AN INTRODUCTION TO EXPANDERS

4. Extremal problems on spectrum

One natural question is how strong the expansion can be.

How big $\Psi_E(G, k)$ be? If we consider a vertex set U of size at most k which induces a connected subgraph of G. Then G[U] contains at least |U| - 1 edges, hence $\Psi_E(G, k) \leq (d-2)|U|+2$. Moreover, if we randomly partition V(G) into two sets of equal size, we can show that there exists S with $|E(S,\overline{S})|/|S| \leq d/2 + o(1)$. This shows that $h(G) \leq d/2 + o(1)$. Alon in 1997 proved that the $h(G) \leq d/2 - c\sqrt{d}$ for all $d \geq 3$ for some absolute constant c. This is tight, as we know $h(G) \geq \frac{d-\lambda_2}{2}$ and there exist graphs with $\lambda_2(G) \leq O(\sqrt{d})$.

How about $\lambda_2(G)$? The following theorem finds a smallest possible value of $\lambda_2(G)$. As any (n, d)-graph has its diameter at least $\log_{d-1} n$, the following theorem implies that $\lambda_2(G) \geq 2\sqrt{d-1}(1-O(1/\log^2 n))$.

Theorem 4.1 (Alon-Boppana 91, Friedman 93). There exists a constant c such that every (n, d)-graph of diameter at least Δ satisfies

$$\lambda_2(G) \ge 2\sqrt{d-1}(1-\frac{c}{\Delta^2}).$$

Proof. We will choose a vector f which is orthogonal to the largest eigenvector $v_1 = \frac{1}{n}(1,\ldots,1)^T$, and compute Rayleigh quotient $\frac{f^T A f}{\|f\|^2}$. This value will be a lower bound of λ_2 as f is orthogonal to v_1 . What we be a good choice for such a vector f? Intuitively, a graph with maximum possible expansion should be locally tree-like. If there are many short cycles, they are not helping a vertex set to expand. Hence, we will consider some vector which looks like an eigenvector of a d-regular tree. However, we want this vector to be orthogonal to v_1 , so we consider a vector which looks like an eigenvector of a d-regular tree on two different regions, where it has positive value on one region and negative values on the other region. This will help us to obtain a vector orthogonal to v_1 as well as make them behaves like the eigenvector of d-regular tree.

Let $k = \lfloor \Delta/2 \rfloor - 1$ and choose two vertices s, t at distance Δ in G. For each $0 \le i \le k$,

$$S_{i} = \{v : dist(s, v) = i\}, \ T_{i} = \{v : dist(t, v) = i\} \ \text{and} \ Q = V(G) \setminus \bigcup_{0 \le i \le k} (S_{i} \cup T_{i}). \ (4.1)$$

Let T(k) be the *d*-regular tree of height k with the root v_0 and let $A_{T(k)}$ be its adjacency matrix. Now we want to find an eigenvector for $A_{T(k)}$ corresponding to its largest eigenvalue.

We consider the vector $g: V(T(k)) \to \mathbb{R}$ where $g(v) = g_{\text{dist}(v_0,v)}$. In order for this to be an eigenvector with the eigenvalue μ , then it must satisfies that for $i \in [k]$

$$\mu g_0 = dg_1, \ \mu g_i = g_{i-1} + (d-1)g_{i+1} \text{ and } g_{k+1} = 0.$$

We consider a sequence satisfying these relation: $g_i = (d-1)^{-i/2} \sin((k+1-i)\theta)$ where θ will be determined later. Let $\mu = 2\sqrt{d-1}\cos\theta$. Then we have $g_{k+1} = 0$ and it satisfies

$$g_{i-1} + (d-1)g_{i+1} = (d-1)^{-(i-1)/2} [\sin((k+2-i)\theta) + \sin((k+1-(i+1))\theta) \\ = \sqrt{d-1}(d-1)^{-i/2} [\sin((k+2-i)\theta) + \sin((k-i)\theta] \\ = 2\sqrt{d-1}(d-1)^{-i/2} \sin((k+1-i)\theta) \cos(\theta) = \mu h_i$$

Now, the relate $\mu g_0 = dg_1$ becomes

$$(2d-2)\cos(\theta)\sin((k+1)\theta) = d\sin(k\theta).$$

Take θ as the smallest positive root of this equation. As left side is bigger for positive θ very close to zero, and right side is bigger for $\theta = \pi/(k+1)$ such choice is possible with $\theta < \pi/(k+1) \le 2\pi/(\Delta-1)$. Then for this choice of theta, the vector (g_0, \ldots, g_{k+1}) satisfies the above relation. Moreover, we know that $\cos(\theta) > 1 - \frac{c}{\Delta^2}$ for some constant c.

JAEHOON KIM

Note that with this choice of $0 < \theta < \pi/(k+1)$, this sequence is non-increasing in i and $g: V(T(k)) \to \mathbb{R}$ with $g(v) = h_{\operatorname{dist}(v_0,v)}$ gives an eigenvector of $A_{T(k)}$ which is a nonnegative vector.

