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Abstract

The study of intersecting structures is central to extremal combinatorics. A family of per-
mutations F ⊂ Sn is t-intersecting if any two permutations in F agree on some t indices, and
is trivial if all permutations in F agree on the same t indices. A k-uniform hypergraph is t-
intersecting if any two of its edges have t vertices in common, and trivial if all its edges share
the same t vertices.

The fundamental problem is to determine how large an intersecting family can be. Ellis,
Friedgut and Pilpel proved that for n sufficiently large with respect to t, the largest t-intersecting
families in Sn are the trivial ones. The classic Erdős–Ko–Rado theorem shows that the largest
t-intersecting k-uniform hypergraphs are also trivial when n is large. We determine the typical
structure of t-intersecting families, extending these results to show that almost all intersecting
families are trivial. We also obtain sparse analogues of these extremal results, showing that they
hold in random settings.

Our proofs use the Bollobás set-pairs inequality to bound the number of maximal intersecting
families, which can then be combined with known stability theorems. We also obtain similar
results for vector spaces.

1 Introduction

The fundamental problem in extremal combinatorics asks how large a system can be under certain
restrictions. Once resolved, this can then be strengthened by enumerating such systems and de-
scribing their typical structure. In the context of graph theory, this study was initiated by Erdős,
Kleitman and Rothschild [12] in 1976, who proved that almost all triangle-free graphs are bipartite.
In extremal set theory, a landmark result was the determination of the number of antichains among
subsets of an n-element set by Kleitman [22] in 1969. These results have since inspired a great deal
of research over the years, with many classical theorems having been so extended.
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Intersecting hypergraphs were first studied in the seminal 1961 paper of Erdős, Ko and Rado [13].
Not only have versions of the Erdős–Ko–Rado theorem been obtained in various other settings,
including permutations and vector spaces, but a great deal of modern research is still devoted to
proving further extensions. In this paper, we study intersecting families of discrete systems in
various settings, determining their typical structure as n, the size of the underlying ground set,
tends to infinity.

We will now present our results and briefly review the extremal results regarding intersect-
ing families in these different settings. We discuss permutations in Section 1.1, hypergraphs in
Section 1.2 and vector spaces in Section 1.3.

In what follows, we write log for logarithms to the base 2, and ln for logarithms to the base e.

1.1 Permutations

Denote by Sn the symmetric group on [n]. A family of permutations F ⊆ Sn is t-intersecting if
any two permutations in F agree on at least t indices; that is, for any σ, π ∈ F , |σ ∩ π| = |{i ∈ [n] :
σ(i) = π(i)}| ≥ t. When t = 1, we simply call such families intersecting. A natural example of a
t-intersecting family F ⊆ Sn is a trivial t-intersecting family, where there is a fixed t-set I ⊆ [n] and
values {xi : i ∈ I} such that for every σ ∈ F and i ∈ I, σ(i) = xi. Ellis, Friedgut and Pilpel [11]
proved that, for n sufficiently large with respect to t, a t-intersecting family F ⊆ Sn has size at
most (n− t)!, with equality only if F is trivial. Our first result determines the typical structure of
t-intersecting families in Sn, showing that trivial families are not just extremal but also typical.

Theorem 1.1. For any fixed t ≥ 1 and n sufficiently large, almost all t-intersecting families of

permutations in Sn are trivial, and the number of t-intersecting families is
((

n
t

)2
t! + o(1)

)
2(n−t)!.

Additionally, we prove two extensions in the sparse setting of Theorem 1.1. In the first we
consider t-intersecting families of permutations of size m. Note that each maximum trivial t-
intersecting family has

(
(n−t)!
m

)
subfamilies of size m. The following result shows that, for m not too

small1, the number of non-trivial t-intersecting families of m permutations is a lower-order term.

Theorem 1.2. For any fixed t ≥ 1, n sufficiently large and n22n−2t+2 log n ≤ m ≤ (n− t)!, almost
all t-intersecting families of m permutations in Sn are trivial.

Secondly we obtain the following sparse extension of the result of Ellis, Friedgut and Pilpel [11].
Let (Sn)p denote the p-random subset of Sn, where each permutation in Sn is included independently
with probability p. Provided p is not too small, we show that with high probability the largest
t-intersecting family in (Sn)p is trivial. Note that the Ellis–Friedgut–Pilpel theorem corresponds
to the case p = 1.

