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7. lossless conductor

Vertex isoperimetric parameter ΨV (G, k) are difficult. We know that this can’t be
more than d − 2 + o(1) as if G[U ] is connected, then E(U,U ] has at most (d − 2)|U | + 2
edges, hence N(U) \ U also has size at most (d − 2 + o(1))|U |. Also, as we have seen
d-regular Ramanujan graphs are guaranteed to have vertex expansion about d/2 for small
sets. Constructing (n, d)-graphs in which every vertex set of size εn expands by at least
d/2 is a challenging problem. This also has some applications for many fields, including
construction of expander-based linear codes, routing algorithms etc. (Recall the error
correcting code application in section 1, which requires expansion by more than d/2.)

For bipartite graphs, there exists an explicit constructin of families of bipartite ex-
panders whose left degree is d and every small set of linear size on the left expands by
(1 − δ)d. This can play the role of magical graph in the application of error correcting
code construction we saw in Section 1. The construction is based on the zig-zag product
to conductors.

So far we have used spectral gap. However, it seems that spectral gap is not strong to
obtain (1−o(1))d-expansion. Hence we consider min-entropy H∞. Recall that H∞(p) ≥ k
implies that no point has probability bigger than 2−k. As this seems very strong, we
consider a weaker condition.
Definition 7.1. A k-source is a distribution with min-entropy at least k. A distribution
is called a (k, ε)-source if there is a k-source at ℓ1 distance at most ε from it.

Consider a bipartite graph with bipartition (L,R). Consider a function associating a
given Left vertex x and and edge label i, the right vertex that is the i-th neighbor of x.
We name the vertices and edge labels using bit strings. For given distribution on L with
known entropy, take a random step along an edge to the right. This induces a distribution
on the right vertices. Given a bound on the incoming entropy, we seek a lower bound on
the amount of entropy coming out (up to a small ℓ1 distance). We consider the choice of
an edge to be taken in the next step as the randomness injected into the process or as the
’seed’ being used. Let Ud be the uniform distribution over {0, 1}d.
Definition 7.2. A function E : {0, 1}n × {0, 1}d → {0, 1}m is a (kmax, a, ε)-conductor
if for any k ≤ kmax and any k-source X over {0, 1}n, the distribution E(X,Ud) is a
(k + a, ε)-source.

Note that for the above (kmax, a, ε)-conductor E, if (X ′, U ′) is ε-away from (X,Ud) in
ℓ1 norm, then E(X,Ud) is also ε-away from E(X,Ud) in ℓ1 norm, hence E(X ′, U ′) is a
(k+a, 2ε)-source. Like this, we can still get some conclusion with a larger error term even
if the input is not as pure as given above, i.e. the second coordinate Ud does not have to
have the absolutely uniform distribution.

The following are tools we need.
Definition 7.3. A function E : {0, 1}n×{0, 1}d → {0, 1}m is an (a, ε)-extracting conduc-
tor if it is an (m− a, a, ε)-conductor.
Definition 7.4. A function E : {0, 1}n×{0, 1}d → {0, 1}m is a (kmax, ε)-lossless conductor
if it is a (kmax, d, ε)-conductor.

In other words, almost none of the injected randomess are lost in lossless conductor.
Definition 7.5. A pair of function ⟨E,C⟩ : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}b is a
(kmax, a, ε)-buffer conductor if E is an (kmax, a, ε)-conductor and ⟨E,C⟩ is an (kmax, ε)-
lossless conductor.

In other words, E saves most of the entropy from {0, 1}d, and whatever entropy lost
there is saved completely by the second function C. The second function may be viewed
as an overflow buffer or bucket.
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Definition 7.6. A pair of function ⟨E,C⟩ : {0, 1}n × {0, 1}d → {0, 1}m × {0, 1}b where
n + d = m + b is an (kmax, a, ε)-permutation conductor if E is an (kmax, a, ε)-conductor
and ⟨E,C⟩ is a permutation over {0, 1}n+d.

