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5. The Margulis construction

In this section, we explicitly construct an expander. Let

T1 =

(

1 2
0 1

)

, T2 =

(

1 0
2 1

)

, e1 =

(

1
0

)

, e2 =

(

0
1

)

.

Let Gn be the graph with the vertex set (Zn)
2 where each vertex v ∈ (Zn)

2 is adjacent
to T1v, T2v, T1v + e1, T2v + e2. This yields an 8-regular graph Gn.

Theorem 5.1 (Gabber-Galil 1981). The graph Gn satisfies λ(G) ≤ 5
√
2 < 8.

Margulis in 1973 proved expansion for a closely related family of graphs but could not
give an explicit lower bound on the spectral gap. Gabber-Galil proved a lower bound on
the spectral gap.

We wil prove the following weaker bound

Theorem 5.2. The graph Gn satisfies λ(G) ≤ 7.3 < 8.

For an adjacency matrix A of G = Gn and vector f on V (G), we have

fTAf = 2
∑

xy∈E(Gn)

f(x)f(y).

As λ(G) = maxf⊥1

fTAf
‖f‖2 , we only to prove the following:

∑

z∈Z2
n

f(z) [f(T1z) + f(T1z + e1) + f(T2z) + f(T2z + e2)] ≤ 3.65
∑

f2(x). (5.1)

This is a real-valued function defined on an abelian group Z
2
n. So, we want to analyze this

function to obtain the above inequality.

5.1. Fourier analysis. As a detour, we learn about Fourier analysis on abelian group.
What we want to to analyze a function g : Z2

n → C. Consider the collection F of all
complex-valued functions defined on an abelian groupH, which is Z2

n in our case. Although
our function is real-valued, we want to consider it as a complex-valued function, because
collection of such functions form a linear space with a good orthonormal basis which is
called characters. Then F forms a linear space, and this can be identified with a vector

space C
n2

by considering g same as the vector (g(x))x∈H . In other words, we consider
a function δx : H → C such that δx(y) = 1 if x = y and 0 otherwise, and consider
{δx : x ∈ H} as a basis to express functions on F .

On the other hand, another choice of basis yields many useful properties. Especially,
the following characters forms a basis.

Definition 5.3. A character of an abelian group H is a homomorphism χ : H → C
∗, that

is χ(g + h) = χ(g)χ(h) for all h, g ∈ H.

The characters of a Z
2
n are exactly {χb : b ∈ Z

2
n} where χb(a1, a2) = exp(2π(a1b1+a2b2)i

n ).

We write w = exp(2πi/n), then χb(a) = w〈a,b〉. We define the inner product of two vectors
(=functions) as follows to ensures that our characters are unit vectors.

〈f, g〉 = 1

|H|
∑

x∈H
f(x)g(x).

One can easily check that 〈χa, χb〉 = 0 if a 6= b. So characters form an orthonormal basis
on F , hence any complex function can be expressed as a linear combinations of characters.
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Proposition 5.4. Every finite abelian group H has |H| distinct characters which can be
naturally indexed as {χx : x ∈ H}. They form an orthonormal basis of F . Thus every

f : H → C can be uniquely expressed as f =
∑

x∈H f̂(x)χx, where f̂ : H → C is the
discrete Fourier transform of f .

f̂(x) = 〈f, χx〉 =
1

|H|
∑

y∈H
f(y)χx(y).

In our case of H = Z
2
n, we have f̂(x) = 1

n2

∑

b f(b)w
b1x1+b2x2 . The following basic

properties are easy to derive.

Proposition 5.5. Let f, g ∈ F . Then the following hold:

(a)
∑

a∈H f(a) = 0 ⇔ f̂(0) = 0.

(b) 1
n2

∑

x∈H f(x)g(x) = 〈f, g〉 = 〈∑x∈H f̂(x)χx,
∑

x∈H ĝ(x)χx〉 =
∑

x∈H f̂(x)ĝ(x).

(c) Parseval’s identity: 1
n2

∑

x∈H |f(x)|2 =∑x∈H |f̂(x)|2.
(d) f(a) = n2〈f, δa〉 = n2〈∑x∈H f̂(x)χx, δa〉 =

∑

x∈H f̂(x)w−〈a,x〉.
(e) If A is a nonsingular 2× 2 matrix over Zn, b ∈ Z

2
n and g(x) = f(Ax+ b), then

ĝ(y) = w−〈A−1b,y〉f̂((A−1)T y).

5.2. A Proof of Theorem 5.2. Now, assume f is a vector orthogonal to 1, meaning
∑

z f(z) = 0 ⇔ f̂(0, 0) = 0. (Let e0 = (0, 0).) Hence, by (b) and (e), for i ∈ [2], j ∈ {0, i},
let g(z) = f(Tiz + ej), then we have (as f is a real vector, f(z) = f(z))

∑

z∈Z2
n

f(z)f(Tiz + ej) = n2
∑

z∈Z2
n

f̂(z)ĝ(z) = n2
∑

z∈Z2
n

f̂(z)ω−〈T−1

i ej ,z〉f̂((T−1
i )T z)

=
∑

z∈Z2
n

f(z)f(T−1
3−iz)ω

−(z1,z2)·ej .

Here, T−1
i ej = ej for i = j. (Note that Ai = AT

3−i.) Hence, (5.1) becomes

∑

z∈Z2
n

f(z)
[

f(T−1
2 z)(1 + ω−z1) + f(T−1

1 z)(1 + ω−z2)
]

≤ 3.65
∑

z∈Z2
n

|f(z)|2.

