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4. Extremal problems on spectrum

One natural question is how strong the expansion can be.
How big ΨE(G, k) be? If we consider a vertex set U of size at most k which induces a

connected subgraph of G. Then G[U ] contains at least |U | − 1 edges, hence ΨE(G, k) ≤
(d−2)|U |+2. Moreover, if we randomly partition V (G) into two sets of equal size, we can
show that there exists S with |E(S, S)|/|S| ≤ d/2+o(1). This shows that h(G) ≤ d/2+o(1).

Alon in 1997 proved that the h(G) ≤ d/2 − c
√
d for all d ≥ 3 for some absolute constant

c. This is tight, as we know h(G) ≥ d−λ2

2 and there exist graphs with λ2(G) ≤ O(
√
d).

How about λ2(G)? The following theorem finds a smallest possible value of λ2(G).
As any (n, d)-graph has its diameter at least logd−1 n, the following theorem implies that

λ2(G) ≥ 2
√
d− 1(1−O(1/ log2 n)).

Theorem 4.1 (Alon-Boppana 91, Friedman 93). There exists a constant c such that every
(n, d)-graph of diameter at least ∆ satisfies

λ2(G) ≥ 2
√
d− 1(1− c

∆2
).

Proof. We will choose a vector f which is orthogonal to the largest eigenvector v1 =
1
n(1, . . . , 1)

T , and compute Rayleigh quotient fTAf
‖f‖2 . This value will be a lower bound of

λ2 as f is orthogonal to v1. What we be a good choice for such a vector f? Intuitively,
a graph with maximum possible expansion should be locally tree-like. If there are many
short cycles, they are not helping a vertex set to expand. Hence, we will consider some
vector which looks like an eigenvector of a d-regular tree. However, we want this vector to
be orthogonal to v1, so we consider a vector which looks like an eigenvector of a d-regular
tree on two different regions, where it has positive value on one region and negative values
on the other region. This will help us to obtain a vector orthogonal to v1 as well as make
them behaves like the eigenvector of d-regular tree.

Let k = ⌊∆/2⌋ − 1 and choose two vertices s, t at distance ∆ in G. For each 0 ≤ i ≤ k,

Si = {v : dist(s, v) = i}, Ti = {v : dist(t, v) = i} and Q = V (G) \
⋃

0≤i≤k

(Si ∪ Ti). (4.1)

Let T (k) be the d-regular tree of height k with the root v0 and let AT (k) be its adja-
cency matrix. Now we want to find an eigenvector for AT (k) corresponding to its largest
eigenvalue.

We consider the vector g : V (T (k)) → R where g(v) = gdist(v0,v). In order for this to be
an eigenvector with the eigenvalue µ, then it must satisfies that for i ∈ [k]

µg0 = dg1, µgi = gi−1 + (d− 1)gi+1 and gk+1 = 0.

We consider a sequence satisfying these relation: gi = (d−1)−i/2 sin((k+1− i)θ) where
θ will be determined later. Let µ = 2

√
d− 1 cos θ. Then we have gk+1 = 0 and it satisfies

gi−1 + (d− 1)gi+1 = (d− 1)−(i−1)/2[sin((k + 2− i)θ) + sin((k + 1− (i+ 1))θ)]

=
√
d− 1(d− 1)−i/2[sin((k + 2− i)θ) + sin((k − i)θ]

= 2
√
d− 1(d− 1)−i/2 sin((k + 1− i)θ) cos(θ) = µhi

Now, the relate µg0 = dg1 becomes

(2d− 2) cos(θ) sin((k + 1)θ) = d sin(kθ).

Take θ as the smallest positive root of this equation. As left side is bigger for positive
θ very close to zero, and right side is bigger for θ = π/(k + 1) such choice is possible
with θ < π/(k + 1) ≤ 2π/(∆ − 1). Then for this choice of theta, the vector (g0, . . . , gk+1)
satisfies the above relation. Moreover, we know that cos(θ) > 1− c

∆2 for some constant c.
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Note that with this choice of 0 < θ < π/(k + 1), this sequence is non-increasing in
i and g : V (T (k)) → R with g(v) = hdist(v0,v) gives an eigenvector of AT (k) which is a
nonnegative vector.

Now, let f : V (G) → R as

f(v) =







c1gi if v ∈ Si

−c2gi if v ∈ Ti

0 otherwise.

where c1, c2 are nonnegative constant chosen so that
∑

v∈V (G) f(v) = 0.

Claim 4. We have (Af)v ≥ µfv for v ∈ ⋃i Si and (Af)v ≤ µfv for v ∈ ⋃i Ti.

Proof. Let v ∈ Si for some i > 0. Assume it has p neighbors in Si−1 with p ≥ 1 and q
neighbors in Si and d− p− q neighbors in Si+1. Then as g is an non-increasing sequence,

(Af)v = pc1gi−1 + qc1gi + (d− p− q)c1gi+1

≥ c1(gi−1 + (d− 1)gi+1) ≥ c1(ATk
g)i = c1µgi = µfv.

Similar argument works for v = s or v ∈ ⋃i Ti. �

By this claim, we have

fTAf =
∑

v∈V (G)

fv(Af)v =
∑

v∈
⋃

Si

fv(Af)v+
∑

v∈
⋃

Ti

fv(Af)v+
∑

v∈Q
fv(Af)v ≥

∑

v∈
⋃

Si∪
⋃

Ti

fvµfv = µfTf.

Note that fv = 0 for v ∈ Q. Here f is orthogonal to 1 by the choice of c1, c2. Hence,

λ2(A) ≥
fTAf

‖f‖2 ≥ µ = 2
√
d− 1 cos θ = 2

√
d− 1(1− c/∆2).

�

Moreover, we know that a constant fraction of eigenvalues exceed 2
√
d− 1− ε for any

fixed ε > 0. Serre proved that there exists c(ε, d) > 0 such that at least c(ε, d)n eigenvalues

are at least 2
√
d− 1− ε. It’s known that c(ε, d) ≥ (d− 1)−π

√
2/ε. Cioabá in 2006 proved

the following weaker bound.

Proof. Let A be the ajacency matrix of G. Let nε be the number of eigenvalues larger
than 2

√
d− 1− ε. Let k be a constant which will be determined later.

We want to use the fact that trace(Ak) is the sum of k-th power of eigenvalues. However,
if all the eigenvalues are nonnegative, then we can upper bound this in terms of nε. To
make sure all the eigenvalues of the matrix we consider is nonnegative, we consider A+dI
and compute the following.

trace(A+ dI)k =

n
∑

i=1

(λi + d)k ≤ (2d)knε + (d+ 2
√
d− 1− ε)kn. (4.2)

On the other hand,

trace(A+ dI)k =

k
∑

j=0

(

k

j

)

trace(Aj)dk−j ≥
⌊k/2⌋
∑

ℓ=0

(

k

2ℓ

)

nt2ℓd
k−2ℓ.

Here t2ℓ is the tree number of closed walks of length 2ℓ from a specific vertex in a d-
regular graph with girth bigger than 2ℓ. (Or consider a d-regular tree with height ℓ, and
consider the number of closed walks of length 2ℓ from its root.) As we can consider a
homomorphism from the regular tree with height ℓ to G, then all closed walks map to
closed walks. So this inequality holds.

Such a walk can be associated with +1/ − 1 sequence where +1 is an edge directed
away from the starting vertex and −1 is directed towards the starting vertex. Such sign
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pattern satisfies that they sum up to 0 and the sum of each prefix is nonnegative. Hence,
there are Catalan number Ck = 1

k+1

(

2k
k

)

many such sign pattern. And each sign pattern

corresponds to at least (d−1)k such walks, as moving away from the starting vertex has at
least d− 1 choices (If we reach the starting point, then we have to choose one of d choices,

not d− 1 choicese.) Hence, we have t2ℓ ≥ 1
ℓ+1

(2ℓ
ℓ

)

(d− 1)k = Ω((2
√
d− 1)2ℓℓ−3/2). Hence,

trace(A+ dI)k ≥ c′

k3/2

⌊k/2⌋
∑

ℓ=0

(

k

2ℓ

)

n(2
√
d− 1)2ℓdk−2ℓ = (

c′

2k3/2
)n[(d+ 2

√
d− 1)k + (d− 2

√
d− 1)k]

≥ (
c′

2k3/2
)n(d+ 2

√
d− 1)k

for some constant c′. This with (4.2) imply that

nε

n
≥

1
2c

′k−3/2(d+ 2
√
d− 1)k − (d+ 2

√
d− 1− ε)k

(2d)k
.

Take k ≥ 2d
ε log d

ε , then we have nε ≥ (d/ε)−3d/εn.
�

The following question is open.

Question 4.2. What is the largest function c(ε, d) which makes the above true?

For non-regular graphs, much less is known. Consider the lollipop graph Ln on 2n
vertices and which is obtained from Kn and a path Pn+1 by identifying some vertex
of Kn with an end vertex of Pn+1. This has diameter Θ(n) but λ(Ln) ≤ 2. Hence
λ(G) ≥ 2

√
d− 1 − o(1) does not hold in general where d is the average degree of G.

However, the following is known.

Theorem 4.3 (Hoory, 2005). Suppose that the average degree of G is at least d whenever

a ball of radius r is deleted from the graph. Then λ(G) ≥ 2
√
d− 1(1 − c log r

r ) for some
absolute constant c > 0.

Definition 4.4. A d-regular graph G is Ramanujan if λ(G) ≤ 2
√
d− 1.

Lubotzky-Phillips-Sarnak in 1988 and Margulis in 1988 independently proved that ar-
bitrarily large d-regular Ramanujan graphs exist when d− 1 is prime. Moreover they can
be explicitly constructed. Morgenstern in 1994 extended this to the case when d− 1 is a
prime power. In 2015, Marcus, Spielman and Srivastava proved that there exists infinitely
many bipartite Ramanujan graphs for all d ≥ 3 and for any number of vertices. Cohen
in 2016 showed that one can construct those graphs in polynomial time. Here, bipartite
Ramanujan graphs are graphs whose all eigenvalues except ±d have absolute value at most
2
√
d− 1. One big conjecture is that for any d ≥ 3, there exists arbitrarily large d-regular

Ramanujan graphs.
The construction of Lubotzky-Phillips-Sarnak are roughly as follows. Let p, q be distinct

primes that are congruent to 1 modulo 4. Then Xp,q will be a (p + 1)-regular graph.
Let G be a group and S be a subset of G that is closed under inversion. Cayley

graph C(G,S) is a graph with vertex set G and edge set {(x, xs) : x ∈ G, s ∈ S}. Let
G = PGL(2, q) be the group of 2 by 2 nonsingular matrices over Fq where two matrices
A and sA are identified for s ∈ Fs − {0}. Fix some integer i with i2 ≡ −1( mod q). Let

S =

{(

a0 + ia1 a2 + ia3
−a2 + ia3 a0 − ia1

)

: a20 + a21 + a22 + a23 = p with odd a0 > 0 and even a1, a2, a3

}

.

By a theorem of Jacobi, there are p+1 solutions to the equation above. So |S| = p+1. Also
S is closed under inversion as needed. Take a connected component of C(G,S) containing
the identity. Then it’s a Ramanujan graph.