Why we care about these, is that this lossless conductor is same as the bipartite graph
we seek for.
Definition 7.7. A bipartite graph G on bipartition (L,R) such that every vertex on L
has degree D is a (Kmax, ε)-lossless expander if every set of K ≤ Kmax left vertices has at
least (1− ε)DK neighbors.

If we view this as a conductor with N = 2n, D = 2d and M = 2m, then (kmax, ε)-lossless
conductor is (Kmax, ε)-lossless expander where Kmax = 2kmax . To see this, for each set
A ⊆ L of size at most Kmax, consider a distribution uniform on A and 0 outside. This
has entropy log |A|. As it is (kmax, ε)-loseless conductor, the resulting distribution on the
right vertices has entropy at least log |A|+ d up to ℓ1-distance ε. If the neighborhood has
size less than (1 − ε)DK, then we get min-entropy less than log(D|A|) = log |A| + d, a
contradiction.

Now, we consider the definition of zig-zag product for bipartite graphs.
Definition 7.8. Let H be a d-regular bipartite graph with s vertices on each side, and let
G be an s-regular bipartite graph with n vertices on each side. The zig-zag product G z⃝H
is a d2-regular bipartite graph with sn vertices on each side, where the left and right sides
are arranged as n copies of H, one per each vertex of G. The edges emanating from a left
vertex (x, y) ∈ [n] × [s] are labeled by [d] × [d]. The edge labeled (a, b) is determined as
follows:

(1) Take a left to right step in the local copy of H, using a to choose an edge.
(2) Take a left to right step along and edge of G, between copies of H. More precisely,

suppose we are at (x, y′). Let x′ ∈ G bet the y′-th neighbor of x. And x is the z-th
neighbor of x′. Then we take from (x, y′) to (x′, z).

(3) Take a left to right step in the new local copy of H, using b to choose an edge.
However, the vertex expansion of this G z⃝H cannot be better than the expansion of H

or the expansion of G while its degree is d2. While taking a random walk, the random
choice of a neighbor of a vertex provides the randomness. This can be seen as the injected
randomness (second coordinate of the conductor). However, in this example, if the initial
distribution was uniform over each copy of H (possibly with different constants for different
copies), then the injected entropy is wasted. In order to save this injected entropy, we use
buffer.

We define three conductor ⟨E1, C1⟩, ⟨E2, C2⟩ and E each of which plays the role of
G,H,H in the original zig-zag product.

(1) ⟨E1, C1⟩ : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 × {0, 1}b1 , a permutation conductor
(2) ⟨E2, C2⟩ : {0, 1}n2 × {0, 1}d2 → {0, 1}d1 × {0, 1}b2 , a buffer conductor
(3) E3 : {0, 1}b1+b2 × {0, 1}d3 → {0, 1}m3 , a lossless conductor.

The zig-zag product for conductors produces the conductor E : {0, 1}n×{0, 1}d → {0, 1}m
where n = n1+n2 and d = d2+d3 and m = m1+m3. Let x1, x2, r2, r3, y1, y2, y3 be binary
strings of respective lengths n1, n2, d2, d3,m1, d1,m3. We evaluate by

(1) (y2, z2) = ⟨E2, C2⟩(x2, r2)
(2) (y1, z1) = ⟨E1, C1⟩(x1, y2)
(3) y3 = E3(z1z2, r3).

and let y1y3 = E(x1x2, r2r3). Let X1, X2, X3, Y1, Y2, Y3, R2, R3 be the random variables,
and x1, . . . , r3 be the actual string we get from the random variables.

The first ⟨E2, C2⟩ ensures that Y2 is close to uniform when X2 has high min-entropy,
thus Y2 is a good seed for ⟨E1, C1⟩ up to small error term. (This is like the first use of H
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in the zig-zag product G z⃝H for bipartite graphs) The second use of H is replaced with
E3 that transfers entropy lost in ⟨E1, C1⟩ and ⟨E2, C2⟩ to the output. The deterministic
step of the zig-zag product using the graph G is replaced with ⟨E1, C1⟩, which as before
doesn’t use any new random bits and whose output is just a permutation of its input
(which moves entropy about to allow more to come in later).