Theorem 1.3. For fixed t ≥ 1, n sufficiently large and p = p(n) ≥ 800n22n−2t logn
(n−t)! , with high

probability every largest t-intersecting family in (Sn)p is trivial.

1.2 Hypergraphs

For k ≥ 2 and 1 ≤ t < k, a k-uniform hypergraph H on vertex set [n] is t-intersecting if every
pair of edges shares at least t vertices. A family is trivial if every edge in H contains a fixed set of

1The lower bound on m here is what we require in our calculations. It would be interesting to determine how
small m can be for this statement to hold.
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t vertices. The classic Erdős–Ko–Rado theorem [13] and the work of Frankl [15] and Wilson [30]
show that when n ≥ (t+ 1)(k− t+ 1), the largest t-intersecting k-uniform hypergraphs have

(
n−t
k−t
)

edges, a bound attained (not uniquely) by trivial t-intersecting families. We show that just beyond
this bound, the trivial t-intersecting hypergraphs are typical.

Theorem 1.4. Let n, k = k(n) ≥ 3 and t = t(n) ≥ 1 be integers such that n ≥ (t+1)(k−t+1)+ηk,t,
where

ηk,t =



k + 8 ln k for t = 1,

12 ln k for t = 2 and k − t ≥ 3,

1 for t ≥ 3 and k − t ≥ 3,

31 for t ≥ 2 and k − t = 2,

18k for t ≥ 2 and k − t = 1.

Almost all t-intersecting k-uniform hypergraphs on [n] are trivial, and the number of t-intersectng

k-uniform hypergraphs is
((
n
t

)
+ o(1)

)
2(n−t

k−t).

Observe that ηk,t = 1, which we have for most values of t and k, is the best possible result,
as when n = (t + 1)(k − t + 1) the largest non-trivial t-intersecting hypergraphs are as large as
the trivial hypergraphs. In fact, there are many more of them, and hence for this n almost every
t-intersecting hypergraph is non-trivial.

However, there is no doubt that the case t = 1 is the most natural and interesting to study.
Theorem 1.4 gives the asymptotic number of intersecting hypergraphs when n ≥ 3k + 8 ln k. On
the other hand, it is known that the trivial hypergraphs are the largest when n ≥ 2k, and uniquely
so when n ≥ 2k+1. The following theorem, which we prove using spectral methods and the theory
of graph containers, provides a slightly weaker result that covers the entire range.

Theorem 1.5. For k ≥ 3 and n ≥ 2k + 1, let I(n, k) denote the number of intersecting k-uniform
hypergraphs on [n]. Then

log I(n, k) = (1 + o(1))

(
n− 1

k − 1

)
.

Similarly to permutations, we are able to obtain a sparse version of the Erdős–Ko–Rado theo-
rem2. Let Hk(n, p) denote the p-random k-uniform hypergraph on [n], in which every edge in

([n]
k

)
is included independently with probability p. Balogh, Bohman and Mubayi [5] initiated the study
of intersecting hypergraphs in the sparse random setting. Among other results, they determined
the size of the largest intersecting subhypergraph of Hk(n, p) when k < n1/2−ε. Recently, Gauy,
Hàn and Oliveira [17] determined the asymptotic size of the largest intersecting family for all k
and almost all p. Hamm and Kahn [18] obtained an exact result for k < (12 − ε)(n log n)1/2, for any
constant ε, determining for which p we have with high probability that every largest intersecting
subhypergraph of Hk(n, p) is trivial. We prove, provided p is not too small, that the same conclu-
sion holds even for k as large as n/4.3 We remark that Hamm and Kahn [19] also studied the case
n = 2k + 1 and p = 1− c for some constant c > 0.

2We could prove an analogue of Theorem 1.2, but have decided to omit the very similar result.
3A similar statement can be proved for t-intersecting families; we leave the details to the readers.

3



Theorem 1.6. For 3 ≤ k ≤ n
4 , if

p ≥ p0(n, k) =
9n log

(
ne
k

) (
2k
k

)(
n
k

)(
n−k
k

)2 , (1)

then with high probability every largest intersecting subhypergraph of Hk(n, p) is trivial.

Observe that the lower bound on p in (1) is at most 9n log
(
ne
k

) (
2kn

(n−k)2

)k
, and is thus expo-

nentially small with respect to k log
(
n
k

)
.

1.3 Vector spaces

Let V be an n-dimensional vector space over a finite field Fq. The number of k-dimensional
subspaces in V is given by the Gaussian binomial coefficient[

n

k

]
q

:=

k−1∏
i=0

qn−i − 1

qk−i − 1
.

