
20 JAEHOON KIM

6. The zig-zag product

We will define a graph product called the zig-zag product, and show that zig-zag product
of two expanders is an expander as well.

Again G is an (n, d, α)-graph with normalized adjacency matrix Â. The k-th power Gk

is a graph on the same vertex set where we put an edge uv for every walk of length k from
u to v. It is easy to check that Gk is an (n, dk, αk)-graph.

For an (n,m)-graph G and (m,d)-graph H, we will define their zig-zag productG z©H as
an (mn, d2)-graph. Before defining what it is, we introduce the following theorem stating
that the zig-zag product of expanders is also an expander.

Theorem 6.1 (Reingold-Vadhan-Wigderson 2002). Let G be an (n,m,α)-graph and H
be an (m,d, β)-graph. Then G z©H is an (nm, d2, ϕ(α, β))-graph where the function ϕ
satisfies the following.

(1) If α < 1 and β < 1, then ϕ(α, β) < 1.
(2) ϕ(α, β) < α+ β.
(3) ϕ(α, β) ≤ 1− (1− β2)(1− α)/2.

(1) implies that the product is again an expander. When α, β are small (2) is useful. If
α, β are big, then (3) is useful.

Using this theorem, we can explicitly construct a family of constant degree expanders.
To generate such an infinite family, we need a fixed size expander of certain parameter.

By using exhaustive search, we can find a graph H which is (d4, d, 1/4)-graph for some
constant d in constant time. Using this, we define

G1 = H2, Gn+1 = (Gn)
2 z©H. (6.1)

Then, using induction, assume that (Gn)
2 is a (d4n, d4, 1/4)-graph. Then (Gn)

2 z©H,
bound (2) implies that Gn+1 is (d4(n+1), d2, 1/2)-graph. By repeating this, we obtain a
graph with arbitrarily many vertices with degree d2, which is an expander.

Now we define zig-zag product. Let G be an (n,m,α)-graph and H be an (m,d, β)-
graph. For each v ∈ V (G), we fix some numbering e1v, . . . , e

m
v of the edges incident with

v. Let V (H) = [m].
We first define G r©H, the replacement product of the two graphs, with the vertex set

V (G)× V (H). We might want to imagine that we replace each vertex v of G into a cloud
of m vertices (v, 1), . . . , (v,m). We add an edge (v, i)(v, j) if ij ∈ E(H) and (v, i)(u, j) if

eiv = eju to obtain G r©H.
The vertex set of G z©H is again V (G)× V (H). We add an edge (v, i)(u, j) to G z©H if

there exists a walk (v, i)(v, i′)(u, j′)(u, j) of length three in G r©H.

Definition 6.2. G z©H = (V (G)× [m], E′) where (v, i)(u, j) ∈ E′ iff there exists k, ℓ ∈ [m]
such that ik, ℓj ∈ E(H) and ekv = eℓu.

Here, we prove a weaker bound of ϕ ≤ β +max{α, β2} than (2).

Proof. Let G′ = G z©H. We analyze the spectral gap of the zig-zag product by considering
random walk on G′. Each step in this walk is same as

(i) take a random step on an edge within a cloud
(ii) take a deterministic step on an edge connecting two clouds
(iii) take another random step within a cloud.

We now write down the transition matrix Z of the random walk on G′. Let B, B̂ be the
adjacency matrix of H and the transition matrix of the corresponding random walk (which

is the normalized adjacency matrix of H). The step (i) and (iii) are done by B̃ = B̂ ⊗ In.

AN INTRODUCTION TO EXPANDERS 21

Let P be the permutation matrix defined by

P(v,k),(u,ℓ) =

{

1 if ekv = eℓu
0 otherwise.

Then Z = B̃P B̃.
To make the equation less clutter, let’s write fZf instead of fTZf , by understanding

the left f is a row vector. As the graph G′ is an (mn, d2)-graph, which is regular, so 1mn

is an eigenvector. So, we want to claim that for all vectors f ⊥ 1mn, we have

|fZf |
‖f‖2 ≤ α+ β + β2.

For a given f , we write f‖ be the vector we obtain by making it constant on each cloud.
In other words, f‖(x, i) = 1

m

∑

j∈[m] f(x, j). Let f⊥ = f − f‖. Then f⊥ is orthogonal to

a constant vector once restricted to a cloud, hence it does not expand more than β when
multiplied by B̂. We have

|fZf | = |fB̃P B̃f |
≤ |f‖B̃P B̃f‖|+ 2|f‖B̃P B̃f⊥|+ |f⊥B̃P B̃f⊥|.

We know that B̂1m = 1m, so we have B̃f‖ = f‖. Also, we know ‖B̃f⊥‖ ≤ β‖f⊥‖ as we

know ‖B̂u‖ ≤ β‖u‖ for any u perpendicular to 1m.
Let g : V (G) → R be g(v) = 1√

m

∑

j∈[m] f(v, j). Then we have ‖g‖2 = ‖f‖‖2. By the

definition of P , we have f‖Pf‖ = gÂg where Â is the transition matrix of the random
walk of G. (Note that Â is normalized matrix here, so we divide A by m.) However,

f‖ ⊥ 1mn implies that g ⊥ 1n and hence gÂg ≤ α‖g‖2. Consequently |f‖Pf‖| ≤ α‖f‖‖2.
Also, both B̃ and P are doubly stochastic matrices and therefore contractions in ℓ2. (This
can be shown, as any doubly stochastic matrice is a convex combination of permutation
matrices. It is easy to see that each permutation matrix is a contraction and a convex
combination of them is also a contraction.) Hence, we have

|fZf | ≤ α‖f‖‖2 + 2β‖f‖‖‖f⊥‖+ β2‖f⊥‖2.

