5. The Margulis construction

In this section, we explicitly construct an expander. Let

$$
T_{1}=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right), T_{2}=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right), e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1} .
$$

Let G_{n} be the graph with the vertex set $\left(\mathbb{Z}_{n}\right)^{2}$ where each vertex $v \in\left(\mathbb{Z}_{n}\right)^{2}$ is adjacent to $T_{1} v, T_{2} v, T_{1} v+e_{1}, T_{2} v+e_{2}$. This yields an 8-regular graph G_{n}.

Theorem 5.1 (Gabber-Galil 1981). The graph G_{n} satisfies $\lambda(G) \leq 5 \sqrt{2}<8$.
Margulis in 1973 proved expansion for a closely related family of graphs but could not give an explicit lower bound on the spectral gap. Gabber-Galil proved a lower bound on the spectral gap.

We wil prove the following weaker bound
Theorem 5.2. The graph G_{n} satisfies $\lambda(G) \leq 7.3<8$.
For an adjacency matrix A of $G=G_{n}$ and vector f on $V(G)$, we have

$$
f^{T} A f=2 \sum_{x y \in E\left(G_{n}\right)} f(x) f(y)
$$

As $\lambda(G)=\max _{f \perp 1} \frac{f^{T} A f}{\|f\|^{2}}$, we only to prove the following:

$$
\begin{equation*}
\sum_{z \in \mathbb{Z}_{n}^{2}} f(z)\left[f\left(T_{1} z\right)+f\left(T_{1} z+e_{1}\right)+f\left(T_{2} z\right)+f\left(T_{2} z+e_{2}\right)\right] \leq 3.65 \sum f^{2}(x) \tag{5.1}
\end{equation*}
$$

This is a real-valued function defined on an abelian group \mathbb{Z}_{n}^{2}. So, we want to analyze this function to obtain the above inequality.
5.1. Fourier analysis. As a detour, we learn about Fourier analysis on abelian group. What we want to to analyze a function $g: \mathbb{Z}_{n}^{2} \rightarrow \mathbb{C}$. Consider the collection \mathcal{F} of all complex-valued functions defined on an abelian group H, which is \mathbb{Z}_{n}^{2} in our case. Although our function is real-valued, we want to consider it as a complex-valued function, because collection of such functions form a linear space with a good orthonormal basis which is called characters. Then \mathcal{F} forms a linear space, and this can be identified with a vector space $\mathbb{C}^{n^{2}}$ by considering g same as the vector $(g(x))_{x \in H}$. In other words, we consider a function $\delta_{x}: H \rightarrow \mathbb{C}$ such that $\delta_{x}(y)=1$ if $x=y$ and 0 otherwise, and consider $\left\{\delta_{x}: x \in H\right\}$ as a basis to express functions on \mathcal{F}.

On the other hand, another choice of basis yields many useful properties. Especially, the following characters forms a basis.

Definition 5.3. A character of an abelian group H is a homomorphism $\chi: H \rightarrow \mathbb{C}^{*}$, that is $\chi(g+h)=\chi(g) \chi(h)$ for all $h, g \in H$.

The characters of a \mathbb{Z}_{n}^{2} are exactly $\left\{\chi_{b}: b \in \mathbb{Z}_{n}^{2}\right\}$ where $\chi_{b}\left(a_{1}, a_{2}\right)=\exp \left(\frac{2 \pi\left(a_{1} b_{1}+a_{2} b_{2}\right) i}{n}\right)$. We write $w=\exp (2 \pi i / n)$, then $\chi_{b}(a)=w^{\langle a, b\rangle}$. We define the inner product of two vectors (=functions) as follows to ensures that our characters are unit vectors.

$$
\langle f, g\rangle=\frac{1}{|H|} \sum_{x \in H} \overline{f(x)} g(x)
$$

One can easily check that $\left\langle\chi_{a}, \chi_{b}\right\rangle=0$ if $a \neq b$. So characters form an orthonormal basis on \mathcal{F}, hence any complex function can be expressed as a linear combinations of characters.

