4. Extremal problems on spectrum

One natural question is how strong the expansion can be.
How big $\Psi_{E}(G, k)$ be? If we consider a vertex set U of size at most k which induces a connected subgraph of G. Then $G[U]$ contains at least $|U|-1$ edges, hence $\Psi_{E}(G, k) \leq$ $(d-2)|U|+2$. Moreover, if we randomly partition $V(G)$ into two sets of equal size, we can show that there exists S with $|E(S, \bar{S})| /|S| \leq d / 2+o(1)$. This shows that $h(G) \leq d / 2+o(1)$. Alon in 1997 proved that the $h(G) \leq d / 2-c \sqrt{d}$ for all $d \geq 3$ for some absolute constant c. This is tight, as we know $h(G) \geq \frac{d-\lambda_{2}}{2}$ and there exist graphs with $\lambda_{2}(G) \leq O(\sqrt{d})$.

How about $\lambda_{2}(G)$? The following theorem finds a smallest possible value of $\lambda_{2}(G)$. As any (n, d)-graph has its diameter at least $\log _{d-1} n$, the following theorem implies that $\lambda_{2}(G) \geq 2 \sqrt{d-1}\left(1-O\left(1 / \log ^{2} n\right)\right)$.
Theorem 4.1 (Alon-Boppana 91, Friedman 93). There exists a constant c such that every (n, d)-graph of diameter at least Δ satisfies

$$
\lambda_{2}(G) \geq 2 \sqrt{d-1}\left(1-\frac{c}{\Delta^{2}}\right)
$$

Proof. We will choose a vector f which is orthogonal to the largest eigenvector $v_{1}=$ $\frac{1}{n}(1, \ldots, 1)^{T}$, and compute Rayleigh quotient $\frac{f^{T} A f}{\|f\|^{2}}$. This value will be a lower bound of λ_{2} as f is orthogonal to v_{1}. What we be a good choice for such a vector f ? Intuitively, a graph with maximum possible expansion should be locally tree-like. If there are many short cycles, they are not helping a vertex set to expand. Hence, we will consider some vector which looks like an eigenvector of a d-regular tree. However, we want this vector to be orthogonal to v_{1}, so we consider a vector which looks like an eigenvector of a d-regular tree on two different regions, where it has positive value on one region and negative values on the other region. This will help us to obtain a vector orthogonal to v_{1} as well as make them behaves like the eigenvector of d-regular tree.

Let $k=\lfloor\Delta / 2\rfloor-1$ and choose two vertices s, t at distance Δ in G. For each $0 \leq i \leq k$,

$$
\begin{equation*}
S_{i}=\{v: \operatorname{dist}(s, v)=i\}, T_{i}=\{v: \operatorname{dist}(t, v)=i\} \quad \text { and } Q=V(G) \backslash \bigcup_{0 \leq i \leq k}\left(S_{i} \cup T_{i}\right) \tag{4.1}
\end{equation*}
$$

Let $T(k)$ be the d-regular tree of height k with the root v_{0} and let $A_{T(k)}$ be its adjacency matrix. Now we want to find an eigenvector for $A_{T(k)}$ corresponding to its largest eigenvalue.

We consider the vector $g: V(T(k)) \rightarrow \mathbb{R}$ where $g(v)=g_{\operatorname{dist}\left(v_{0}, v\right)}$. In order for this to be an eigenvector with the eigenvalue μ, then it must satisfies that for $i \in[k]$

$$
\mu g_{0}=d g_{1}, \quad \mu g_{i}=g_{i-1}+(d-1) g_{i+1} \text { and } g_{k+1}=0
$$

We consider a sequence satisfying these relation: $g_{i}=(d-1)^{-i / 2} \sin ((k+1-i) \theta)$ where θ will be determined later. Let $\mu=2 \sqrt{d-1} \cos \theta$. Then we have $g_{k+1}=0$ and it satisfies

$$
\begin{aligned}
g_{i-1}+(d-1) g_{i+1} & =(d-1)^{-(i-1) / 2}[\sin ((k+2-i) \theta)+\sin ((k+1-(i+1)) \theta)] \\
& =\sqrt{d-1}(d-1)^{-i / 2}[\sin ((k+2-i) \theta)+\sin ((k-i) \theta] \\
& =2 \sqrt{d-1}(d-1)^{-i / 2} \sin ((k+1-i) \theta) \cos (\theta)=\mu h_{i}
\end{aligned}
$$

Now, the relate $\mu g_{0}=d g_{1}$ becomes

$$
(2 d-2) \cos (\theta) \sin ((k+1) \theta)=d \sin (k \theta)
$$

Take θ as the smallest positive root of this equation. As left side is bigger for positive θ very close to zero, and right side is bigger for $\theta=\pi /(k+1)$ such choice is possible with $\theta<\pi /(k+1) \leq 2 \pi /(\Delta-1)$. Then for this choice of theta, the vector $\left(g_{0}, \ldots, g_{k+1}\right)$ satisfies the above relation. Moreover, we know that $\cos (\theta)>1-\frac{c}{\Delta^{2}}$ for some constant c.

