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3. Random walks

In the second example in Section 1, we chose one vertex from a graph at random and
choose its d nbrs. The key was that this performs well while it uses less randomness than
choosing several vertices independent at random.

Instead of choosing one vertex and all of its neighbors, what one can do is the following:
Choose one vertex v0 at random (according to some distribution) and for each i = 0, . . . , t−
1, choose vi+1 uniformly at random among the neighbors of vi. This yields a walk v0v1 . . . vt
on G, which we call a random walk on G.

What we will aim to show is that if t is large, then the random variable vt is very close
to a random choice of a vertex, and the vertex vt′ and vt have very small dependency, so
that we can use these vertices instead of choosing vertices independently at random

Choose a vertex v0 according to a given distribution π0 and let πt be the distribution
of vt on the random walk. It is known that every finite connected non-bipartite graph G,
this distribution πi converges to a limit (called stationary) distribution. Moreover, as G
is regular, such a distribution is the uniform distribution on V .

Hence, we want to show that as t increases, the distribution πi converges to the uniform
distribution u. Let a graph be (n, d, α)-graph if it is an n-vertex d-regular graph with
λ(G) ≤ αd. Let p ∈ R

n be a probability distribution vector if its coordinates are all non-
negative and

∑n
i=1 pi = 1. Let u be the vector corresponding to the uniform distribution,

u = 1
n(1, . . . , 1). Let Â = 1

dA be the normalized adjacency matrix. Then we know that

when p is the vector representing the distribution πi, Âp is the distribution πi+1. The end

vertex of a random walk is Markov chain with state set V and transition matrix Â.
How do we measure convergence of πi to u? What we usually want to say is that what

would be the maxB |Pp[B] − Pq[B]| where B is taken over all events, which is called the
total variation distance. If this is small, then two distribution p and q assign almost same
probability to every event.

However, in order to maximize this, (if we think in discrete probability space) we add
all atom events having more measure on p than q to B (or the other way around). Then
we have

Pp[B]− Pq[B] = Pq[B]− Pp[B]

maximized. One the other hand, adding up this two quantity is exactly
∑

e

|Pp(e)− Pq(e)| = ‖p − q‖1.

So, what we want to measure is the half of ℓ1-distance between them. Hence, we want to
measure the distance between two distribution by its ℓ1-norm. More precisely, we want to
show that ‖πi − u‖1 fastly converges to 0.

We first show the following theorem which states that this is true if we consider ℓ2-norm
instead.

Theorem 3.1. Let G be an (n, d, α)-graph with normalized adjacency matrix Â. Then for
any distribution vector p and any positive integer t, we have

‖Âtp− u‖2 ≤ αt‖p− u‖2.

Proof. We know that p − u is orthogonal to u, hence Aip − u is again orthogonal to u.
Hence this shrinks in ℓ2-norm by a factor of α. Hence,

‖Âi+1p− u‖2 = ‖Â(Âip− u)‖2 ≤ α‖Âip− u‖2 ≤ αi+1.

This shows the theorem. �

By using Cauchy-Schwartz, we obtain the following theorem.
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Theorem 3.2. Let G be an (n, d, α)-graph with normalized adjacency matrix Â. Then for
any distribution vector p and any positive integer t, we have

‖Âtp− u‖1 ≤ αt√n.

By using this, we can design dependent sampling resembling independent sampling
using not too much randomness.

Assume we sample t + 1 vertices uniformly at random and compute f(x, vi). Assume
that the bad set B has size βn. If all of them 1 then conclude x ∈ L, otherwise conclude
x /∈ L. The number of bits of randomness required for this is (t+1) log n and the algorithm
fails with probability βt+1.

Suppose we are given an (n, d, α)-graph G where a bad vertex set B ⊆ V (G) is given
with |B| = βn. We choose one vertex v0 uniformly at random from V (G) and perform a
random walk from there to obtain v0 . . . vt. We compute f(x, vi) and conclude x ∈ L if
f(x, vi) = 1 for all i, and conclude x /∈ L otherwise. Our algorithm fails if v0, v1, . . . , vt ∈ B.
Note that this uses at most log n+ t log d random bits, as choosing one random neighbors
requires a uniform random choice from a set of size d. Now we show that this algorithm
also has also exponentially small failing probability.

Let (B, t) be the event that all vertices v0, . . . , vt lie in B.

Theorem 3.3 (Ajtai-Komós-Szemerédi 87, Along-Feige-Wigderson-Zuckerman 95). Let
G be an (n, d, α)-graph and B ⊆ V with |B| = βn. Then we have

P[(B, t)] ≤ (β + α)t.

Proof. Let P = PB be the diagonal matrix where Pij = 1 if i = j ∈ B and 0 otherwise.
This is an orthogonal projection of vector onto the space whose coordinate belongs to B.

Claim 3. P[(B, t)] = ‖(PÂ)tPu‖1.

Proof. Note that for x, y ∈ B, the x, y entry of (PÂ)tP counts the sum of probabilities
of all the walks from x, y through the vertices in B. By multiplying u, we sum the above
entries and multiply by 1/n. Which is the probability that initial vertex is chosen. This
yields the equality. �

So, we claim that the following holds.