Now, let $f: V(G) \to \mathbb{R}$ as

$$f(v) = \begin{cases} c_1 g_i & \text{if } v \in S_i \\ -c_2 g_i & \text{if } v \in T_i \\ 0 & \text{otherwise} \end{cases}$$

where c_1, c_2 are nonnegative constant chosen so that $\sum_{v \in V(G)} f(v) = 0$.

Claim 4. We have $(Af)_v \ge \mu f_v$ for $v \in \bigcup_i S_i$ and $(Af)_v \le \mu f_v$ for $v \in \bigcup_i T_i$.

Proof. Let $v \in S_i$ for some i > 0. Assume it has p neighbors in S_{i-1} with $p \ge 1$ and q neighbors in S_i and d - p - q neighbors in S_{i+1} . Then as g is an non-increasing sequence,

$$(Af)_{v} = pc_{1}g_{i-1} + qc_{1}g_{i} + (d - p - q)c_{1}g_{i+1}$$

$$\geq c_{1}(g_{i-1} + (d - 1)g_{i+1}) \geq c_{1}(A_{T_{k}}g)_{i} = c_{1}\mu g_{i} = \mu f_{v}.$$

ent works for $v = s$ or $v \in \bigcup_{i} T_{i}.$

Similar argument works for v = s or $v \in \bigcup_i T_i$.

By this claim, we have

$$f^T A f = \sum_{v \in V(G)} f_v(Af)_v = \sum_{v \in \bigcup S_i} f_v(Af)_v + \sum_{v \in \bigcup T_i} f_v(Af)_v + \sum_{v \in Q} f_v(Af)_v \ge \sum_{v \in \bigcup S_i \cup \bigcup T_i} f_v \mu f_v = \mu f^T f_v(Af)_v + \sum_{v \in \bigcup S_i} f_v(Af)_v = \sum_{v \in \bigcup S_i \cup \bigcup T_i} f_v \mu f_v = \mu f^T f_v(Af)_v + \sum_{v \in \bigcup S_i \cup \bigcup T_i} f_v(Af)_v = \sum_{v \in \bigcup S_i \cup \bigcup S_i \cup \bigcup T_i} f_v(Af)_v = \sum_{v \in \bigcup S_i \cup \bigcup S_i \cup \bigcup T_i} f_v(Af)_v = \sum_{v \in \bigcup S_i \cup S_i \cup \bigcup S_i \cup S_i \cup \bigcup S_i \cup S_i \cup S_i \cup \bigcup S_i \cup S_i \cup S_i \cup \bigcup S_i \cup S_i \cup \bigcup S_i \cup S_i$$

Note that $f_v = 0$ for $v \in Q$. Here f is orthogonal to 1 by the choice of c_1, c_2 . Hence,

$$\lambda_2(A) \ge \frac{f^T A f}{\|f\|^2} \ge \mu = 2\sqrt{d-1}\cos\theta = 2\sqrt{d-1}(1-c/\Delta^2).$$

Moreover, we know that a constant fraction of eigenvalues exceed $2\sqrt{d-1} - \varepsilon$ for any fixed $\varepsilon > 0$. Serve proved that there exists $c(\varepsilon, d) > 0$ such that at least $c(\varepsilon, d)n$ eigenvalues are at least $2\sqrt{d-1} - \varepsilon$. It's known that $c(\varepsilon, d) \ge (d-1)^{-\pi\sqrt{2/\varepsilon}}$. Cioabá in 2006 proved the following weaker bound.

Proof. Let A be the ajacency matrix of G. Let n_{ε} be the number of eigenvalues larger than $2\sqrt{d-1} - \varepsilon$. Let k be a constant which will be determined later.

We want to use the fact that $trace(A^k)$ is the sum of k-th power of eigenvalues. However, if all the eigenvalues are nonnegative, then we can upper bound this in terms of n_{ε} . To make sure all the eigenvalues of the matrix we consider is nonnegative, we consider A + dIand compute the following.

$$\operatorname{trace}(A+dI)^{k} = \sum_{i=1}^{n} (\lambda_{i}+d)^{k} \le (2d)^{k} n_{\varepsilon} + (d+2\sqrt{d-1}-\varepsilon)^{k} n.$$
(4.2)

On the other hand,

$$\operatorname{trace}(A+dI)^{k} = \sum_{j=0}^{k} \binom{k}{j} \operatorname{trace}(A^{j}) d^{k-j} \ge \sum_{\ell=0}^{\lfloor k/2 \rfloor} \binom{k}{2\ell} n t_{2\ell} d^{k-2\ell}.$$

Here $t_{2\ell}$ is the tree number of closed walks of length 2ℓ from a specific vertex in a dregular graph with girth bigger than 2ℓ . (Or consider a *d*-regular tree with height ℓ , and consider the number of closed walks of length 2ℓ from its root.) As we can consider a homomorphism from the regular tree with height ℓ to G, then all closed walks map to closed walks. So this inequality holds.