A family F of k-dimensional subspaces of V is intersecting if dim(F1 ∩ F2) ≥ 1 for all pairs
of subspaces F1, F2 ∈ F . Hsieh [21] proved an Erdős–Ko–Rado-type theorem for vector spaces,
showing that for n ≥ 2k + 1, any intersecting family of k-dimensional subspaces of V has size at
most

[
n−1
k−1
]
q
. Furthermore, the only constructions achieving the maximum size are trivial, consisting

of all k-dimensional subspaces through a given 1-dimensional subspace. The results we obtain for
permutations and hypergraphs can be extended to vector spaces as well, and we determine here
the typical structure of intersecting families of subspaces4.

Theorem 1.7. If k ≥ 2, and either q = 2 and n ≥ 2k + 2 or q ≥ 3 and n ≥ 2k + 1, almost all

intersecting families of k-dimensional subspaces of Fnq are trivial, and there are
([
n
1

]
q

+ o(1)
)

2
[n−1
k−1]q

intersecting families.

The rest of paper is organised as follows. In Section 2, we outline our general method of the
proofs, using intersecting hypergraphs as an illustrative example. The subsequent sections contain
the details needed in each particular setting: Section 3 deals with permutations, Section 4 with
hypergraphs, with Theorem 1.5 proven in Section 5, and Section 6 contains the proof for our vector
space result. In Section 7, we present some concluding remarks and open questions.

Our notation is standard. We denote by [n] the first n positive integers, and by [a, b] the integers
between a and b. Given a set X, a k-subset is a subset of X of size k, P(X) represents the set of
all subsets of X, and

(
X
k

)
the set of all k-subsets. Recall that we use log for the binary logarithm

and ln for the natural logarithm.

2 The general method

Our proofs consist of two stages. We first obtain strong bounds on the number of maximal in-
tersecting families. An intersecting family is said to be maximal if it is intersecting and is not

4Similarly to the permutations, sparse extensions can be proved, and we leave the details to the readers.
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contained in a larger intersecting family. Given these bounds, we then use known stability results
to bound the number of non-trivial families. In this section we outline the ideas behind these steps,
using intersecting k-uniform hypergraphs as a running example. For clarity, we omit any involved
calculations in this section; they shall be carried out in greater generality in Section 4.

2.1 Maximal intersecting families

Given a family of sets F , we denote by I(F) =
{
G ∈

([n]
k

)
: ∀F ∈ F , G ∩ F 6= ∅

}
the family of all

sets intersecting every set in F . Note that F forms an intersecting family if and only if F ⊂ I(F),
while F is maximal if and only if F = I(F). Given a maximal intersecting family, we call G ⊂ F
a generating set if F = I(G).

Let F0 = {F1, F2, . . . , Fs} ⊂ F be a minimal generating set of F . Observe that, by the
minimality of F0, we have F ( I (F0 \ {Fi}) for each 1 ≤ i ≤ s. Hence for each i we can find some
set Gi ∈ I (F0 \ {Fi}) \ F . Since Gi ∈ I (F0 \ {Fi}), we have Gi ∩ Fj 6= ∅ for all i 6= j. Moreover,
since Gi /∈ F = I(F0), we must further have Gi ∩ Fi = ∅. Given these conditions, we may now
apply Frankl’s skew version [14] of the celebrated Bollobás set-pairs inequality [8] to bound the size
of F0.

Theorem 2.1 (Frankl). Let A1, . . . , Am be sets of size a and B1, . . . , Bm be sets of size b such that
Ai ∩Bi = ∅ and Ai ∩Bj 6= ∅ for every 1 ≤ i < j ≤ m. Then m ≤

(
a+b
a

)
.

Given our k-sets {Fi} and {Gi}, we construct a system of set-pairs {(Ai, Bi)}2si=1. For 1 ≤ i ≤ s,
let Ai = Fi and Bi = Gi, and for s+ 1 ≤ i ≤ 2s, let Ai = Gi−s and Bi = Fi−s. One can check that
the set pairs {(Ai, Bi)} satisfy the conditions of Theorem 2.1, and hence we deduce that 2s ≤

(
2k
k

)
,

and so |F0| = s ≤ 1
2

(
2k
k

)
.

The fact that every maximal intersecting family admits a small generating set allows us to
bound the number of maximal intersecting families.

