divisors in Z.

Theorem 1.2.1. Let a, b ∈ Z.
(1) There exists a unique integer d satisfying

(i) d|a and d|b;
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(ii) if c|a and c|b then c|d;
(iii) d ≥ 0.

(2) The integer d can be expressed in the form d = au + bv with u, v ∈ Z.

Definition 1.2.2. For a, b ∈ Z we define the Greatest Common Divisor (or GCD) of a and b to
be the integer d with the properties given in the theorem. Notation: gcd(a, b), or sometimes just
(a, b). Integers a and b are said to be coprime (or relatively prime) if gcd(a, b) = 1.

So integers are coprime if they have no common factors other than ±1. The identity gcd(a, b) =
au + bv is sometimes called Bezout’s identity.

Corollary 1.2.3. [Basic Properties of gcd] For all a, b, k,m ∈ Z:

(1) a and b are coprime iff there exist u, v ∈ Z such that au + bv = 1;
(2) gcd(a, b) = gcd(b, a) = gcd(|a|, |b|);
(3) gcd(ka, kb) = |k| gcd(a, b);
(4) gcd(a, 0) = |a|; gcd(a, 1) = 1;
(5) gcd(a, b) = gcd(a, b + ka) for all k ∈ Z;
(6) if gcd(a,m) = gcd(b,m) = 1 then gcd(ab,m) = 1;
(7) if gcd(a, b) = 1 then gcd(ak, bl) = 1 for all k, l ∈ N.

Lemma 1.2.4. [Euler’s Lemma] If a|bc and gcd(a, b) = 1 then a|c.
If a1, a2, . . . , an is any finite sequence of integers then we similarly find that the ideal they

generate, I = (a1, a1, . . . , an) = {k1a1 + k2a2 + · · · + knan | k1, k2, . . . , kn ∈ Z} is an ideal
of Z, hence I = (d) for a unique d ≥ 0, and we define d = gcd(a1, a2, . . . , an). We say that
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a1, a2, . . . , an are coprime if gcd(a1, a2, . . . , an) = 1. This is weaker than the condition that
gcd(ai, aj) = 1 for all i 6= j: for example, gcd(6, 10, 15) = 1 since 6+ 10− 15 = 1, but no pair of
6, 10, 15 is coprime. When gcd(ai, aj) = 1 for all i 6= j, we say that the ai are pairwise coprime.

Our proofs have been non-constructive. A very important computational tool is the Euclidean
Algorithm, which computes d = gcd(a, b) given a and b ∈ Z, and its extended form which also
computes the (non-unique) u, v such that d = au + bv.

1.3. The Euclidean Algorithm in Z. The Euclidean Algorithm is an efficient method of com-
puting gcd(a, b) for any two integers a and b, without having to factorize them. It may also be
used to compute the coefficients u and v in the identity d = gcd(a, b) = au + bv.

The basic idea is this. We may assume b > a > 0 (see the Basic Properties above). Write
r = b − aq with 0 ≤ r < a; then gcd(a, b) = gcd(r, a) and we have reduced the problem to
a smaller one. After a finite number of steps we reach 0, and the last positive integer in the
sequence a, b, r, . . . is the gcd.
Example: (963, 657) = (657, 963) = (306, 657) = (45, 306) = (36, 45) = (9, 36) = (0, 9) = 9.
Here we have used 963− 657 = 306, 657− 2 · 306 = 45, 306− 6 · 45 = 36, 45− 36 = 9.

To solve 9 = 963u+657v we can back-substitute in these equations: 9 = 45−36 = 45− (306−
6 · 45) = 7 · 45− 306 = 7 · (657− 2 · 306)− 306 = 7 · 657− 15 · 306 = 7 · 657− 15(963− 657) =
22 · 657− 15 · 963, so u = −15 and v = 22.

There is a simpler way of keeping track of all these coefficients while reducing the amount which
needs to be written down, using some auxiliary variables, which leads to the Euclidean algorithm.
We give it in a form which keeps all the auxiliary variables positive which is easier to carry out in
practice.
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Extended Euclidean Algorithm: Given positive integers a and b, this algorithm computes
(d, u, v) such that d = gcd(a, b) = au + bv:

(1) Set a1 = a, a2 = b; x1 = 1, x2 = 0; y1 = 0, y2 = 1.
(2) Let q = [a1/a2].
(3) Set a3 = a1 − qa2; x3 = x1 + qx2; y3 = y1 + qy2.
(4) Set a1 = a2, a2 = a3; x1 = x2, x2 = x3; y1 = y2, y2 = y3.
(5) If a2 > 0 loop back to Step 2.
(6) If ax1 − by1 > 0 return (d, u, v) = (a1, x1,−y1), else return (d, u, v) = (a1,−x1, y1).
Example: In the previous example, the ai sequence is

963, 657, 306, 45, 36, 9, 0

using quotients
q = 1, 2, 6, 1, 4.

So the xi sequence is
1, 0, 1, 2, 13, 15, 73

and the yi sequence is
0, 1, 1, 3, 19, 22, 107.

Using the last xi and yi provides a check:

73a− 107b = 73 · 963− 107 · 657 = 0

and the preceding values give the solution:

15a− 22b = 15 · 963− 22 · 657 = −9.
So we may take u = −15, v = 22.
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1.4. Primes and unique factorization.

Definition 1.4.1. A prime number (or prime for short) is an integer p > 1 whose only divisors
are ±1 and ±p; the set of primes is denoted P:

p ∈ P ⇐⇒ p > 1 and p = ab =⇒ a = ±1 or b = ±1.

For example 2, 3, 5, 7, 11 are primes. Integers n > 1 which are not prime are called composite. If
a is any integer then either p|a, in which case gcd(p, a) = p, or p 6 |a, in which case gcd(p, a) = 1.

Lemma 1.4.2. Let p be a prime and a, b ∈ Z. If p|ab then either p|a or p|b (or both).

This property of primes is very important, and the uniqueness of prime factorization relies on it.
(It is easy to see that composite numbers do not have this property.) More generally:

Corollary 1.4.3. Let p be a prime and a1, a2, . . . , an ∈ Z. Then

p|a1a2 . . . an =⇒ p|ai for some i.

Theorem 1.4.4 (Fundamental Theorem of Arithmetic). Every positive integer n is a product of
prime numbers, and its factorization into primes is unique up to the order of the factors.

Note that this includes n = 1 which is an “empty” product, and primes themselves with only
one factor in the product. Collecting together any powers of primes which occur in a prime
factorization, we obtain
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Corollary 1.4.5. Every positive integer n may be expressed uniquely in the form

n = pe11 p
e2
2 . . . p

ek
k

where p1, . . . , pk are primes with p1 < p2 < · · · < pk and each ei ≥ 1. Alternatively, every
positive integer n may be expressed uniquely in the form

n =
∏

p∈P
pep

where the product is over all primes, each ep ≥ 0, but only a finite number of ep > 0.

The exponent ep which appears in this standard factorization of n is denoted ordp(n); it is
characterized by the following property:

e = ordp(n) ⇐⇒ pe|n and pe+1 6 |n.
For example, 700 = 22 ·52 ·7, so ord2(700) = ord5(700) = 2, ord7(700) = 1, and ordp(700) = 0 for
primes p 6= 2, 5, 7. Every positive integer n is uniquely determined by the sequence of exponents
ordp(n).

This standard factorization of positive integers into primes may be extended to negative integers
by allowing a factor ±1 in front of the product, and to nonzero rational numbers by allowing
the exponents to be negative. We may accordingly extend the function ordp to Q∗, by setting
ordp(−n) = ordp(n) and ordp(n/d) = ordp(n) − ordp(d) for nonzero rationals n/d. [You should
check that this is well-defined, independent of the representation of the fraction n/d.] Then we
have the following extension of the main theorem on unique factorization:
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Corollary 1.4.6. Every nonzero rational number x may be uniquely expressed in the form

x = ±
∏

p∈P
pordp(x).

For example, −72/91 = −23327−113−1.
Many facts about integers may easily be proved using their unique factorization into primes. For

example:

Proposition 1.4.7. Let m,n ∈ Z be nonzero. Then

m = ±n ⇐⇒ ordp(m) = ordp(n) ∀p ∈ P.

The function ordp works rather like a logarithm. The following is easy to check:

Proposition 1.4.8. Let m,n ∈ Z be nonzero. Then ordp(mn) = ordp(m) + ordp(n).