Let g be a function with g(z) = |f(z)|. As we know |1+ω−t| = 2| cos(πtn )|, it suffices to
prove

∑

z∈Z2
n

2g(z)
[

g(T−1
2 z)| cos(πz1

n
)|+ g(T−1

1 z)| cos(πz2
n

)|
]

≤ 3.65
∑

z∈Z2
n

g2(z). (5.2)

As we have sum of squares on the right side, we want to bound the left side by sum of
squares. One good way is to use inequality 2αβ ≤ α2 + β2. However, we also want to use
the fact that | cos(πzin )| becomes small when zi is closed to n/2. For this, we introduce a

number γ, and use inequality 2αβ ≤ γα2+γ−1β2 with different γ for each z. Later, in some
way, we want to group the terms on the left side, so that in each group, either | cos(πzin )| is
small or the average value of γ multiplied is small. Assume we have γ(z, z′) = 1/γ(z′, z),
which we will specify later.

Using the inequality 2αβ ≤ γα2 + γ−1β2, the following inequality implies (5.2).

∑

z∈Z2
n

∑

i∈[2]
| cos(πz3−i

n
)|
[

γ(z, T−1
i z)g2(z) + γ(T−1

i z, z)g2(T−1
i z)

]

≤ 3.65
∑

z∈Z2
n

g2(z). (5.3)
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Note that (Tiz)3−i = z3−i. Hence, we have

∑

z∈Z2
n

| cos(πz3−i

n
)|γ(T−1

i z, z)g2(T−1
i z) =

∑

Tiz∈Z2
N

| cos(π(Tiz)3−i

n
)|γ(z, Tiz)g

2(z)

=
∑

z∈Z2
N

| cos(πz3−i

n
)|γ(z, Tiz)g

2(z).

Hence (5.3) becomes
∑

z∈Z2
n

∑

i∈[2]
| cos(πz3−i

n
)|
[

γ(z, T−1
i z) + γ(z, Tiz)

]

g2(z) ≤ 3.65
∑

z∈Z2
n

g2(z).

Now we want to show that for each z ∈ Z
2
N − {(0, 0)},

∑

i∈[2]
cos(

πz3−i

n
)|
[

γ(z, T−1
i z) + γ(z, Tiz)

]

≤ 3.65. (5.4)

Now we define γ to make this holds. To define γ for different choices for z, we define
the following partial order. From now on, we always write an element (z1, z2) ∈ Z

2
n

in such a way that −n/2 ≤ zi ≤ n/2 for each i ∈ [2]. In other words, as we have
(z1, z2) = (z1 + in, z2 + jn) for all i, j ∈ Z, there are many ways to write an element of
Z
2
n, but when we write (z1, z2), assume that we always have chosen so that zi lies between

−n/2 and n/2.
Note that if |z1|+ |z2| ≥ n/2, then | cos(πz1n )|+ | cos(πz2n )| is small. On the other hand,

when |z1|+ |z2| ≤ n/2, then many of T±1
i z are more away from (0, 0) than z. So, we want

to define γ(z, z′) in such a way that it is smaller than 1 when z′ is more away from (0, 0)
than z. This motivates the following definition or a partial order.

Definition 5.6. We say (z1, z2) > (z′1, z
′
2) if |z1| ≥ |z′1| and |z2| ≥ |z′2| and at least one

inequality is strict.

we let

γ((z1, z2), (z
′
1, z

′
2)) =







5/4 if (z1, z2) > (z′1, z
′
2)

4/5 if (z1, z2) < (z′1, z
′
2)

1 otherwise.

If |z1| + |z2| > n/2, then assume z1, z2 ≥ 0. The other cases are similar. As cos is a
decreasing function, we have

| cos(πz1/n)|+ | cos(πz2/n)| ≤ | cos(πz1/n)|+ | cos(π(n/2 − z1)/n)|
≤ cos(πz1/n) + sin(πz1/n) ≤

√
2.

As γ(z1, z2) ≤ 5/4, we have
∑

i∈[2] cos(
πz3−i

n )|
[

γ(z, T−1
i z) + γ(z, Tiz)

]

≤ 2 · 5/4 ·
√
2 ≤

2.5
√
2 ≤ 3.5. Now, consider (z1, z2) with |z1|+ |z2| ≤ n/2.

Proposition 5.7. For each (z1, z2) ∈ Z
2
n with |z1|+ |z2| ≤ n/2, one of the following holds.

Three of the four points T1z, T2z, T
−1
1 z, T−1

2 z are more than z in the partial order and one

is less than z in the partial order. Two of the four points T1z, T2z, T
−1
1 , T−1

2 z are more
than z and two are incomparable with z.

Proof. If |z1| = |z2|, then we can easily check that the second case holds.
WLOG, assume |z1| > |z2|. As (T±1

i z)3−i = z3−i, we just have to check whether

(T±1
i z)i is bigger than z2. By symmetry assume z1 > z2 ≥ 0. As z1 + z2 ≤ n/2, we have

|z1 − 2z2| < |z1| so we have T−1
1 z < z. The other three points satisfy T1z > z, T±1

2 z since
|z1 + 2z2| > |z1| and |z2 ± 2z1| > |z2|. Hence the proposition holds.

�
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By this proposition, the left side of (5.4) is at most max{3 ·4/5+5/4, 2 ·4/5+2} ≤ 3.65.
This proves what we desired.