Proposition 2.2. The number of maximal intersecting k-uniform hypergraphs over [n] is at most

1
2(2kk )∑
i=0

((n
k

)
i

)
≤
(
n

k

) 1
2(2kk )

.

Proof. Map each maximal intersecting hypergraph F to a minimal generating set F0 ⊂ F . As
F = I(F0), this map is injective. We have shown above that |F0| ≤ 1

2

(
2k
k

)
, and hence the number

of maximal intersecting hypergraphs is bounded by the number of sets of at most 1
2

(
2k
k

)
edges,

which is the sum above.

2.2 Enumeration

Since any subset of a trivial family is itself trivial, it follows that every non-trivial intersecting
family must be a subset of a maximal non-trivial family. Suppose we have a stability result that
not only shows that the trivial intersecting families are the largest, but bounds the size of the
largest non-trivial family. We can then use this stability result in conjunction with our bound on
the number of maximal families to bound the total number of non-trivial intersecting families.

The following lemma, phrased in general terms that will be applicable in all of our settings,
gives sufficient conditions for the trivial families to be typical.
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Lemma 2.3. Let N0 denote the size of the largest trivial intersecting family, and let N1 denote
the size of the largest non-trivial intersecting family. Suppose further that there are at most M
maximal intersecting families. Provided

logM +N1 −N0 → −∞, (2)

almost all intersecting families are trivial. Moreover, if m is such that

logM −m log

(
N0

N1

)
→ −∞, (3)

then almost all intersecting families of size m are trivial.

Proof. Since a largest trivial intersecting family has size N0, and all of its subfamilies are also
trivial, there are at least 2N0 trivial families. On the other hand, every non-trivial intersecting
family is a subset of a maximal non-trivial intersecting family. Each maximal non-trivial family
has size at most N1, and thus at most 2N1 subfamilies. Since there are at most M maximal families,
the number of non-trivial families is at most M2N1 . The proportion of non-trivial families is thus
at most M2N1/2N0 , which tends to 0 by (2). Hence, given (2), almost all intersecting families are
trivial.

For the second claim, observe that the number of trivial subfamilies of size m is at least
(
N0

m

)
by considering subfamilies of one fixed trivial family. On the other hand, each non-trivial family
has at most

(
N1

m

)
subfamilies of size m, and hence there are at most M

(
N1

m

)
non-trivial families of

size m. We can thus bound the proportion of intersecting families of size m that are non-trivial by

M

(
N1

m

)
/

(
N0

m

)
≤M

(
N1

N0

)m
,

which tends to 0 by (3). Hence almost all intersecting families of size m are trivial as well.

Within the context of intersecting hypergraphs, the Erdős–Ko–Rado theorem [13] states that
for n > 2k, the largest intersecting k-uniform hypergraphs over [n] are trivial, having size

(
n−1
k−1
)
.

A stability result was given by Hilton and Milner [20], who showed that for the same range, the
largest non-trivial intersecting hypergraphs have size

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1. These thus give the

values of N0 and N1 respectively, while M is given by Proposition 2.2.
Finally, once having determined that almost all intersecting families are trivial, we will still

have to count the number of such families. The following lemma shows when the union bound over
all maximal trivial families gives an asymptotical correct result.

Lemma 2.4. Let T denote the number of maximal trivial intersecting families, and suppose they
all have the same size N0. Suppose further that two distinct maximal families can have at most N2

members in common. Provided
2 log T +N2 −N0 → −∞, (4)

the number of trivial intersecting families is (T + o(1)) 2N0.

Proof. Suppose F1, . . . ,FT are the maximal trivial intersecting families. Every trivial family is a
subset of some Fi, and hence the collection of trivial families is given by ∪Ti=1P(Fi). The Bonferroni
inequalities state that, for any sets G1, . . . ,Gm,∑

i

|Gi| −
∑
i<j

|Gi ∩ Gj | ≤ |∪iGi| ≤
∑
i

|Gi| .
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Applying this with Gi = P(Fi) for 1 ≤ i ≤ m = T , we have |Gi| = |P(Fi)| = 2N0 and |Gi ∩ Gj | =
|P(Fi ∩ Fj)| ≤ 2N2 . This gives

∑
i

|Gi| = T · 2N0 and
∑
i<j

|Gi ∩ Gj | ≤ 2N2

(
T

2

)
< 22 log T+N2−N0 · 2N0 = o

(
2N0
)
,

from which the result follows.

