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5. THE MARGULIS CONSTRUCTION

In this section, we explicitly construct an expander. Let

SN P P G

Let G, be the graph with the vertex set (Z,)? where each vertex v € (Z,)? is adjacent
to Thv, Thv, Thv + ey, Tov + es. This yields an 8-regular graph G,,.

Theorem 5.1 (Gabber-Galil 1981). The graph G, satisfies A(G) < 5vV/2 < 8.

Margulis in 1973 proved expansion for a closely related family of graphs but could not
give an explicit lower bound on the spectral gap. Gabber-Galil proved a lower bound on
the spectral gap.

We wil prove the following weaker bound

Theorem 5.2. The graph G,, satisfies A(G) < 7.3 < 8.

For an adjacency matrix A of G = G, and vector f on V(G), we have

fFAf=2 > f@)f®).

zy€E(Gn)

As A\(G) = maxy 4 %, we only to prove the following:

ST FEF(Tz) + f(Tiz +er) + £(Trz) + f(Toz +e2)] <3.65 > f(x). (5.1)

2€72

This is a real-valued function defined on an abelian group Z2. So, we want to analyze this
function to obtain the above inequality.

5.1. Fourier analysis. As a detour, we learn about Fourier analysis on abelian group.
What we want to to analyze a function g : Z2 — C. Consider the collection F of all
complex-valued functions defined on an abelian group H, which is Z2 in our case. Although
our function is real-valued, we want to consider it as a complex-valued function, because
collection of such functions form a linear space with a good orthonormal basis which is
called characters. Then F forms a linear space, and this can be identified with a vector
space c by considering g same as the vector (¢(z))zem. In other words, we consider
a function d, : H — C such that §,(y) = 1 if x = y and 0 otherwise, and consider
{6, : x € H} as a basis to express functions on F.

On the other hand, another choice of basis yields many useful properties. Especially,
the following characters forms a basis.

Definition 5.3. A character of an abelian group H is a homomorphism x : H — C*, that
is x(g+h) =x(g)x(h) for all h,g € H.

(27r(a1bln+agb2)i)‘

We write w = exp(27i/n), then y,(a) = w'%? . We define the inner product of two vectors
(=functions) as follows to ensures that our characters are unit vectors.

1 _
(1:9) = 7 > F@)g().

rxeH

The characters of a Z2 are exactly {x; : b € Z2} where x;(a1,as) = exp

One can easily check that (x4, xs) = 0 if @ # b. So characters form an orthonormal basis
on F, hence any complex function can be expressed as a linear combinations of characters.
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Proposition 5.4. Fvery finite abelian group H has |H| distinct characters which can be
naturally indezed as {x, : * € H}. They form an orthonormal basis of F. Thus every
[+ H — C can be uniquely expressed as f = > .y f(m)xgc, where f : H — C is the
discrete Fourier transform of f.

~ 1 —
f(.%') - <f7 XJ:> - @ Z f(y)Xx(y)

yeH

In our case of H = Z2, we have f(z) = #be(b)wblm“q’?“. The following basic
properties are easy to derive.

Proposition 5.5. Let f,g € F. Then the following hold:
(a) gers fla) =0+ f(0)=0.
(6) 3 Yaen F(@)9(@) = (£,9) = (Cacn @)X, Coen §(0)Xa) = e F(2)d(2).
(¢) Parseval’s identity: # S lf@P =3 cnlf(@)?
(d) f(a) = n*(f,0a) = n* (e f(@)xa0a) = Xy flayw o).
(e) If A is a nonsingular 2 x 2 matriz over Zyn,b € Z2 and g(x) = f(Ax +b), then

ly) = w AT F((ATHTY).

5.2. A Proof of Theorem 5.2. Now, assume f is a vector orthogonal to 1, meaning
>, f(z) =0« f(0,0) =0. (Let eg = (0,0).) Hence, by (b) and (e), for i € [2],5 € {0,1i},
let g(2) = f(Tiz + e;), then we have (as f is a real vector, f(z) = f(2))

S T@ Tz +e) =02 Y. f(2)d(z) =02 Y f)w T2 F(T71T2)

2€7Z2 2€72 2€7Z2
= > T T Cree,
2€72

Here, T 'e; = e; for i = j. (Note that A; = AT ,.) Hence, (5.1) becomes

YT Ao + ST )+ w )] <365 ) (=)