The previous result looks elementary enough, but it is sufficient to imply the uniqueness of prime
factorization: for if n =

∏
pep is any factorization of n in to primes, applying ordq to both sides

(where q is some fixed prime) and using the Proposition gives

ordq(n) =
∑

epordq(p) = eq,

since ordq(q) = 1 and ordq(p) = 0 when p 6= q. It follows that the exponents ep are uniquely
determined.
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Proposition 1.4.9. Let n ∈ Z be nonzero. Then n is a perfect square if and only if n > 0 and
ordp(n) is even for all primes p.

We end this section with a famous and ancient result of Euclid.

Theorem 1.4.10. [Euclid] The number of primes is infinite.

Note that this proof actually shows how to construct a “new” prime from any given finite set of
known primes. Variations of this proof can show that there are infinitely many primes of various
special forms: see the Exercises.

1.5. Unique Factorization Domains. Theorem 1.4.4 (extended to include negative integers)
may be expressed succinctly by the statement that Z is a Unique Factorization Domain or UFD.
Roughly speaking, a UFD is a ring in which every element has an essentially unique factorization
as a unit times a product of “prime” elements. Every PID is a UFD (but not conversely: Z[X ] is a
UFD but not a PID), and an important source of PIDs is rings which have a “division algorithm”
similar to the one for Z. Such rings are called Euclidean Domains, and we start by defining these.

Definition 1.5.1. (a) A nonzero ring R is an Integral Domain if, for a, b ∈ R,

ab = 0 ⇐⇒ (a = 0 or b = 0).

(b) A nonzero ring R is a Euclidean Domain or ED if it is an integral domain equipped with a
function λ : R − {0} → N0 such that, for a, b ∈ R with a 6= 0, there exist q, r ∈ R such
that

b = aq + r with either r = 0 or λ(r) < λ(a).
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Examples:
• Z is an ED with λ(n) = |n|: this is what Proposition 1.1.3 states (though note that the

definition of an ED does not require q and r to be unique).
• Any field F is an ED with λ(x) = 0 for all x 6= 0; this is a degenerate example since we may

always take r = 0 in division.
• If F is a field then the polynomial ring F [X ] is an ED, using the degree function λ(f (X)) =
deg(f (X)). The required division property is well-known, being just the usual long division
for polynomials.

It is important that F is a field here: for example, Z[X ] is not Euclidean (exercise).
• The ring Z[i] of Gaussian Integers is defined as

Z[i] = {a + bi | a, b ∈ Z};
it is a subring of C. We will study this in some detail as it gives another example of a Euclidean
Domain which is of interest in number theory, both for its own sake and also for proving some
properties of the ordinary or “rational” integers Z. The Euclidean function λ on Z[i] is usually
called the norm and denoted N :

N(α) = αα = a2 + b2 for α = a + bi ∈ Z[i].

Theorem 1.5.2. The ring Z[i] of Gaussian Integers is a Euclidean Domain.

Lemma 1.5.3. The norm function N on Z[i] has the following properties:
(1) Multiplicativity: for all α, β ∈ Z[i], N(αβ) = N(α)N(β);
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(2) Positivity: N(0) = 0, N(α) ≥ 1 for α 6= 0;
(3) Units: N(α) = 1 ⇐⇒ α ∈ U(Z[i]) = {±1,±i}.
Recall that for a ring R, the group of units (invertible elements) is denoted U(R). Elements of

an integral domain are called associate if one is a unit times the other, or (equivalently) if each
divides the other.
Example: Take α = 3 + 4i and β = 10 + 11i. Then

10 + 11i

3 + 4i
=

(10 + 11i)(3− 4i)

25
=

74− 7i

25
= 3 +

−1− 7i

25
,

so the quotient is 3 and remainder (10 + 11i)− 3(3 + 4i) = 1− i. Check: N(1− i) = 2 is less
than N(3 + 4i) = 25.

Just as we did for Z, we can now prove that every ED is a PID:

Theorem 1.5.4. Let R be a Euclidean Domain. Then R is a Principal Ideal Domain.

In a PID we have gcds just as in Z, and Bezout’s identity. In general we do not have uniqueness
of gcds, only uniqueness up to associates (multiplication by a unit). (In Z we avoided this non-
uniqueness by insisting that all gcds were non-negative.)