This framework, coupled with the appropriate extremal and stability theorems, allows us to
obtain our results, although minor modifications are required in the various settings. In the fol-
lowing sections we describe the necessary changes and present the calculations needed to apply
Lemmas 2.3 and 2.4.

3 Intersecting families of permutations

In this section, we furnish the details required in the setting of permutations. Following the frame-
work introduced in Section 2, we first bound the number of maximal t-intersecting families of
permutations, and then deduce from this Theorems 1.1, 1.2 and 1.3.

Proposition 3.1. For any n ≥ t ≥ 1, the number of maximal t-intersecting families in Sn is at
most

1
2(2n−2t+2

n−t+1 )∑
i=0

(
n!

i

)
< nn2

2n−2t+1
.

Proof. Following the proof of Proposition 2.2, for a maximal t-intersecting family F , we define
I(F) = {π ∈ Sn : ∀σ ∈ F , |π ∩ σ| ≥ t}. Let F0 = {σ1, . . . , σs} ⊂ F be a minimal generating set.
By minimality, for each 1 ≤ i ≤ s we have some τi ∈ Sn such that |σj ∩ τi| < t if and only if i = j.

To a permutation π we may assign the n-set of pairs Hπ = {(1, π(1)), . . . , (n, π(n))}. Observe
that for any two permutations π and π′, |Hπ ∩Hπ′ | = |π ∩ π′|. Hence, if we denote Fi = Hσi and
Gi = Hτi , we have |Fi ∩Gj | < t if and only if i = j.

We now require the t-intersecting version of the Bollobás set-pairs inequality, proven by Füredi [16].

Theorem 3.2 (Füredi). Let A1, . . . , Am be sets of size a and B1, . . . , Bm be sets of size b such that
we have |Ai ∩Bi| < t and |Ai ∩Bj | ≥ t for 1 ≤ i < j ≤ m. Then m ≤

(
a+b−2t+2
a−t+1

)
.

We apply this to the sets {(Ai, Bi)}2si=1, where for 1 ≤ i ≤ s we take Ai = Fi and Bi = Gi, and
for s + 1 ≤ i ≤ 2s we set Ai = Gi−s and Bi = Fi−s. The conditions of Theorem 3.2 are clearly
satisfied, and hence we deduce s ≤ 1

2

(
2n−2t+2
n−t+1

)
.

Thus, to every maximal family F we may assign a distinct generating set of at most 1
2

(
2n−2t+2
n−t+1

)
permutations, giving the above sum as a bound on the number of maximal families. The upper
bound follows since n! ≤ nn and

(
2n−2t+2
n−t+1

)
≤ 22n−2t+2.

Given this bound, we apply Lemmas 2.3 and 2.4 to prove our enumerative results. Proposi-
tion 3.1 shows that we may take M = nn2

2n−2t+1
. Each trivial family, on the other hand, has to fix

the images of t indices. There are
(
n
t

)
ways to choose the indices,

(
n
t

)
ways to choose their images,

and t! ways to assign the images to the indices, and thus T =
(
n
t

)2
t! maximal trivial families.
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The required extremal result is due to Ellis, Friedgut and Pilpel [11], who showed that for n
sufficiently large with respect to t, the largest t-intersecting families in Sn are the trivial ones. In a
trivial family, t indices are fixed, while we are free to permute the remaining n− t indices. Hence
we have N0 = (n− t)!. Moreover, note that there are at least t+ 1 fixed indices in the intersection
of two trivial families, and so N2 = (n− t− 1)!. Finally, a stability result was obtained by Ellis [9],
showing that when t is fixed and n tends to infinity, the largest non-trivial t-intersecting family has
size N1 = (1− 1/e+ o(1)) (n− t)!. We now proceed to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. We first apply Lemma 2.3 to show that almost all intersecting families are
trivial. We have

logM +N1 −N0 = n22n−2t+1 log n− (1/e+ o(1)) (n− t)!→ −∞,

and so (2) is satisfied. This shows that the number of non-trivial t-intersecting families is o
(
2(n−t)!

)
.

We use Lemma 2.4 to count the number of trivial families. We see that (4) holds, since

2 log T+N2−N0 = 2 log

((
n

t

)2

t!

)
+(n−t−1)!−(n−t)! ≤ 4t log(nt)−(n−t−1)(n−t−1)!→ −∞.

Hence the number of trivial families is
((

n
t

)2
t! + o(1)

)
2(n−t)!. As the non-trivial families constitute

a lower-order term, this completes the proof.