Note that with this choice of $0<\theta<\pi /(k+1)$, this sequence is non-increasing in i and $g: V(T(k)) \rightarrow \mathbb{R}$ with $g(v)=h_{\text {dist }\left(v_{0}, v\right)}$ gives an eigenvector of $A_{T(k)}$ which is a nonnegative vector.
Now, let $f: V(G) \rightarrow \mathbb{R}$ as

$$
f(v)= \begin{cases}c_{1} g_{i} & \text { if } v \in S_{i} \\ -c_{2} g_{i} & \text { if } v \in T_{i} \\ 0 & \text { otherwise }\end{cases}
$$

where c_{1}, c_{2} are nonnegative constant chosen so that $\sum_{v \in V(G)} f(v)=0$.
Claim 4. We have $(A f)_{v} \geq \mu f_{v}$ for $v \in \bigcup_{i} S_{i}$ and $(A f)_{v} \leq \mu f_{v}$ for $v \in \bigcup_{i} T_{i}$.
Proof. Let $v \in S_{i}$ for some $i>0$. Assume it has p neighbors in S_{i-1} with $p \geq 1$ and q neighbors in S_{i} and $d-p-q$ neighbors in S_{i+1}. Then as g is an non-increasing sequence,

$$
\begin{aligned}
(A f)_{v} & =p c_{1} g_{i-1}+q c_{1} g_{i}+(d-p-q) c_{1} g_{i+1} \\
& \geq c_{1}\left(g_{i-1}+(d-1) g_{i+1}\right) \geq c_{1}\left(A_{T_{k}} g\right)_{i}=c_{1} \mu g_{i}=\mu f_{v}
\end{aligned}
$$

Similar argument works for $v=s$ or $v \in \bigcup_{i} T_{i}$.
By this claim, we have

$$
f^{T} A f=\sum_{v \in V(G)} f_{v}(A f)_{v}=\sum_{v \in \cup S_{i}} f_{v}(A f)_{v}+\sum_{v \in \bigcup T_{i}} f_{v}(A f)_{v}+\sum_{v \in Q} f_{v}(A f)_{v} \geq \sum_{v \in \cup S_{i} \cup \cup T_{i}} f_{v} \mu f_{v}=\mu f^{T} f .
$$

Note that $f_{v}=0$ for $v \in Q$. Here f is orthogonal to $\mathbf{1}$ by the choice of c_{1}, c_{2}. Hence,

$$
\lambda_{2}(A) \geq \frac{f^{T} A f}{\|f\|^{2}} \geq \mu=2 \sqrt{d-1} \cos \theta=2 \sqrt{d-1}\left(1-c / \Delta^{2}\right) .
$$

Moreover, we know that a constant fraction of eigenvalues exceed $2 \sqrt{d-1}-\varepsilon$ for any fixed $\varepsilon>0$. Serre proved that there exists $c(\varepsilon, d)>0$ such that at least $c(\varepsilon, d) n$ eigenvalues are at least $2 \sqrt{d-1}-\varepsilon$. It's known that $c(\varepsilon, d) \geq(d-1)^{-\pi \sqrt{2 / \varepsilon}}$. Cioabá in 2006 proved the following weaker bound.

Proof. Let A be the ajacency matrix of G. Let n_{ε} be the number of eigenvalues larger than $2 \sqrt{d-1}-\varepsilon$. Let k be a constant which will be determined later.

We want to use the fact that trace $\left(A^{k}\right)$ is the sum of k-th power of eigenvalues. However, if all the eigenvalues are nonnegative, then we can upper bound this in terms of n_{ε}. To make sure all the eigenvalues of the matrix we consider is nonnegative, we consider $A+d I$ and compute the following.

$$
\begin{equation*}
\operatorname{trace}(A+d I)^{k}=\sum_{i=1}^{n}\left(\lambda_{i}+d\right)^{k} \leq(2 d)^{k} n_{\varepsilon}+(d+2 \sqrt{d-1}-\varepsilon)^{k} n . \tag{4.2}
\end{equation*}
$$

On the other hand,

$$
\operatorname{trace}(A+d I)^{k}=\sum_{j=0}^{k}\binom{k}{j} \operatorname{trace}\left(A^{j}\right) d^{k-j} \geq \sum_{\ell=0}^{\lfloor k / 2\rfloor}\binom{k}{2 \ell} n t_{2 \ell} d^{k-2 \ell} .
$$

Here $t_{2 \ell}$ is the tree number of closed walks of length 2ℓ from a specific vertex in a d regular graph with girth bigger than 2ℓ. (Or consider a d-regular tree with height ℓ, and consider the number of closed walks of length 2ℓ from its root.) As we can consider a homomorphism from the regular tree with height ℓ to G, then all closed walks map to closed walks. So this inequality holds.