However, we have ‖f‖2 = ‖f‖‖2 + ‖f⊥‖2 so we have

|fZf |
‖f‖ ≤ 2β‖f‖‖‖f⊥‖

‖f‖‖2 + ‖f⊥‖2 +
max{α, β2}(‖f‖‖2 + ‖f⊥‖2)

‖f‖‖2 + ‖f⊥‖2 ≤ β +max{α, β2}.

�

Now we consider this as a perspective of entropy. As above, the random walk actually
consists of three steps on the replacement product. A random step in one copy of H and a
deterministic step to a neighboring cloud, and another random step in the new copy of H.
Note that the first and third step are independent random steps on H. If the conditional
distribution restricted to one of these clouds is far from uniform, then the entropy grows
as H is an expander. The other two steps does not harm as the entropy never drops when
we multiply with doubly stochastic matrix.

If the distribution is nearly uniform on the most of clouds, then the Step 1 does not
increase the entropy much. In this case, as the distribution is uniform on each cloud, the
second step is almost like a real random step on G. Then the entropy of pG increase. But
this middle step is a permutation on V (G z©H), so the entropy of the whole distribution
remains unchanged. Hence, the entropy of pH must have decreased. That means in step
3, the conditional distribution on clouds are not close to uniform, and the entropy increase
due to the expansion of H.

22 JAEHOON KIM

This zig-zag product has an application to complexity theory. The following is a def-
inition of Turing machine written on wikipedia. A Turing machine is a mathematical
model of computation that defines an abstract machine that manipulates symbols on a
strip of tape according to a table of rules. In other words, it is a machine that performs
an algorithm following a fixed rule. L (logspace) is a collection of problems that can be
solved by a Turing machine using a logarithmic amount of writable memory space. In
other words, while remembering a limited amount of information, your Turing machine
performs algorithm according to current input and the memory.

However, one specific rule dictating an action might not seem so efficient. For given
input (or state) and memory, one might suggests several options. An non-deterministic
Turing machine is a theoretical model of computation whose governing rules specify more
than one possible action when in some given situations. We consider a collection of prob-
lems which can be solved using non-deterministic Turing machine using only logarithmic
memory size. We assume one more condition that if transiting from a state A to B is
possible then transiting from the state B to A is also possible. We call such collection of
problems as SL.

Considering each state as vertex, and add edge between two states if your non-deterministic
Turing machine can transit from one state to the other state. This will define an undi-
rected graph. s represent your initial state, and t represent the state you want to reach.
Now the question becomes whether there exists a path from s to t, while using logarith-
mic size (logarithm of the size of the graph) memory. We call such a problem USTCON
(undirected s, t-connectivity).

Aleliunas, Karp, Lipton, Lovasz, Rackoff in 1979 showed that this problem can be
solved by a probabilistic logspace algorithm, proving SL ⊆ RL. To determine if s and t
are connected, one simply performs a polynomial length random walk starting at s and
checks if the walk ever reaches t.

All we need to remember is the current position and the goal t, so it uses only logarithmic
memory (location requires log n bits of information where n is the number of vertices) We
may assume that the graph is regular, as otherwise we replace each vertex v with a cycle
of length d(v) to obtain an 3-regular graphs with at most n2 vertices. This is fine as
log(n2) = O(log n).

As every connected graph is (n, d, α)-graph with α < 1−Ω(1/n2). Thus a random walk
of length O(n3) will get exponentially close to the uniform distribution, and if we repeat it
n2 times, resulting in a walk of length n5, we will not miss a single vertex in this connected
component, except with a exponentially small probability.

It is proven to be S = SL. In order to prove this, we need to derandomize this approach.
How can we do this? If every component of the graph is expander, then we can simply
enumerate over all the logarithmically long paths from s and check if one of them arrives
at t. So the problem becomes trivial. However, the graph in general is not an expander.

So, we use zig-zag product to turn the graph into an expander.
Consider the D-regular graph G and assume it is connected. Then G is (n,D,α)-graph

with α < 1 − Ω(1/n2) by connectivity. Assume that D = d16, and find an (d16, d, 1/2)-
graph H. We inductively construct the graphs Gi as follows.

G1 = G, Gi+1 = (Gi z©H)8.

We get this to get Gk with k = O(log n). Then we claim that we have (nd16k, d16, 3/4)-
expander Gk.

Indeed, by using (3) in the zig-zag theorem, we can show that the spectral gap doubles in
each step. If 1−λi, 1−µi are normalized second eigenvalues of Gi and Gi z©H respectively,
then (3) implies

µi ≥
3

8
λi.

AN INTRODUCTION TO EXPANDERS 23

Hence

λi+1 = 1− (1− µi)
8 ≥ 1− (1− 3

8
λi)

8 ≥ min{2λi, 1/2}.
So, for k = O(log n), we have λk ≥ 1/2.

Moreover, the neighborhood queries for Gk can be answered in logspace. (One cannot
remember the entire graph Gi in each step using only logarithmic memory space) This is
not obvious. This means that the graph Gk is very explicit. Reingold in 2005 proved that
this is possible by evaluate the recursion for each query.