Proof of Theorem 1.2. To prove that almost every t-intersecting family of m permutations is trivial,
we show that (3) is satisfied. Indeed, for m ≥ n22n−2t+2 log n,

logM −m log

(
N0

N1

)
= n22n−2t+1 log n−m log

(
(n− t)!

(1− 1/e+ o(1)) (n− t)!

)
≤ n22n−2t+1 log n− 0.6m→ −∞.

Finally, we seek to prove Theorem 1.3, showing that when p ≥ 800n22n−2t logn
(n−t)! , with high proba-

bility the largest t-intersecting family in the p-random set of permutations (Sn)p is trivial.
Let T ⊂ Sn be a fixed maximal trivial family, and let F1, . . . ,FM be the maximal non-trivial

families. Then the largest trivial family in (Sn)p has size at least |(T )p|, while the largest non-trivial
family has size maxi |(Fi)p|. In expectation, E [|(T )p|] = p |T | > p |Fi| = E [|(Fi)p|], and our bound
on M is strong enough for a union bound calculation to go through. We require the following
version of Hoeffding’s Inequality that is derived from [26, Theorem 2.3].

Theorem 3.3 (Hoeffding). Let the random variables X1, X2, . . . , Xn be independent, with 0 ≤
Xk ≤ 1 for each k. Let X =

∑n
k=1Xk, let µ = E[X]. Then, for any ε > 0,

P (X ≥ (1 + ε)µ) ≤ exp

(
−1

2
ε2µ

)
and P (X ≤ (1− ε)µ) ≤ exp

(
−1

2
ε2µ

)
.

Proof of Theorem 1.3. Let (T )p = T ∩ (Sn)p, let (Fi)p = Fi ∩ (Sn)p, and set ε = 1/10. Let E0 be
the event that |(T )p| < (1−ε)p |T | = (1−ε)pN0, and let Ei be the event that |(Fi)p| > (1 +ε)pN1.
Since N0 = (n− t)! and N1 = (1− 1/e+ o(1)) (n− t)!, we have (1 + ε)pN1 < (1− ε)pN0. If there
is a non-trivial largest t-intersecting family in (Sn)p, we must have maxi |(Fi)p| ≥ |(T )p|, and so at
least one of the events Ej , 0 ≤ j ≤M , must hold.
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Now |(T )p| ∼ Bin(N0, p), and so applying Theorem 3.3 with µ = pN0, we have P(E0) ≤
exp

(
−pN0

200

)
. Similarly, for 1 ≤ i ≤M , |(Fi)p| ∼ Bin(|Fi| , p), where |Fi| ≤ N1. LetX ∼ Bin(N1, p).

Applying Theorem 3.3 to X with µ = pN1, we have

P(Ei) = P(|(Fi)p| ≥ (1 + ε)pN1) ≤ P(X ≥ (1 + ε)pN1) ≤ exp

(
−pN1

200

)
.

Hence, by the union bound,

P
(
∪Mi=0Ei

)
= exp

(
−pN0

200

)
+Mexp

(
−pN1

200

)
≤
(
nn2

2n−2t+1
+ 1
)
· exp

(
−pN1

200

)
= o(1)

when p ≥ 800n22n−2t logn
(n−t)! ≥ 200

N1
n22n−2t+1 log n. Thus, for such p, the largest t-intersecting families

in (Sn)p are trivial with high probability.

4 Intersecting hypergraphs

We now turn our attention to t-intersecting hypergraphs, and seek to prove Theorems 1.4 and 1.6.
The proof of Theorem 1.5 uses a different method, and is given in Section 5.

We begin with a bound on the number of maximal t-intersecting hypergraphs.

Proposition 4.1. The number of maximal t-intersecting k-uniform hypergraphs on [n] is at most

(2(k−t)+1
k−t )∑
i=1

((n
k

)
i

)
≤
(
n

k

)(2(k−t)+1
k−t )

.

Proof. The proof of this proposition follows the proof of Proposition 2.2, except we must replace
Theorem 2.1 with its t-intersecting version Theorem 3.2. This shows that every t-intersecting
hypergraph admits a minimal generating set of at most 1

2

(2(k−t)+2
k−t+1

)
=
(2(k−t)+1

k−t
)

edges. Thus
the map from maximal hypergraphs to their minimal generating sets injects into sets of at most(2(k−t)+1

k−t
)

edges, resulting in the upper bound above.