Such a walk can be associated with +1/-1 sequence where +1 is an edge directed away from the starting vertex and -1 is directed towards the starting vertex. Such sign

14

pattern satisfies that they sum up to 0 and the sum of each prefix is nonnegative. Hence, there are Catalan number $C_k = \frac{1}{k+1} \binom{2k}{k}$ many such sign pattern. And each sign pattern corresponds to at least $(d-1)^k$ such walks, as moving away from the starting vertex has at least d-1 choices (If we reach the starting point, then we have to choose one of d choices, not d-1 choices.) Hence, we have $t_{2\ell} \geq \frac{1}{\ell+1} \binom{2\ell}{\ell} (d-1)^k = \Omega((2\sqrt{d-1})^{2\ell} \ell^{-3/2})$. Hence,

$$\begin{aligned} \operatorname{trace}(A+dI)^k &\geq \frac{c'}{k^{3/2}} \sum_{\ell=0}^{\lfloor k/2 \rfloor} \binom{k}{2\ell} n(2\sqrt{d-1})^{2\ell} d^{k-2\ell} = (\frac{c'}{2k^{3/2}}) n[(d+2\sqrt{d-1})^k + (d-2\sqrt{d-1})^k] \\ &\geq (\frac{c'}{2k^{3/2}}) n(d+2\sqrt{d-1})^k \end{aligned}$$

for some constant c'. This with (4.2) imply that

$$\frac{n_{\varepsilon}}{n} \geq \frac{\frac{1}{2}c'k^{-3/2}(d+2\sqrt{d-1})^k - (d+2\sqrt{d-1}-\varepsilon)^k}{(2d)^k}$$

Take $k \geq \frac{2d}{\varepsilon} \log \frac{d}{\varepsilon}$, then we have $n_{\varepsilon} \geq (d/\varepsilon)^{-3d/\varepsilon} n$.

The following question is open.

Question 4.2. What is the largest function $c(\varepsilon, d)$ which makes the above true?

For non-regular graphs, much less is known. Consider the lollipop graph L_n on 2n vertices and which is obtained from K_n and a path P_{n+1} by identifying some vertex of K_n with an end vertex of P_{n+1} . This has diameter $\Theta(n)$ but $\lambda(L_n) \leq 2$. Hence $\lambda(G) \geq 2\sqrt{d-1} - o(1)$ does not hold in general where d is the average degree of G. However, the following is known.

Theorem 4.3 (Hoory, 2005). Suppose that the average degree of G is at least d whenever a ball of radius r is deleted from the graph. Then $\lambda(G) \geq 2\sqrt{d-1}\left(1-\frac{c\log r}{r}\right)$ for some absolute constant c > 0.

Definition 4.4. A d-regular graph G is Ramanujan if $\lambda(G) \leq 2\sqrt{d-1}$.

Lubotzky-Phillips-Sarnak in 1988 and Margulis in 1988 independently proved that arbitrarily large *d*-regular Ramanujan graphs exist when d-1 is prime. Moreover they can be explicitly constructed. Morgenstern in 1994 extended this to the case when d-1 is a prime power. In 2015, Marcus, Spielman and Srivastava proved that there exists infinitely many bipartite Ramanujan graphs for all $d \geq 3$ and for any number of vertices. Cohen in 2016 showed that one can construct those graphs in polynomial time. Here, bipartite Ramanujan graphs are graphs whose all eigenvalues except $\pm d$ have absolute value at most $2\sqrt{d-1}$. One big conjecture is that for any $d \geq 3$, there exists arbitrarily large *d*-regular Ramanujan graphs.

The construction of Lubotzky-Phillips-Sarnak are roughly as follows. Let p, q be distinct primes that are congruent to 1 modulo 4. Then $X^{p,q}$ will be a (p+1)-regular graph.

Let G be a group and S be a subset of G that is closed under inversion. Cayley graph C(G,S) is a graph with vertex set G and edge set $\{(x,xs) : x \in G, s \in S\}$. Let G = PGL(2,q) be the group of 2 by 2 nonsingular matrices over \mathbb{F}_q where two matrices A and sA are identified for $s \in \mathbb{F}_s - \{0\}$. Fix some integer i with $i^2 \equiv -1 \pmod{q}$. Let

$$S = \left\{ \begin{pmatrix} a_0 + ia_1 & a_2 + ia_3 \\ -a_2 + ia_3 & a_0 - ia_1 \end{pmatrix} : a_0^2 + a_1^2 + a_2^2 + a_3^2 = p \text{ with odd } a_0 > 0 \text{ and even } a_1, a_2, a_3 \right\}$$

By a theorem of Jacobi, there are p+1 solutions to the equation above. So |S| = p+1. Also S is closed under inversion as needed. Take a connected component of C(G, S) containing the identity. Then it's a Ramanujan graph.