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2. Graph expansion and eigenvalues

From now on, unless otherwise stated, we always assume that a graph is d-regular
graphs with possibly parallel edges and loops.

Definition 2.1. For S ⊆ V (G), the edge boundary ∂S = E(S, S) is the set of edges from
S to S = V \ S. The edge expansion ratio of G, denoted by h(G), is defined as

h(G) = min
S,|S|≤n/2

|∂S|
|S| .

This h is sometimes called the Cheeger constant of the graph.
We can further define the followings as well.

Definition 2.2.

ΨE(G, k) = min
S⊆V,|S|≤k

|E(S, S)|
|S| , Ψ′

V (G, k) min
S⊆V,|S|≤k

|N(S)|
|S| , and ΨV (G, k) min

S⊆V,|S|≤k

|N(S) \ S|
|S| .

Let’s consider edge expansion as vertex expansion is more difficult to deal with.
Note that we want h(G) be at least something. On the other hand, every connected

graph has h(G) > 0, more specifically h(G) ≥ 2/n. However, this is very weak. So we
want to find a lower bound independent of the size of the graph. In other words, we want
to find a family of graphs with uniform lower bound on h(G).

Definition 2.3. A sequence {Gi} of d-regular graphs {Gi : i ∈ N} of size increasing with
i is a family of expander graphs if there exists ε > 0 such that h(Gi) ≥ ε for all i.

When we construct an expander graph, we want to construct one with (roughly) the
size we wish for. Furthermore, we want to construct them efficiently (in time polynomial
on the input) and perhaps wishes to be able to determine k-th neighbor of a given vertex
efficiently. This can be more precise as follows.

Definition 2.4. Let {Gi}i be a family of expander graphs where Gi is an ni-vertex d-
regular graph, and ni increasing not to fast. (E.g. ni+1 ≤ n2

i .)

(1) The family is called mildly explicit if there is an algorithm that generates the
j-th graph in the family Gj in time polynomial in j.

(2) The family is called very explicit if there is an algorithm that on input of an
integer i, a vertex v ∈ V (Gi) and k ∈ [d] computes the k-th neighbor of the vertex
v in the graph Gi. This algorithm ’s run time should be polynomial in its input
length, the number of bits needed to express the triple (i, v, k).

Consider the following examples.
Margulis in 1973 came up with the following example of expander grahs. Consider a

graph on vertex set Zm × Zm, where the neighbors of (x, y) are

(x+y, y), (x−y, y), (x, y+x), (x, y−x), (x+y−1, y), (x−y+1, y), (x, y+x+1), (x, x−y−1).

This family is very explicit as one can efficiently computes the neighbors of a given vertex.
Another example is to consider the vertex set Zp for a prime p, and make x adjacent

to x − 1, x + 1 and its multiplicative inverse x−1 in mod p. This family is a family of
expander graphs (the proof depends on deep result on Number theory). However, this is
only mildly explicit, since we are not able to generate a large primes deterministically.

Now we turn into an algebraic definition of expansion. The adjacency matrix of a graph
G, denoted by A = A(G) is an n× n matrix whose (u, v)-entry is the number of edges in
G between vertex u and vertex v. As it is real symmetric matrix, it has n real eigenvalues
λ1 ≥ · · · ≥ λn. We can also find orthonormal eigenvectors v1, . . . , vn associated with the
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eigenvalues, i.e. Avi = λivi. We call these eigenvalues of A(G) as Spectrum of the graph
G.

This spectrum contains much information about G. For example, we can easily check
that λ1 = d and v1 =

1√
n
1 = ( 1√

n
, . . . , 1√

n
)T . The graph is is connected iff λ1 > λ2, and it

is bipartite iff λ1 = −λn.
Moreover, spectrum is related to edge-expansion of graphs. To see why, recall that the

edge-expansion is essentially counting the edges between S and S. Consider the expression
1TSA1T , where 1S is the 0/1-vector whose i-th coordinate is 1 if and only if i ∈ S.. This
expression counts the number of edges between S and T . Also, this value has relation
with spectrum, as eigenvectors form an orthonormal basis.

Let λ(G) = max{|λ2|, |λn|}. The following expander mixing lemma shows that how edge
distribution and spectrum are related.