We shall now use Lemma 2.3 to show that almost every t-intersecting hypergraph is trivial.
Proposition 4.1 supplies us with the value of M required. The Erdős–Ko–Rado theorem [13] states
that for n sufficiently large, the largest t-intersecting hypergraphs are the trivial ones, which have
size N0 =

(
n−t
k−t
)
. Wilson [30] later showed that n ≥ (t+ 1)(k − t+ 1) was the correct bound.

Stability results for the Erdős–Ko–Rado theorem have a long history, beginning with the Hilton–
Milner theorem [20], which resolved the t = 1 case. After much incremental progress, Ahlswede
and Khachatrian [3] completely determined the largest non-trivial intersecting hypergraphs for all
ranges of parameters. In our range of interest, n ≥ (t+ 1)(k− t+ 1), there are two possible largest
non-trivial hypergraphs:

H1 = {F : |F ∩ [t+ 2]| ≥ t+ 1} , and

H2 = {F : [t] ⊂ F, F ∩ [t+ 1, k + 1] 6= ∅} ∪ {[k + 1] \ {i} : 1 ≤ i ≤ t} .

Theorem 4.2 (Ahlswede–Khachatrian). Suppose n ≥ (t + 1)(k − t + 1). If k ≤ 2t + 1, then the
largest non-trivial t-intersecting k-uniform hypergraph over [n] has size |H1|. If k ≥ 2t + 2, then
the largest non-trivial hypergraph has size max {|H1| , |H2|}.

9



This theorem provides the value of N1 needed for Lemma 2.3. Before we proceed, we evaluate
|H1| and |H2|, making use of Pascal’s identity for binomial coefficients.

|H1| = (t+ 2)

(
n− t− 2

k − t− 1

)
+

(
n− t− 2

k − t− 2

)
=

(
n− t
k − t

)
−
(

1− (t+ 1)(k − t)
n− t− 1

)(
n− t− 1

k − t

)
. (5)

|H2| =
(
n− t
k − t

)
−
(
n− k − 1

k − t

)
+ t. (6)

In light of Theorem 4.2, we have N1 ≤ max {|H1| , |H2|}, which we estimate by

N1 ≤ max {|H1| , |H2|}

=

(
n− t
k − t

)
−min

{(
1− (t+ 1)(k − t)

n− t− 1

)(
n− t− 1

k − t

)
,

(
n− k − 1

k − t

)
− t
}

≤
(
n− t
k − t

)
−
(

1− (t+ 1)(k − t)
n− t− 1

)(
n− k − 1

k − t

)
+ t ≤

(
n− t
k − t

)
− 1

n

(
n− k − 1

k − t

)
+ n, (7)

where the last inequality holds for n ≥ (t + 1)(k − t + 1) + 1. We shall also use the following
inequality for a ≥ b ≥ r: (

a
r

)(
b
r

) =
r−1∏
j=0

a− j
b− j

≥
(a
b

)r
. (8)

Finally, to count the number of trivial families, we use Lemma 2.4. Since each trivial family
fixes t elements, there are T =

(
n
t

)
maximal trivial families. The intersection of any two such

families must fix at least t + 1 elements, and so can have size at most N2 =
(
n−t−1
k−t−1

)
. With these

preliminaries in place, we now prove Theorem 1.4.

Proof of Theorem 1.4. We will first prove that, for n, k and t as in the statement of the theorem,
almost all t-intersecting hypergraphs are trivial. To this end, we verify that (2) of Lemma 2.3 holds.

We start with the case t = 1. The Hilton–Milner theorem states that when n > 2k, the largest
non-trivial intersecting hypergraph is H2, and so N1 = |H2| =

(
n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1. Recall that the

trivial hypergraphs have size N0 =
(
n−1
k−1
)
. Finally, since

(
n
k

)
≤ 2n, Proposition 4.1 shows that we

may use logM ≤
(
2k−1
k−1

)
n.

Hence, using (6) and (8), we have

logM +N1 −N0 ≤
(

2k − 1

k − 1

)
n−

(
n− k − 1

k − 1

)
+ 1 ≤

(
n−

(
n− k − 1

2k − 1

)k−1)(2k − 1

k − 1

)
+ 1.