‖PÂPv‖2 ≤ (β + α)‖v‖2. (3.1)

For this, we may assume that v has support in B, otherwise we replace v with Pv, which
shrink the right side while keeping left side. As both sides are linear, we assume

∑

vi = 1.
Then Pv = v = u+ z where z is orthogonal to u. Hence,

PÂPv = PÂu+ PÂz = Pu+ PÂz.

Hence, we have

‖PÂPv‖2 ≤ ‖Pu‖2 + ‖PÂz‖2. (3.2)

Here, we wish to bound ‖Pu‖2 and ‖PÂz‖2.
We know ‖Pu‖ =

√

β/n. Since
∑

vi = 1 and the support of v has at most βn
coordinates, Cauchy-Schwartz yields that

‖Pu‖ = ‖Pu‖
∑

vi ≤ ‖Pu‖
√

βn‖v‖2 ≤ β‖v‖2.
Also, z is orthogonal to u and it is a linear combination of eigenvectors except the first
one. As P is a contraction, this implies that

‖PÂz‖2 ≤ ‖Âz‖2 ≤ α‖z‖2 ≤ α‖v‖2.
These two inequality with (3.2) implies (3.1).
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Now using (3.1), we can prove our Theorem.

‖(PÂ)tPu‖1 ≤
√
n‖(PÂ)tPu‖2 =

√
n‖(PÂP )tu‖2 ≤

√
n(β + α)t‖u‖2 = (β + α)t.

�

There are several variations and strengthenings of this theorem. For example, the
exponent above is t instead of t+ 1. We can recover this one difference on the exponent
as follows.

Theorem 3.4 (Alon-Feige-Wigderson-Zuckerman 95). If β > 6α, then

β(β + 2α)t ≥ P[(B, t)] ≥ β(β − 2α)t.

By adapting the previous proof, one may obtain the following ‘time dependent’ version
of the theorem.

Theorem 3.5. For every subsete K ⊆ {0, . . . , t} and vertex set B of size βn, we have

P[vi ∈ B for all i ∈ K] ≤ (β + α)|K|−1.

Also, we can vary B = Bi depending on time i.

Theorem 3.6. Let B0, . . . , Bt be vertex sets of density β0, . . . , βt in an (n, d, α)-graph G.
Let v0, . . . , vt be a random walk on G. Then

P[vi ∈ Bi for all i] ≤
t−1
∏

i=0

(
√

βiβi+1 + α).

One thing to note in our algorithm is that we only allow one-sided error. Recall the
original setting. If x ∈ L, then f(x, r) always gives 1 and if x /∈ L, then f(x, r) gives 0 if
r ∈ B.

What if we have bad sets B for every x, no matter x ∈ L or not. In other words, what
if f(x, r) can be 0 when x ∈ L.

Assume that there exists f such that if x ∈ L, then f(x, r) = 1 for at least 0.9·2k choices
of r ∈ {0, 1}k and if x /∈ L, then f(x, r) = 0 for at least 0.9 · 2k choices or r ∈ {0, 1}k.

Simple way of overcoming this issue is that we sample random number r independently
2s+1 times and take the majority vote. Again this requires a large amount of randomness,
one question is whether we can do random walk approach again.

Again assume that we have a (n, d, α)-graph G on n = 2k with V (G) = {0, 1}k . Assume
x is given, and B = Bx is the bad set. We pick a vertex v0 ∈ V (G) uniformly at random,
and take a random walk v0 . . . vt of even length t. We compute f(x, vi) and take the
majority.

This algorithm fails if and only if the majority of the vi’s belong to B. For K ⊆
{0, 1, . . . , t} of cardinality |K| ≥ (t+1)/2, by the time-dependent theorem above, we have

P[vi ∈ B for all i ∈ K] ≤ (β + α)|K|−1 ≤ (β + α)(t−1)/2

If α+ β is small enough, say at most 1/8, then the union bound yields

P[algorithm fails] ≤ 2t(β + α)(t−1)/2 ≤ O(2−t/2).

We obtain an exponentially small probability.
We have used ℓ1, ℓ2 norms to measure how close the distribution is to the uniform one.

Another way of measuring it is to use an entropy of the distribution.

Definition 3.7. Let p be a probability distribution on [n]. We define

(1) Shannon entropy: H(p) = −∑i∈[n] pi log(pi).
(2) Rényi 2-entropy: H2(p) = −2 log(‖p‖2).
(3) Min entropy: H∞(p) = − log(‖p‖∞).
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These entropies satisfies some common properties. They are always nonnegative and
= 0 implies entire probability being concentrated on single element. Also they are at most
log n with equality only for the uniform distribution. For any doubly stochastic matrix
X, H̃(Xp) ≥ H̃(p) and equality holds only for uniform p. (Doubly stochastic matrix can
be written as a convex combination of permutation matrixes. Using the concavity of the
function x log(x), ‖x‖2, ‖‖∞, one can show this.)

As we have analyzed ℓ2 norm, we can analyze 2-entropy and show that this increases
in expander.

Write p = u+ f where f ⊥ u. Let µ = ‖f‖/‖p‖ ≤ 1. Then

‖Âp‖2 = ‖u‖2 + ‖Âf‖2 ≤ ((1 − µ2) + α2µ2)‖p‖2.
Hence

H2(Âp) ≥ H2(p)− log(1− (1− α2)µ2).

Hence 2-entropy strictly increase as long as p is not uniform.