Definition 1.5.5. In a ring R, a gcd of two elements a and b is an element d satisfying

(i) d|a and d|b;
(ii) if c|a and c|b then c|d.

Lemma 1.5.6. If gcd(a, b) exists then it is unique up to associates.
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Because of this non-uniqueness we cannot talk about the gcd, only a gcd of a and b. In specific
rings, one may impose an extra condition to ensure uniqueness: in Z we insisted that gcd(a, b) ≥ 0;
in the polynomial ring F [X ] (with F a field) one usually insists that gcd(a(X), b(X)) is monic
(with leading coefficient 1).

Proposition 1.5.7. In a PID, the gcd of two elements a and b exists, and may be expressed in
the form au + bv.

So in a PID, whether Euclidean or not, the gcd always exists. However, it is only in a ED that
computing gcds is easily possible via the Euclidean Algorithm.

Example: Take α = 3 + 4i and β = 10 + 11i. Then from the previous example we have
β−3α = 1−i. Similarly, α−3i(1−i) = i, and lastly 1−i = i(−1−i) with zero remainder. The last
nonzero remainder was i which is therefore a gcd of α and β; one would normally adjust this since i
is a unit and say that gcd(α, β) = 1. Back-substitution gives i = α−3i(β−3α) = (1+9i)α−3iβ,
so finally 1 = (9− i)α− 3β.

The next step is to show that every PID is also a unique factorization domain. In the case of
Z, we used the Euclidean property again, and not just the PID property, for this step, but since
there are rings which are PIDs but not Euclidean we give a proof which works for all PIDs.

Definition 1.5.8. In an integral domain R, an element p is called irreducible if it is neither 0 nor
a unit and p = ab implies that either a or b is a unit; p is called prime if it is neither 0 nor a unit
and p|ab implies that either p|a or p|b.
Lemma 1.5.9. Every prime is irreducible. In a PID, every irreducible is prime.
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The last property will be crucial in proving the uniqueness of factorizations into irreducibles,
but for the existence we need to do some more preparation. The following lemma is called the
“ascending chain condition” or ACC for ideals in a PID.

Lemma 1.5.10. Let R be a PID. Let (ai)i∈N be a sequence of elements of R with (a1) ⊆
(a2) ⊆ (a3) ⊆ . . . . (So each ai is a multiple of the next). Then there exists k such that
(ak) = (ak+1) = (ak+2) = . . . , so the chain of ideals stabilizes. Hence any strictly ascending
chain of ideals (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . must be finite.

This lemma is used to replace induction in the proof of the existence of factorizations into
irreducibles, which was used for Z.

Proposition 1.5.11. Let R be a PID. Every element of R which is neither 0 nor a unit is a
product of irreducibles.

Finally, we use the fact that in a PID irreducibles are prime to prove that the factorizations of
any given nonzero non-unit are essentially the same, up to reordering the factors and replacing
irreducibles by associates.

Definition 1.5.12. An Integral Domain R is a Unique Factorization Domain or UFD if

(i) every nonzero element may be expressed as a unit times a product of irreducibles;
(ii) the factorization in (i) is unique up to the order of the factors and replacing the irreducibles

by associates; that is, if a ∈ R is nonzero and

a = up1p2 . . . pr = vq1q2 . . . qs
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with u, v units and all pi, qj irreducibles, then r = s, and after permuting the qj if necessary,
there are units vj for 1 ≤ j ≤ r such that qj = vjpj and u = vv1v2 . . . vr.

Theorem 1.5.13. Let R be a PID. Then R is a UFD.

Example (continued): Since the ring Z[i] of Gaussian Integers is Euclidean, it is a PID and a
UFD. We have already determined that its units are the four elements ±1 and ±i, but what are
its primes/irreducibles?

(1) If π ∈ Z[i] is prime then π divides some ordinary “rational” prime p, since if n = N(π) = ππ
then π|n so by primality of π, π divides at least one prime factor p of n.

(2) If N(π) = p is prime, then π is irreducible: for if π = αβ then p = N(π) = N(α)N(β), so
one of α, β has norm 1 and is a unit. For example, 1 + i, 2 + i, 3 + 2i, 4 + i are prime since
their norms are 2, 5, 13, 17.