Lemma 2.5 (Expander mixing lemma). Let G be a d-regular graph with n vertices and
let λ = λ(G). Then for all S, T ⊆ V , we have

||E(S, T )| − d|S||T |
n

| ≤ λ
√

|S||T |.

Proof. Proof is from the following simple observation: |E(S, T )| = 1TSA1T where 1TS and
1T are the characteristic vectors of S and T . (Its v-th coordinate is 1 if v is in the set and
zero otherwise)

As v1, . . . , vn are orthonormal basis, we can express

1S =
∑

i∈[n]
αivi, 1T =

∑

i∈[n]
βivi.

Then as v1, . . . , vn are orthonormal basis, we have

|E(S, T )| = 1TSA1T =
∑

i,j

αiβjviAvj =
∑

i

λiαiβi.

Since α1 = 〈1S , 1√
n
1〉 = |S|√

n
and β1 =

|T |√
n
and λ1 = d, we have

|E(S, T )| = d
|S||T |
n

+

n
∑

i=2

λiαiβi.

As all λi with i 6= 1 has absolute value at most λ, we have

||E(S, T )| − d
|S||T |
n

| ≤ λ
n
∑

i=2

|αiβi| ≤ λ

√

√

√

√

n
∑

i=1

α2
i

√

√

√

√

n
∑

i=1

β2
i ≤ λ

√

|S||T |.

This proves the lemma. �

One meaning of this lemma is that if λ is small, then |E(S, T )| is close to d|S||T |
n . If we

take T = S and |S| < n/2, then d|S||T |
n > d

2 |S|.
One natural question is that whether converse of such a statement is true. Namely, if

|E(S, T )| is close to d|S||T |
n for all S, T , then do we have small λ? Indeed, the following

lemma is known. We will not prove this here.

Lemma 2.6 (Bilu, Linial, 2006). For d-regular graph G, if

||E(S, T )| − d|S||T |
n

| ≤ ρ
√

|S||T |

holds for every two disjoint sets S and T and ρ > 0, then λ ≤ O(ρ(1 + log(d/ρ))).

The expander mixing lemma indicates that if λ is small, then every sets of size at most
n/2 must have a large edge-boundary. Furthermore, we have the following theorem.
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Theorem 2.7 (Dodziuk 84, Alon-Milman 85, Alon 86). Let G be a d-regular graph with
spectrum λ1 ≥ · · · ≥ λn. Then

d− λ2

2
≤ h(G) ≤

√

2d(d − λ2).

Proof. We first show the left inequality. The proof is similar with the proof of expander

mixing lemma. Let S be a set satisfying h(G) = |E(S,S)|
|S| and |S| ≤ n/2. Consider the

vector f = |S|1S − |S|1S . Then we have

‖f‖2 = |S|2|S|+ |S|2|S| = |S||S|(|S| + |S|) = n|S||S|

fTAf = 2(|E(S)||S |2 + |E(S)||S|2 − |S||S|E(S, S)|).
Since G is d-regular, we have

2|E(S)| = d|S| − |E(S, S)| and 2|E(S)| = d|S| − |E(S, S)|.
Note that f is orthogonal to 1, which is an eigenvector for λ1. Hence, we have

λ2 ≥
fTAf

‖f‖2 = d− n|E(S, S)|
|S||S|

≥ d− 2h(G).

This conclude the left inequality. Here, fTAf
‖f‖2 is called Rayleigh quotient.

The other inequality is more difficult. Let g be the eigenvector associated with λ2, we
seek to find a cut (S, S) from G. If g is looking like the vector f above (i.e. having two
values, one positive one negative), then it would have been easy.

By choosing −g if necessary, assume that g has at most half coordinates positive.
As g might not look like that, we let f = g+ be the vector with fv = max(gv, 0) and let

V + = {v : fv > 0}, then |V +| ≤ n/2. Assume V = [n] and f1 ≥ · · · ≥ fn. Let

Bf =
∑

xy∈E(G)

|f2
x − f2

y |.

This expression has several merits. One is that this is related to the Cheeger constant as
follows. This can be shown by the following

Bf =
∑

xy∈E(G),x<y

(f2
x − f2

y ) =
∑

xy∈E(G),x<y

y−1
∑

i=x

(f2
i − f2

i+1)

=

n−1
∑

i=1

(f2
i − f2

i+1)|E([i], [i])| =
∑

i∈V +

(f2
i − f2

i+1)|E([i], [i])|

≥ h
∑

i∈V +

(f2
i − f2

i+1)i = h
∑

i∈V +

f2
i = h‖f‖2. (2.1)

On the other hand, we can get upper bound on Bf using the relation f2
x − f2

y ≤
(fx − fy)(fx + fy).