Proposition 5.4. Every finite abelian group H has $|H|$ distinct characters which can be naturally indexed as $\left\{\chi_{x}: x \in H\right\}$. They form an orthonormal basis of \mathcal{F}. Thus every $f: H \rightarrow \mathbb{C}$ can be uniquely expressed as $f=\sum_{x \in H} \hat{f}(x) \chi_{x}$, where $\hat{f}: H \rightarrow \mathbb{C}$ is the discrete Fourier transform of f.

$$
\hat{f}(x)=\left\langle f, \chi_{x}\right\rangle=\frac{1}{|H|} \sum_{y \in H} \overline{f(y)} \chi_{x}(y) .
$$

In our case of $H=\mathbb{Z}_{n}^{2}$, we have $\hat{f}(x)=\frac{1}{n^{2}} \sum_{b} \overline{f(b)} w^{b_{1} x_{1}+b_{2} x_{2}}$. The following basic properties are easy to derive.

Proposition 5.5. Let $f, g \in \mathcal{F}$. Then the following hold:
(a) $\sum_{a \in H} f(a)=0 \Leftrightarrow \hat{f}(0)=0$.
(b) $\frac{1}{n^{2}} \sum_{x \in H} \overline{f(x)} g(x)=\langle f, g\rangle=\left\langle\sum_{x \in H} \hat{f}(x) \chi_{x}, \sum_{x \in H} \hat{g}(x) \chi_{x}\right\rangle=\sum_{x \in H} \overline{\hat{f}(x)} \hat{g}(x)$.
(c) Parseval's identity: $\frac{1}{n^{2}} \sum_{x \in H}|f(x)|^{2}=\sum_{x \in H}|\hat{f}(x)|^{2}$.
(d) $f(a)=n^{2}\left\langle f, \delta_{a}\right\rangle=n^{2}\left\langle\sum_{x \in H} \hat{f}(x) \chi_{x}, \delta_{a}\right\rangle=\sum_{x \in H} \hat{f}(x) w^{-\langle a, x\rangle}$.
(e) If A is a nonsingular 2×2 matrix over $\mathbb{Z}_{n}, b \in \mathbb{Z}_{n}^{2}$ and $g(x)=f(A x+b)$, then

$$
\hat{g}(y)=w^{-\left\langle A^{-1} b, y\right\rangle} \hat{f}\left(\left(A^{-1}\right)^{T} y\right) .
$$

5.2. A Proof of Theorem 5.2. Now, assume f is a vector orthogonal to $\mathbf{1}$, meaning $\sum_{z} f(z)=0 \Leftrightarrow \hat{f}(0,0)=0$. (Let $e_{0}=(0,0)$.) Hence, by (b) and (e), for $i \in[2], j \in\{0, i\}$, let $g(z)=f\left(T_{i} z+e_{j}\right)$, then we have (as f is a real vector, $f(z)=\overline{f(z)}$)

$$
\begin{aligned}
\sum_{z \in \mathbb{Z}_{n}^{2}} \overline{f(z)} f\left(T_{i} z+e_{j}\right) & =n^{2} \sum_{z \in \mathbb{Z}_{n}^{2}} \hat{\hat{f}(z)} \hat{g}(z)=n^{2} \sum_{z \in \mathbb{Z}_{n}^{2}} \overline{\hat{f}(z)} \omega^{-\left\langle T_{i}^{-1} e_{j}, z\right\rangle} \hat{f}\left(\left(T_{i}^{-1}\right)^{T} z\right) \\
& =\sum_{z \in \mathbb{Z}_{n}^{2}} \overline{f(z)} f\left(T_{3-i}^{-1} z\right) \omega^{-\left(z_{1}, z_{2}\right) \cdot e_{j}} .
\end{aligned}
$$

Here, $T_{i}^{-1} e_{j}=e_{j}$ for $i=j$. (Note that $A_{i}=A_{3-i}^{T}$.) Hence, (5.1) becomes

$$
\sum_{z \in \mathbb{Z}_{n}^{2}} \overline{f(z)}\left[f\left(T_{2}^{-1} z\right)\left(1+\omega^{-z_{1}}\right)+f\left(T_{1}^{-1} z\right)\left(1+\omega^{-z_{2}}\right)\right] \leq 3.65 \sum_{z \in \mathbb{Z}_{n}^{2}}|f(z)|^{2}
$$

Let g be a function with $g(z)=|f(z)|$. As we know $\left|1+\omega^{-t}\right|=2\left|\cos \left(\frac{\pi t}{n}\right)\right|$, it suffices to prove

$$
\begin{equation*}
\sum_{z \in \mathbb{Z}_{n}^{2}} 2 g(z)\left[g\left(T_{2}^{-1} z\right)\left|\cos \left(\frac{\pi z_{1}}{n}\right)\right|+g\left(T_{1}^{-1} z\right)\left|\cos \left(\frac{\pi z_{2}}{n}\right)\right|\right] \leq 3.65 \sum_{z \in \mathbb{Z}_{n}^{2}} g^{2}(z) . \tag{5.2}
\end{equation*}
$$