2€72 2€72

Let g be a function with g(z) = |f(2)|. As we know |1 +w ™| = 2| cos(Z)], it suffices to
prove

>~ 29(2) [9(Ty ") cos(TH)] + 9T 2) cos(R)]| <3.65 Y o). (5.2)

2€Z2 2€Z2

As we have sum of squares on the right side, we want to bound the left side by sum of
squares. One good way is to use inequality 2a8 < o + 32. However, we also want to use
the fact that |cos(”>*)| becomes small when z; is closed to n/2. For this, we introduce a
number v, and use inequality 20,3 < yao?+v~! 5% with different « for each z. Later, in some
way, we want to group the terms on the left side, so that in each group, either |cos(%2)] is
small or the average value of v multiplied is small. Assume we have v(z,2') = 1/7(#/, 2),
which we will specify later.

Using the inequality 2a8 < va? + y~132, the following inequality implies (5.2).

D 3 s [(a, I )% (2) + (T 2, )93 12)] <865 Y g2(2). (5:3)
2€72 i€(2] 2€72
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Note that (T;2)3—; = z3—;. Hence, we have

- feosTEN 12, 20 ) = Y Jeos "D e 1))

2€Z2 TiZGZ?V

= Z |cos(ﬂzsii)|’y(Z,T@'Z)92(Z).

2
2€1L%;

Hence (5.3) becomes

23— _
>3 eos() (e, I 12) +1(=, 102)] 9°(2) < 3.65 Y ¢*(2).
2€72 i€(2] 2€Z2

Now we want to show that for each z € Z% — {(0,0)},

3 cos(”s—"n [v(2, T 2) + 7(2, Tiz)] < 3.65. (5.4)
1€[2]

Now we define v to make this holds. To define ~ for different choices for z, we define
the following partial order. From now on, we always write an element (21,22) € Z2
in such a way that —n/2 < z; < n/2 for each ¢ € [2]. In other words, as we have
(21,22) = (21 + in, 29 + jn) for all i,j € Z, there are many ways to write an element of
Z%, but when we write (21, 22), assume that we always have chosen so that z; lies between
—n/2 and n/2.

Note that if |21] + |22] > n/2, then |cos(*2)| + | cos(™22)] is small. On the other hand,
when |21]+ |22| < n/2, then many of 7'z are more away from (0,0) than z. So, we want
to define y(z, 2’) in such a way that it is smaller than 1 when 2’ is more away from (0, 0)
than z. This motivates the following definition or a partial order.

Definition 5.6. We say (z1,22) > (21, 25) if |z1] > |2]| and |2z2| > |z4| and at least one
inequality is strict.

we let
5/4 if (21,22) > (21, 2)
7((21722)7(23725)) = 4/5 if (21,22) < (Zi’zé)
1 otherwise.

If |z1] + |22] > n/2, then assume 21,22 > 0. The other cases are similar. As cos is a
decreasing function, we have

| cos(mzy/n)| + | cos(mza/n)| < |cos(mzy/n)| + |cos(m(n/2 — z1)/n)|
< cos(mzy /n) + sin(mz /n) < V2.
As y(z1,22) < 5/4, we have 35;cpy cos(o=)| [y(2, T; '2) + (2, Tiz)] < 2-5/4- V2 <

n

2.5v/2 < 3.5. Now, consider (21, z9) with |21] + |22] < n/2.

Proposition 5.7. For each (21, 20) € Z2 with | 21|+ |22| < n/2, one of the following holds.
Three of the four points T1z, 15z, Tflz, T{lz are more than z in the partial order and one
s less than z in the partial order. Two of the four points le,ng,Tl_l,TQ_lz are more
than z and two are incomparable with z.

Proof. If |z1| = |z2|, then we can easily check that the second case holds.

WLOG, assume |z;| > |za|. As (T7*'2)3_; = z3_;, we just have to check whether
(Tiﬂz)i is bigger than zo. By symmetry assume z; > 29 > 0. As 21 + 290 < n/2, we have
|21 — 229| < |21] s0 we have T, 'z < 2. The other three points satisfy Tz > z, T5:' 2 since
|z1 + 222| > |21] and |z2 &+ 221| > |22|. Hence the proposition holds.

U
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By this proposition, the left side of (5.4) is at most max{3-4/5+5/4,2-4/5+2} < 3.65.
This proves what we desired.