Such a walk can be associated with $+1 /-1$ sequence where +1 is an edge directed away from the starting vertex and -1 is directed towards the starting vertex. Such sign
pattern satisfies that they sum up to 0 and the sum of each prefix is nonnegative. Hence, there are Catalan number $C_{k}=\frac{1}{k+1}\binom{2 k}{k}$ many such sign pattern. And each sign pattern corresponds to at least $(d-1)^{k}$ such walks, as moving away from the starting vertex has at least $d-1$ choices (If we reach the starting point, then we have to choose one of d choices, not $d-1$ choicese.) Hence, we have $t_{2 \ell} \geq \frac{1}{\ell+1}\binom{2 \ell}{\ell}(d-1)^{k}=\Omega\left((2 \sqrt{d-1})^{2 \ell} \ell^{-3 / 2}\right)$. Hence,

$$
\begin{aligned}
\operatorname{trace}(A+d I)^{k} & \geq \frac{c^{\prime}}{k^{3 / 2}} \sum_{\ell=0}^{\lfloor k / 2\rfloor}\binom{k}{2 \ell} n(2 \sqrt{d-1})^{2 \ell} d^{k-2 \ell}=\left(\frac{c^{\prime}}{2 k^{3 / 2}}\right) n\left[(d+2 \sqrt{d-1})^{k}+(d-2 \sqrt{d-1})^{k}\right] \\
& \geq\left(\frac{c^{\prime}}{2 k^{3 / 2}}\right) n(d+2 \sqrt{d-1})^{k}
\end{aligned}
$$

for some constant c^{\prime}. This with (4.2) imply that

$$
\frac{n_{\varepsilon}}{n} \geq \frac{\frac{1}{2} c^{\prime} k^{-3 / 2}(d+2 \sqrt{d-1})^{k}-(d+2 \sqrt{d-1}-\varepsilon)^{k}}{(2 d)^{k}} .
$$

Take $k \geq \frac{2 d}{\varepsilon} \log \frac{d}{\varepsilon}$, then we have $n_{\varepsilon} \geq(d / \varepsilon)^{-3 d / \varepsilon} n$.
The following question is open.
Question 4.2. What is the largest function $c(\varepsilon, d)$ which makes the above true?
For non-regular graphs, much less is known. Consider the lollipop graph L_{n} on $2 n$ vertices and which is obtained from K_{n} and a path P_{n+1} by identifying some vertex of K_{n} with an end vertex of P_{n+1}. This has diameter $\Theta(n)$ but $\lambda\left(L_{n}\right) \leq 2$. Hence $\lambda(G) \geq 2 \sqrt{d-1}-o(1)$ does not hold in general where d is the average degree of G. However, the following is known.
Theorem 4.3 (Hoory, 2005). Suppose that the average degree of G is at least d whenever a ball of radius r is deleted from the graph. Then $\lambda(G) \geq 2 \sqrt{d-1}\left(1-\frac{c \log r}{r}\right)$ for some absolute constant $c>0$.
Definition 4.4. A d-regular graph G is Ramanujan if $\lambda(G) \leq 2 \sqrt{d-1}$.
Lubotzky-Phillips-Sarnak in 1988 and Margulis in 1988 independently proved that arbitrarily large d-regular Ramanujan graphs exist when $d-1$ is prime. Moreover they can be explicitly constructed. Morgenstern in 1994 extended this to the case when $d-1$ is a prime power. In 2015, Marcus, Spielman and Srivastava proved that there exists infinitely many bipartite Ramanujan graphs for all $d \geq 3$ and for any number of vertices. Cohen in 2016 showed that one can construct those graphs in polynomial time. Here, bipartite Ramanujan graphs are graphs whose all eigenvalues except $\pm d$ have absolute value at most $2 \sqrt{d-1}$. One big conjecture is that for any $d \geq 3$, there exists arbitrarily large d-regular Ramanujan graphs.
The construction of Lubotzky-Phillips-Sarnak are roughly as follows. Let p, q be distinct primes that are congruent to 1 modulo 4 . Then $X^{p, q}$ will be a $(p+1)$-regular graph.

Let G be a group and S be a subset of G that is closed under inversion. Cayley graph $C(G, S)$ is a graph with vertex set G and edge set $\{(x, x s): x \in G, s \in S\}$. Let $G=P G L(2, q)$ be the group of 2 by 2 nonsingular matrices over \mathbb{F}_{q} where two matrices A and $s A$ are identified for $s \in \mathbb{F}_{s}-\{0\}$. Fix some integer i with $i^{2} \equiv-1(\bmod q)$. Let
$S=\left\{\left(\begin{array}{cc}a_{0}+i a_{1} & a_{2}+i a_{3} \\ -a_{2}+i a_{3} & a_{0}-i a_{1}\end{array}\right): a_{0}^{2}+a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=p\right.$ with odd $a_{0}>0$ and even $\left.a_{1}, a_{2}, a_{3}\right\}$.
By a theorem of Jacobi, there are $p+1$ solutions to the equation above. So $|S|=p+1$. Also S is closed under inversion as needed. Take a connected component of $C(G, S)$ containing the identity. Then it's a Ramanujan graph.