We have

Bf =
∑

E

|f2
x − f2

y | =
∑

E

|fx + fy||fx − fy| ≤
√

∑

E

(fx + fy)2
∑

E

(fx − fy)2.

We give an arbitrary orientation on G and let K be the incidence matrix of this oriented
graph G with columns indexed by V and row indexed by E. If e = −→uv ∈ E(G), then
Kev = 1,Keu = −1. Then we have L = KTK where L = dI − A(G) is the Laplacian of
G. Note that (Kf)e=xy = f(x)− f(y), hence ‖fK‖2 =

∑

E(f(x)− f(y))2. As KTK = L,
we have fTLf = ‖Kf‖2.
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On the other hand,
√
∑

E(fx + fy)2 ≤
√

2
∑

E(f
2
x + f2

y ) =
√

2d
∑

V f2
x =

√
2d‖f‖.

Hence, we have

Bf ≤
√
2d
√

fTLf‖f‖. (2.2)

Using this together with (2.1), we have

h(G)‖f‖ ≤ Bf ≤
√
2d
√

fTLf‖f‖. (2.3)

Again, we want to compute Rayleigh quotient of the laplccian on the right side.

Claim 2.
fTLf

‖f‖2 ≤ d− λ2.

Proof. For x ∈ V +, we have

(Lf)x = dfx−
∑

y

Axyfy = dgx−
∑

y∈V +

Axygy ≤ dgx−
∑

y∈V
Axygy = (Lg)x = ((dI−A)g)x = (d−λ2)gx.

As fx = 0 for x /∈ V +, we have

fTLf =
∑

x∈V
fx · (Lf)x ≤ (d− λ2)

∑

v∈V +

g2x = (d− λ2)
∑

v∈V
f2
x = (d− λ2)‖f‖2.

This proves the claim. �

Apply this claim to (2.3), then we obtain h(G) ≤
√

2dfTLf
‖f‖2 ≤

√

2d(d− λ2). �

Note that the above theorem is best possible up to constant. It is not difficult to see
that h(G) ≤ d/2 + o(1) (see Section 4 for this), so the lower bound is tight for small λ2.
For large λ2, one can consider a d-dimensional hypercube Qd. It is not difficult to see that
h(Qd) = 1 while d−λ2

2 = 1.
For upper bound, for example, consider a cycle Cn. We have h(Cn) = Θ(1/n) while

√

2d(d− λ) ≃ Θ(1/n).
We can similarly consider vertex expansion.

Theorem 2.8 (Kahale, 1995). Let G be an n-vertex d-regular graph with λ(G) ≤ λ. Then
there exists an absolute constant c such that every set S of size at most ρn satisfies

|N(S)|
|S| ≥ (d/2)

(

1−
√

1− 4(d− 1)

d2λ2

)

(1− c
log d

log(1/ρ)
).

We prove the following weaker version.

Theorem 2.9 (Tanner, 1984). Let G be an n-vertex d-regular graph with λ(G) ≤ αd.
Then every set S of size at most ρn satisfies

|N(S)|
|S| ≥ 1

ρ(1− α2) + α2
.

Proof. Let S be a set of size ρn. We consider ‖1
dA1S‖2, which has eigenvalues λ̂i =

λi

d . By

writing 1S =
∑

i αivi where v1 =
1√
n
1 and a1 =

|S|√
n
, we have

‖1
d
A1S‖2 =

n
∑

i=1

λ̂2
iα

2
i ≤

|S|2
n

+

n
∑

i=2

α2α2
i ≤

|S|2
n

+ α2(‖1S‖22 − a21) = ρn(ρ+ α2(1− ρ))

‖1
d
A1S‖2 =

∑

x∈N(S)

(
|S ∩N(x)|

d
)2 ≥ |S|2

|N(S)| = ρn(
|S|

|N(S)| ).
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Here, the last inequality follows from Cachy-Schwwartz since
∑

x∈N(S)
|S∩N(X)|

d = |S|.
This proves what we want. �


