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Abstract. In this note, we learn basics on expander graphs. The materials on this note
are based on the survey [1] by Hoory, Linial and Wigderson.

1. Motivating examples

We will learn about expander graphs. Expander graphs has several definitions.

(1) Combinatorial aspects: Any vertex set U has comparatively large boundary (|E(U,U )|
or NG(U)).

(2) Probabilistic aspects: Random walk mixes fast, i.e. k-th vertex on the random
walk is almost as if we choose a vertex at random.

(3) Algebraic aspects: All eigenvalues except the first one are small.

We plan to learn about these aspects and how they are related. We will also see some
examples where expanders are useful, and we will see how one can construct such expander
graphs. First, we see some simple examples showing why such graphs can be useful.

Imagine that Alice and Bob are far way and wants to communicate messages. Suppose
Alice has a message of k bits which she want to send to Bob over some communication
channel. However, as there can be noises in the channel which can disrupt the message.
If we assume that at most a p-fraction of the bits can be altered, how can we make sure
that Alice and Bob can still communicate without ambiguity? If such communication is
possible, how short can Alice make the bits she send?

How can one solve this problem? What Shannon suggested is to consider 0/1 sequence
of length n for each 0/1 sequence of length k where two length n sequences are difficult to
confuse each other. To be more precise, consider a collection C ⊆ {0, 1}n of size |C| = 2k

(which is called a code) and a bijective map φ : {0, 1}k → C.
If Bob receives an altered string y ∈ {0, 1}n then finds a code z ∈ C which is closest

to y, and decode this to φ−1(y). If the Hamming-distance between any two code in C is
larger than 2pn, then Bob always correctly decode the message into the original message.
Hence, now the question becomes how large code C can we find while ensuring this pairwise
distance condition.

Definition 1.1. Let C ⊆ {0, 1}n be a code. Its rate is defined to be 1
n log |C| and normalized

distance is defined to be 1
n minc �=c′ dH(c, c′), where dH(c, c′) measures the Hamming distance

between c and c′ that is the number of coordinates in which c and c′ differ.

How can one find a good code? In other words, can one always construct a code with
rate and normalized distance at least some absolute constant?

The answer is yes. We see one way of constructing such an example, which was discov-
ered by Sipser and Spielman in 1996.

We first consider a graph satisfying the following property.

Definition 1.2 (Magical graph). Let G be a bipartite graph with vertex partition (L,R).
We say that G is an (n,m; d)-magical graph if |L| = n, |R| = m and every vertex v ∈ L
satisfies dG(v) = d where the following two properties hold.

Date: July 26, 2021.

1



2 JAEHOON KIM

(M) If S ⊆ L with |S| < n
10d , then |N(S)| ≥ 5d

8 |S|.

We will later show that such a graph actually exists. Assuming the existence of such a
graph, we can observe one good property of such a graph.

In an (n, 3n/4, d)-magical graph G with n > 20d, for each nonempty S ⊆ L with
|S| ≤ n

10d , there exists a vertex u ∈ R having exactly one neighbor in S.
(1.1)

Indeed, the edge set E(G[S,N(S)]) contains d|S| edges while |N(S)| ≥ 5d
8 |S| by (M).

Hence, the vertices in N(S) has 8/5 < 2 vertices on average. On the other hand, every
vertex in N(S) has at least one neighbor in S. Thus (1.1) holds.

Claim 1. There exists a code C ⊆ {0, 1}n with rate at least 1/4 and distance at least 1
10d .

Proof. Consider a (n, 3n/4, d)-magical graph G. Let A be the 0/1-matrix with row set R
and column set L where ar� = 1 if and only if r and � are adjacent in G.

Let C = {x ∈ {0, 1}n : Ax = 0} be our code. As the rank of A is at most 3n/4, the

right kernel C of A has dimension at least n/4, hence |C| ≥ 2n/4.
Now we prove a lower bound on the distance. As C is a linear space, x, y ∈ C implies that

x−y ∈ C. Hence the distance of the code is same as the minimum number of 1s in a nonzero
code in C. Let x ∈ C be a non-zero vector in C with the support S = {j ∈ L : xj = 1}. If
|S| < n

10d , then (1.1) implies that there exists r ∈ R with |N(r)∩S| = 1. This implies that
r-th coordinate of Ax is 1, hence x is not in the right kernel of A, which is a contradiction
to the definition of C. Hence, the normalized distance of C is at least 1/(10d). �

This construction is a special case of Low Density Parity Check (LDPC) code. Explicitly
constructing expander to make the above argument feasible was a difficult task. Such an
expander is called ‘lossless expander’.

Consider one more motivating example. Imagine you want to check whether a given
number is prime or not. One easy way is when a number m is given, see if each integer
from 1 to

√
m divides m. However, as this takes a long time, one can choose some random

number y and see if y divides m, and conclude from this. Of course such an algorithm
can give a wrong answer. However, if you repeat this long enough, then the probability of
getting right answer is getting sufficiently high.

Let’s consider the following more general scenario. Suppose that there is a collection
L ⊆ {0, 1}k of strings, which is called a language. Assume that there exists a polynomial
algorithm that calculates a function f(x, r) for given x ∈ {0, 1}k and r ∈ {0, 1}k satisfying
the following:

(1) f(x, r) = 1 if x ∈ L,
(2) If x /∈ L, then |{r ∈ {0, 1}k : f(x, r) = 1}| ≤ 1

16 · 2k.
In other words, if we choose r uniformly at random from {0, 1}k , then for given x /∈ L,
we have f(x, r) = 0 with probability at least 15/16. In short, in order to check whether a
given x ∈ {0, 1}k belongs to L, we can choose a random r ∈ {0, 1}k and compute f(x, r).
It will give you correct answer with probability at least 1− 1/16.

One can consider x as a binary representation of given number m and r as a binary
representation of the random number y. The choice 1/16 is rather arbitrary here.

Our aim here is to find a way to use this f to obtain an algorithm with a probability
better than 1− 1/16. Obvious way is to repeat this d times, then our success probability
will become at least 1 − (1/16)d. However, one drawback of this is that ’randomness’ is
very expensive concept.

How do we generate a random number? One can see a digital clock at the moment and
see the time. If it’s 5.12323204839.. minutes after 4 o’clock, then you take the 11th number
after the decimal point. Ok, suppose that’s a random number. Then how do we generate
the second random number independent from the first one? If we use a clock again, then
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would it be independent from the first choice? If we instead use a thermometer and choose
a number from it, then would it be independent of the first random number? There are
many complications on this. Hence, taking many numbers independently at random is
a pricy task. So, people want to design an algorithm which uses as small amount of
randomness as possible.

We measure ‘randomness’ by the number of bits on the random number we use. In the
above simple algorithm, we choose r ∈ {0, 1}k in random, using k-bits of randomness.

Consider the following algorithm. For given integer d, fix an (n, n; d)-magical graph G
with bipartition (L,R) and n = 2k. Associate strings in {0, 1}k with the vertices in L and
the vertices in R in a bijective way.

Now, for given x, choose a random k-bits r ∈ {0, 1}. Let vr ∈ L be the vertex associated
with r, and consider ua1 , . . . , uad ∈ NG(vr) be the vertices in L which are associated with
a1, . . . , ad ∈ {0, 1}k . Now the algorithm outputs 1 if and only if f(x, a1) = · · · = f(x, ad) =
1.

Let B = {a ∈ {0, 1} : f(x, a) = 1}. The algorithm gives a wrong answer only when
x /∈ L and r1, . . . , rd ∈ B. Let A ⊆ L be the set of vertices that makes the algorithm to
give a wrong answer, i.e. A = {v ∈ L : NG(v) ⊆ B}. Note that N(A) ⊆ B. If |A| > n

10d ,
then we have

|B| ≥ |N(A)| >
5d

8
(
n

10d
) ≥

n

16
,

a contradiction to the assumption that |B| < n
16 . Hence |A| ≤ n

10d , so the algorithm
succeeds with probability at least 1 − 1/(10d). By using no additional randomness, we
boosted our success probability from 1− 1/16 to 1− 1/(10d).

However, for usage of this algorithm, we need to construct such a magical graph in an
efficient way. Also, for given a vertex of G, we need to generate its neighbors in efficient
way.

Also, by using d dependent samples, we achieve the error probability to O(1/d). How-

ever, this is much worse that simple repetition error bound of 2−O(d)). Later we will see
that by using a bit more randomness, one can achieve such an exponential decay on the
error probability.

One thing that remains is to show that there exists such a magical graph. This can be
shown by taking a random graph.

Lemma 1.3. There exists n0 such that for every d ≥ 32 and n ≥ n0, m ≥ 3n/4, there
exists an (n,m; d)-magical graph.

Proof. Let L be n vertices and R be m vertices. Let G be a random bipartite graph where
each vertex in L chooses d vertices in R uniformly at random and connects. (We allow
multi-edges)

We first show that (M) holds with high probability. Let S ⊆ L be a set of size s ≤ n
10d ,

and let T ⊆ R be a set of size t < 5ds
8 . Let XS,T be an indicator random variable for the

event that all the edges from S to go T . If
∑

XS,T = 0 then (M) holds. The probability

of the event XS,T is (t/m)sd, so

P[
∑

S,T

XS,T > 0] ≤
n/(10d)
∑

s=1

(

n

s

)(

m

5ds/8

)

(
5ds

8m
)sd ≤

n/(10d)
∑

s=1

(
ne

s
)s(

8me

5ds
)5ds/8(

5ds

8m
)sd <

1

10
.

Hence there exists (n,m; d)-magical graph. �

Note that this shows that most of the graphs are magical. However, explicitly finding
one such graph is not easy. For example, in order for the previous application, one should
be able to deterministically (and efficiently) find the neighbors of a given vertex. Hence,
this probabilistic argument shows existence, but is not useful for the application.