By constructing lossless conductor, we can prove the following theorem.
Theorem 7.9. For any ε > 0 and M ≤ N , there is an explicit family of left D-regular
bipartite graphs that are (Ω(εM/D), ε)-lossless expanders, where D ≤ (N/εM)c for some
constant c.

Note that if ε,M/N are bounded from below, then D is a constant. For this, we
instead prove the following. When D = 2d, the condition D ≤ (N/(εM))c is equivalent to
d ≤ c(log(1/ε) + log(N/M)). So, the following condition a = 1000 log(1/ε) and d = 2a is
good for us to deduce the above theorem.
Theorem 7.10. We can construct E : {0, 1}n × {0, 1}2a → {0, 1}n−3a, which is an
(n− 30a, 4ε)-lossless conductor, where a = 1000 log(1/ε).

Before this, one thing to note is the following. In order to estimate H∞(X,Y ), we need
to measure maxx,y P[(X,Y ) = (x, y)]. In order to compare this with H∞(X), what we
need is a way to compare P[X = x] with P[(X,Y ) = (x, y)]. Hence, it would be useful
if we have some information about the conditional probability P[Y = y | X = x]. The
following lemma will ensures that we can decomposed a probability distribution (X1, X2)
into two types up to small error term, where each type will be easier for us to analyze in
terms of their min-entropy.
Lemma 7.11. Let (X1, X2) be a probability distribution on a finite product space. Given
ε > 0 and a, there exists a distribution (Y1, Y2) on the same space such that

(1) The distributions (X1, X2) and (Y1, Y2) are ε-close
(2) The distribution (Y1, Y2) is a convex combination of two other distributions (Ŷ1, Ŷ2)

and (Y̌1, Y̌2) each having min-entropy at least H∞(X1, X2)− log(1/ε).
(3) For all x ∈ Supp(Ŷ1), we have H∞(Ŷ2 | Ŷ1 = x) ≥ a.
(4) For all x ∈ Supp(Y̌1), we have H∞(Y̌2 | Y̌1 = x) < a.

Proof. We split Supp(X1) according to H∞(X2 | X1 = x):
Ŝ = {z : H∞(X2 | X1 = z) ≥ a}, Š = {z : H∞(X2 | X1 = z) < a}.

Then we define
P[(Ŷ1, Ŷ2) = (z1, z2)] = P[(X1, X2) = (z1, z2) | X1 ∈ Ŝ]

P[(Y̌1, Y̌2) = (z1, z2)] = P[(X1, X2) = (z1, z2) | X1 ∈ Š]

Let p = P[X1 ∈ Ŝ]. Then the probability of each value in (Ŷ1, Ŷ2) is multiplied by
1/p and the probability of each value in (Y̌1, Y̌2) is multiplied by 1/(1 − p). Hence, if
ε ≤ p ≤ 1 − ε, then the min-entropy of (Ŷ1, Ŷ2) and (Y̌1, Y̌2) is reduced by at most
log(1/ε). In this case, we let (Y1, Y2) = (X1, X2) and we are done, as it is a convex
cobination (Y1, Y2) = p(Ŷ1, Ŷ2) + (1− p)(Y̌1, Y̌2).

Otherwise, assume p < ε (the other case is similar). In this case, we take (Y1, Y2) =
(Y̌1, Y̌2). This distribution is ε-close to (X1, X2) since∑

z1∈Ŝ,z2

|P[(X1, X2) = (z1, z2)]− P[(Y̌1, Y̌2) = (z1, z2)| ≤ p ≤ ε

∑
z1∈Š,z2

|P[(X1, X2) = (z1, z2)]− P[(Y̌1, Y̌2) = (z1, z2)| ≤ (
1

1− p
− 1)(1− p) = p < ε.
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Figure 1. Conductor E.

□

Proof. We now prove the main theorem. Assume we have the following.
(1) ⟨E1, C1⟩ : {0, 1}n−20a × {0, 1}14a → {0, 1}n−20a × {0, 1}14a is an (n − 30a, 6a, ε)-

permutation conductor
(2) ⟨E2, C2⟩ : {0, 1}20a×{0, 1}a → {0, 1}14a×{0, 1}21a is an (14a, 0, ε)-buffer conductor
(3) E3 : {0, 1}35a × {0, 1}a → {0, 1]}17a is a (15a, a, ε)-lossless conductor.

The binary strings X1, X2, X3, Y1, Y2, Y3, R2, R3 are as explained before.
As a is a constant, exhaustive search yields ⟨E2, C2⟩ and E3.
⟨E1, C1⟩ has big size, so constructing this requires something other than exhaustive

search. Simply take a graph G which is close to be a 2d-regular Ramanujan graph, and
make it bipartite by taking vertex set V (G) × {1, 2} and edges (u, 1)(v, 2) for each uv ∈
E(G). This yields the desired E1 where X1 is the given probability distribution on V (G)×
{1} and Y2 is the choice of its neighbor on each vertex. And Y1 is the distribution on the
vertex set V (G)× {2} which we reach after taking a random step, and Z1 is the edge we
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took to reach to the right vertex, which is the distribution on the edges incident to the
vertex on V (G)× {2}.

As we saw at the end of Section 3, λ(G) being very small implies that the 2-entropy of
Y1 is guaranteed to be increased from the 2-entropy of X1.

One thing we can easily show is that if the 2-entropy of X is b, then X is as (b −
log(1/ε), ε)-source. By using this rough equivalence of the 2-entropy and the min-entropy,
we can also show that the min-entropy of Y1 is also bigger than the min-entropy of X1 by
the desired amount with small error. Thus we obtain the desired permutation conductor.

We would like to prove that if H∞(X1, X2) = k, then Y1Y3 is a (k + 2a, 4ε)-source as
long as k ≤ n − 30a. For ease of discussion, we first ignore the small ℓ1-errors in the
outputs of all conductors. These errors will simply be added at the end to give the final
error of the lossless conductor E.

Claim 5. H∞(Y1) ≥ k − 14a.

Proof. Note that if a probability distribution Z is a convex combination pZ1+(1−p)Z2 of
two probability distribution where Z1, Z2 both have min-entropy at least b, then H∞(Z) is
also at least b.1 By Lemma 7.11, this shows that we only have to prove this bound for the
extreme cases when H∞(X2 | X1 = x1) are all large or all small for all attainable values
for x1.

As we assume H∞(X1, X2) ≥ k, we know that for any (x1, x2), we have

P[X1 = x1]P[X2 = x2 | X1 = x1] = P[(X1, X2) = (x1, x2)] ≤ 2−k.

Hence if we know H∞(X2 | X1 = x1) ≤ b, meaning that maxx2 P[X2 = x2 | X1 = x1] ≥
2−b, then we have P[X1 = x1] ≤ 2−k+b and this yields H∞(X1) ≥ k − b.

In order for us to estimate min-entropies of product distribution, we fix one part and
consider conditional min-entropy.

Case 1: For all x1 ∈ Supp(X1), we have H∞(X2 | X1 = x1) ≥ 14a.
In this case, as E2 is an (0, ε)-extracting conductor, H∞(Y2 | X1 = x1) = 14a, for

any x1 ∈ Supp(X1). Hence Y2 is uniform (up to ε-error in ℓ1 norm which we ig-
nore for now) and can be used as a seed for ⟨E1, C1⟩ for any x1 ∈ Supp(X1). As
maxx2 [X2 = x2 | X1 = x1] ≤ 2−20a, we know H∞(X1) ≥ k − 20a. As E1 is a (6a, ε)-
extracting conductor, E1 conducts 6a bits of entropy from the seed into Y1 and we obtain
H∞(Y1) ≥ k − 14a.

Case 2: For all x1 ∈ Supp(X1), we have H∞(X2 | X1 = x1) ≤ 14a.
Since H∞(X1, X2) = k, it follows that H∞(X1) ≥ k − 14a. As E2 is a (0, ε)-extractor,

H∞(Y2 | X1 = x1) ≥ H∞(X2|X1 = x1) for any x1 ∈ Supp(X1). It follows that
H∞(X1, Y2) ≥ H∞(X1, X2) = k. Since ⟨E1, C1⟩ is a permutation, also H∞(Y1, Z1) ≥ k
and again we get that H∞(Y1) ≥ k − 14a.

□

1Recall that min-entropy of a distribution Z is same as − log(maxz P[Z = z]). then we have P[E(Z) =
z] = pP[E(Z1) = z] + (1− p)P[E(Z2) = z]. By taking − logmaxz() on both side, we have

H∞(Z) = − log(max
z

(pP[E(Z1) = z] + (1− p)P[E(Z2) = z]))

≥ − log

(
pmax

z
P[E(Z1) = z] + (1− p)max

z′
P[E(Z2) = z′]

)
≥ − log(p2−b + (1− p)2−b) = b.
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Both ⟨E1, C1⟩ and ⟨E2, C2⟩ conserve entropy (as they are permutation conductor and
buffer conductor). Hence

k + a = H∞(X1, X2, R2) = H∞(X1, Y2, Z2) = H∞(Y1, Z1, Z2). (7.1)

We now aim to show that P[(Y1, Y3) = (y1, y3)] ≤ 2−k−2a for any y1, y3, which will show
H∞(Y1, Y3) ≥ k + 2a. For this, consider a string y1 ∈ Supp(Y1).

If H∞(Z1, Z2 | Y1 = y1) ≥ 15a, then as E3 is a (15a, a, ε)-conductor, we have H∞(Y3 |
Y1 = y1) ≥ 16a. Hence, for any y3, we have

P[Y3 = y3 | Y1 = y1] ≤ 2−16a.

Hence, for such y1 and any y3, we have
P[(Y1, Y3) = (y1, y3)] ≤ 2−16aP[Y1 = y1] ≤ 2−16a2−k+14a ≤ 2−k−2a.

If H∞(Z1, Z2 | Y1 = y1) ≤ 15a, then as E3 which is (15a, a, ε)-conductor, conducts a
bits of entropy from R3 to Y3. That is, all the entropy of Z1, Z2 is transferred to the output
Y3 without any entropy loss, H∞(Y3 | Y1 = y1) = H∞(Z1, Z2 | Y1 = y1) + a. Together
with Claim 5 and (7.1), for any y3, we have

P[Y3 = y3 | Y1 = y1] ≤ 2−H∞(Z1,Z2|Y1=y1)−a ≤ 2−amax
z1,z2

P[Z1 = z1, Z2 = z2 | Y1 = y1].

Hence,
P[(Y1, Y3) = (y1, y3)] = P[Y = y1] · 2−amax

z1,z2
P[Z1 = z1, Z2 = z2 | Y1 = y1]

≤ 2−a max
z1,z2,y

P[Z1 = z1, Z2 = z2, Y1 = y]

≤ 2−a2−H∞(Y1,Z1,Z2) = 2−k−2a.

Therefore, for any y1, y3, we have P[(Y1, Y3) = (y1, y3)] ≤ 2−k−2a, so we have H∞(Y1, Y3) =
k + 2a as claimed.

To see the dependence on ε, note that these ℓ1 errors on the extractor outputs add up.
In the above analysis, we make four moves from a variable to its ε-close counterpart, one
for each ⟨E1, C1⟩, ⟨E2, C2⟩, E3 and one in the use of the Lemma 7.11. Hence we conclude
that E is an (n− 30a, 2a, 4ε)-lossless conductor. □
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