(3) If a rational prime p is a sum of two squares, p = a2 + b2, then setting π = a+ bi gives p =
N(π) = N(π), so π and π are both Gaussian primes. We will prove later, in Theorem 2.4.2,
that every rational prime p of the form 4k+1 can be expressed in this way; the factors π and
π are not associate (exercise).

(4) However, rational primes q of the form 4k + 3 can not be expressed as sums of two squares,
since squares all leave remainder of 0 or 1 when divided by 4, so all numbers of the form
a2 + b2 leave a remainder of 0, 1 or 2 on division by 4. Such primes q remain prime in Z[i].
For if q = αβ with neither α nor β a unit, then q2 = N(α)N(β) with both N(α), N(β) > 1,
so (by unique factorization in Z) we must have N(α) = N(β) = q, so q would be a sum of
two squares.
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We sum up this example as follows; we have proved everything stated here except for the fact
that all primes of the form 4k+1 are sums of two squares (Theorem 2.4.2), and the remark about
associates (exercise).

Theorem 1.5.14. The ring Z[i] of Gaussian Integers is a Euclidean Domain and hence also a
Principal Ideal Domain and a Unique Factorization Domain. Its units are the four elements ±1,
±i. Its primes are as follows (together with their associates):
(1) 1 + i, of norm 2;
(2) each rational prime p of the form 4k+1 is a sum of two squares, p = a2+ b2, and p factorizes

in Z[i] as p = ππ where π = a + bi and π = a − bi are non-associate Gaussian primes of
norm p;

(3) each rational prime q of the form 4k + 3 is also a Gaussian prime.

For example, here are some Gaussian factorizations: 123 + 456i = 3 · (1 + 2i) · (69 + 14i) (the
last factor has prime norm 4957), 2000 = (1 + i)8(1 + 2i)3(1− 2i)3.
sa ge : Qi .< i> = QQ. e x t e n s i o n ( x ˆ2+1)
sa ge : 2 0 1 8 . f a c t o r ( )
2 ∗ 1009
sa ge : Qi ( 2 0 1 8 ) . f a c t o r ( )
( i ) ∗ (15∗ i − 28) ∗ ( i + 1)ˆ2 ∗ (15∗ i + 28)
sa ge : (123+456∗ i ) . norm ( ) . f a c t o r ( )
3ˆ2 ∗ 5 ∗ 4957
sa ge : (123+456∗ i ) . f a c t o r ( )
(−1) ∗ (−14∗ i − 69) ∗ (2∗ i + 1) ∗ 3
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There are other “number rings” similar to Z[i], but not many which are known to have unique
factorization. A complete study requires more algebra, and is done in Algebraic Number Theory.
Here are some further examples.

Example: The ring R = Z[
√
−2] is also Euclidean and hence a UFD. The proof is almost identical

to the one given above for Z[i], using the norm N(α) = αα, so that N(a + b
√
−2) = a2 + 2b2.

The key fact which makes R Euclidean via the norm is that every point in the complex plane is
at distance less than 1 from the nearest element of R, as was the case with Z[i]. Factorization of
primes p now depends on p (mod 8).

Example: The ring R = Z[
√
−3] is not Euclidean, and neither a PID nor a UFD. For example,

4 = 2 · 2 = (1 +
√
−3) · (1 −

√
−3) with all factors on the right irreducible in R. Also: the

ideal (2, 1+
√
−3) is not principal; and the element 2 is irreducible but not prime (as the previous

equation shows, since neither 1±
√
−3 are divisible by 2 in R). However, if we enlarge the ring by

including numbers of the form (a+b
√
−3)/2 where a and b are both odd, we obtain the larger ring

S = Z[ω], where ω = (−1 +
√
−3)/2, satisfying ω2+ω+ 1 = 0, which is Euclidean and hence a

UFD. The norm is again N(α) = αα; with α = a+ bω one computes that N(α) = a2− ab+ b2,
and 4N(α) = (2a − b)2 + 3b2. This ring turns out to be useful in the solution of the Fermat
equation x3 + y3 = z3.

Example: As in the previous example, the ring Z[
√
−19] is not Euclidean. Enlarging it to

R = Z[ω], where now ω = (−1 +
√
−19)/2, satisfying w2 + w + 5 = 0, we find a ring which

is still not Euclidean, but is a PID and hence a UFD. This example shows that not every PID is
Euclidean. We omit the details.