As we have sum of squares on the right side, we want to bound the left side by sum of squares. One good way is to use inequality $2 \alpha \beta \leq \alpha^{2}+\beta^{2}$. However, we also want to use the fact that $\left|\cos \left(\frac{\pi z_{i}}{n}\right)\right|$ becomes small when z_{i} is closed to $n / 2$. For this, we introduce a number γ, and use inequality $2 \alpha \beta \leq \gamma \alpha^{2}+\gamma^{-1} \beta^{2}$ with different γ for each z. Later, in some way, we want to group the terms on the left side, so that in each group, either $\left|\cos \left(\frac{\pi z_{i}}{n}\right)\right|$ is small or the average value of γ multiplied is small. Assume we have $\gamma\left(z, z^{\prime}\right)=1 / \gamma\left(z^{\prime}, z\right)$, which we will specify later.

Using the inequality $2 \alpha \beta \leq \gamma \alpha^{2}+\gamma^{-1} \beta^{2}$, the following inequality implies (5.2).

$$
\begin{equation*}
\sum_{z \in \mathbb{Z}_{n}^{2}} \sum_{i \in[2]}\left|\cos \left(\frac{\pi z_{3-i}}{n}\right)\right|\left[\gamma\left(z, T_{i}^{-1} z\right) g^{2}(z)+\gamma\left(T_{i}^{-1} z, z\right) g^{2}\left(T_{i}^{-1} z\right)\right] \leq 3.65 \sum_{z \in \mathbb{Z}_{n}^{2}} g^{2}(z) . \tag{5.3}
\end{equation*}
$$

Note that $\left(T_{i} z\right)_{3-i}=z_{3-i}$. Hence, we have

$$
\begin{aligned}
\sum_{z \in \mathbb{Z}_{n}^{2}}\left|\cos \left(\frac{\pi z_{3-i}}{n}\right)\right| \gamma\left(T_{i}^{-1} z, z\right) g^{2}\left(T_{i}^{-1} z\right) & =\sum_{T_{i} z \in \mathbb{Z}_{N}^{2}}\left|\cos \left(\frac{\pi\left(T_{i} z\right)_{3-i}}{n}\right)\right| \gamma\left(z, T_{i} z\right) g^{2}(z) \\
& =\sum_{z \in \mathbb{Z}_{N}^{2}}\left|\cos \left(\frac{\pi z_{3-i}}{n}\right)\right| \gamma\left(z, T_{i} z\right) g^{2}(z) .
\end{aligned}
$$

Hence (5.3) becomes

$$
\sum_{z \in \mathbb{Z}_{n}^{2}} \sum_{i \in[2]}\left|\cos \left(\frac{\pi z_{3-i}}{n}\right)\right|\left[\gamma\left(z, T_{i}^{-1} z\right)+\gamma\left(z, T_{i} z\right)\right] g^{2}(z) \leq 3.65 \sum_{z \in \mathbb{Z}_{n}^{2}} g^{2}(z) .
$$

Now we want to show that for each $z \in \mathbb{Z}_{N}^{2}-\{(0,0)\}$,

$$
\begin{equation*}
\left.\sum_{i \in[2]} \cos \left(\frac{\pi z_{3-i}}{n}\right) \right\rvert\,\left[\gamma\left(z, T_{i}^{-1} z\right)+\gamma\left(z, T_{i} z\right)\right] \leq 3.65 . \tag{5.4}
\end{equation*}
$$

Now we define γ to make this holds. To define γ for different choices for z, we define the following partial order. From now on, we always write an element $\left(z_{1}, z_{2}\right) \in \mathbb{Z}_{n}^{2}$ in such a way that $-n / 2 \leq z_{i} \leq n / 2$ for each $i \in[2]$. In other words, as we have $\left(z_{1}, z_{2}\right)=\left(z_{1}+i n, z_{2}+j n\right)$ for all $i, j \in \mathbb{Z}$, there are many ways to write an element of \mathbb{Z}_{n}^{2}, but when we write (z_{1}, z_{2}), assume that we always have chosen so that z_{i} lies between $-n / 2$ and $n / 2$.

Note that if $\left|z_{1}\right|+\left|z_{2}\right| \geq n / 2$, then $\left|\cos \left(\frac{\pi z_{1}}{n}\right)\right|+\left|\cos \left(\frac{\pi z_{2}}{n}\right)\right|$ is small. On the other hand, when $\left|z_{1}\right|+\left|z_{2}\right| \leq n / 2$, then many of $T_{i}^{ \pm 1} z$ are more away from $(0,0)$ than z. So, we want to define $\gamma\left(z, z^{\prime}\right)$ in such a way that it is smaller than 1 when z^{\prime} is more away from $(0,0)$ than z. This motivates the following definition or a partial order.
Definition 5.6. We say $\left(z_{1}, z_{2}\right)>\left(z_{1}^{\prime}, z_{2}^{\prime}\right)$ if $\left|z_{1}\right| \geq\left|z_{1}^{\prime}\right|$ and $\left|z_{2}\right| \geq\left|z_{2}^{\prime}\right|$ and at least one inequality is strict.
we let

$$
\gamma\left(\left(z_{1}, z_{2}\right),\left(z_{1}^{\prime}, z_{2}^{\prime}\right)\right)= \begin{cases}5 / 4 & \text { if }\left(z_{1}, z_{2}\right)>\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \\ 4 / 5 & \text { if }\left(z_{1}, z_{2}\right)<\left(z_{1}^{\prime}, z_{2}^{\prime}\right) \\ 1 & \text { otherwise. }\end{cases}
$$

If $\left|z_{1}\right|+\left|z_{2}\right|>n / 2$, then assume $z_{1}, z_{2} \geq 0$. The other cases are similar. As \cos is a decreasing function, we have

$$
\begin{aligned}
\left|\cos \left(\pi z_{1} / n\right)\right|+\left|\cos \left(\pi z_{2} / n\right)\right| & \leq\left|\cos \left(\pi z_{1} / n\right)\right|+\left|\cos \left(\pi\left(n / 2-z_{1}\right) / n\right)\right| \\
& \leq \cos \left(\pi z_{1} / n\right)+\sin \left(\pi z_{1} / n\right) \leq \sqrt{2} .
\end{aligned}
$$

As $\gamma\left(z_{1}, z_{2}\right) \leq 5 / 4$, we have $\left.\sum_{i \in[2]} \cos \left(\frac{\pi z_{3-i}}{n}\right) \right\rvert\,\left[\gamma\left(z, T_{i}^{-1} z\right)+\gamma\left(z, T_{i} z\right)\right] \leq 2 \cdot 5 / 4 \cdot \sqrt{2} \leq$ $2.5 \sqrt{2} \leq 3.5$. Now, consider $\left(z_{1}, z_{2}\right)$ with $\left|z_{1}\right|+\left|z_{2}\right| \leq n / 2$.
Proposition 5.7. For each $\left(z_{1}, z_{2}\right) \in \mathbb{Z}_{n}^{2}$ with $\left|z_{1}\right|+\left|z_{2}\right| \leq n / 2$, one of the following holds. Three of the four points $T_{1} z, T_{2} z, T_{1}^{-1} z, T_{2}^{-1} z$ are more than z in the partial order and one is less than z in the partial order. Two of the four points $T_{1} z, T_{2} z, T_{1}^{-1}, T_{2}^{-1} z$ are more than z and two are incomparable with z.

Proof. If $\left|z_{1}\right|=\left|z_{2}\right|$, then we can easily check that the second case holds.
WLOG, assume $\left|z_{1}\right|>\left|z_{2}\right|$. As $\left(T_{i}^{ \pm 1} z\right)_{3-i}=z_{3-i}$, we just have to check whether $\left(T_{i}^{ \pm 1} z\right)_{i}$ is bigger than z_{2}. By symmetry assume $z_{1}>z_{2} \geq 0$. As $z_{1}+z_{2} \leq n / 2$, we have $\left|z_{1}-2 z_{2}\right|<\left|z_{1}\right|$ so we have $T_{1}^{-1} z<z$. The other three points satisfy $T_{1} z>z, T_{2}^{ \pm 1} z$ since $\left|z_{1}+2 z_{2}\right|>\left|z_{1}\right|$ and $\left|z_{2} \pm 2 z_{1}\right|>\left|z_{2}\right|$. Hence the proposition holds.

By this proposition, the left side of (5.4) is at most $\max \{3 \cdot 4 / 5+5 / 4,2 \cdot 4 / 5+2\} \leq 3.65$. This proves what we desired.