For t = 1, we have n ≥ (t+ 1)(k − t+ 1) + ηk,t = 2k + ηk,1 = 3k + 8 ln k. We may bound(
n− k − 1

2k − 1

)k−1
=

(
n− k − 1

2k − 1

)2(n− k − 1

2k − 1

)k−3
≥ n2

16k2

(
1 +

8 ln k

2k − 1

)k−3
.

Since 1 + x ≥ exp(6x/11) for x ≤ 1, when k is large we have

k−2
(

1 +
8 ln k

2k − 1

)k−3
≥ k−2exp

(
48(k − 3) ln k

22k

)
≥ k−2exp(2 ln k) = 1.

10



Thus there is some constant c > 0 such that k−2
(

1 + 8 ln k
2k−1

)k−3
≥ c for all k, and thus

(
n−k−1
2k−1

)k−1
=

Ω(n2). Hence it follows that

(
n−

(
n−k−1
2k−1

)k−1)(
2k−1
k−1

)
− 1→ −∞.

We next handle the case k − t = 1. In this setting, we have k ≤ 2t + 1, and hence by

Theorem 4.2, the largest non-trivial hypergraph has size N1 = |H1|. Using
(
n
k

)
≤
(
ne
k

)k
, we may

use logM ≤ k log
(
ne
k

) (2(k−t)+1
k−t

)
. Using (5) gives

logM +N1 −N0 ≤ k log
(ne
k

)(2(k − t) + 1

k − t

)
−
(

1− (t+ 1)(k − t)
n− t− 1

)(
n− t− 1

k − t

)
= 3k log

(ne
k

)
− (n− 2k) = 3k log

(ne
k

)
+ 2k − n.

This expression is increasing in k. Since we are assuming n ≥ (t+1)(k−t+1)+ηk,t = 2k+ηk,k−1 =
20k, we substitute k = n/20 to obtain logM + N1 − N0 ≤ (3 log(20e)− 18)n/20 → −∞, since
3 log(20e) < 18.

Similar calculations show that when t ≥ 2 and k − t = 2, ηk,k−2 = 31 suffices. In this setting,

we still have N1 = |H1|. Using logM ≤ n
(2(k−t)+1

k−t
)

and n ≥ (t+ 1)(k − t+ 1) + ηk,k−2 > 3k,

logM +N1 −N0 ≤ (10− ηk,k−2/3)n→ −∞.

We now consider the remaining cases, when t ≥ 2 and k− t ≥ 3. In this range, the largest non-
trivial hypergraph has size N1 = max{|H1| , |H2|}. Using

(
n
k

)
≤ 2n, we have logM ≤ n

(2(k−t)+1
k−t

)
≤

2n
(2(k−t)
k−t

)
. By (7) and (8), and observing that n− k − 1 ≥ t(k − t) + ηk,t, we have

logM +N1 −N0 ≤ 2n

(
2(k − t)
k − t

)
− 1

n

(
n− k − 1

k − t

)
+ n

≤

(
3n− 1

n

(
n− k − 1

2(k − t)

)k−t)(2(k − t)
k − t

)

≤

(
3n− n2

64(k − t)3

(
t(k − t) + ηk,t

2(k − t)

)k−t−3)(2(k − t)
k − t

)
. (9)

If t = 2, then ηk,t = 12 ln k, and
t(k−t)+ηk,t

2(k−t) = 1 + 6 ln k
k−2 . Using 1 +x ≥ exp(6x/11) again, we find

that for large k,

(k − 2)−3
(

1 +
6 ln k

k − 2

)k−5
≥ (k − 2)−3exp

(
36(k − 5) ln k

11k

)
≥ k−3exp(3 ln k) = 1.

It follows that there is some constant c > 0 such that (k − 2)−3
(
2(k−2)+ηk,2

2(k−2)

)k−5
≥ c for all k.

If instead t ≥ 3, then (k − t)−3
(
t(k−t)+ηk,t

2(k−t)

)k−t−3
> (k − t)−3(32)k−t−3 →∞ as k − t→∞, and

thus there is some c > 0 such that (k − t)−3
(
t(k−t)+ηk,t

2(k−t)

)k−t−3
≥ c for all k > t. Hence, in either

case, n2

64(k−t)3

(
t(k−t)+ηk,t

2(k−t)

)k−t−3
= Ω(n2), and so from (9) it follows that logM +N1 −N0 → −∞.

Thus our choice of ηk,t ensures that for all k > t we have logM +N1−N0 → −∞, satisfying (2)
of Lemma 2.3, thus showing that almost all t-intersecting k-uniform hypergraphs are trivial. To
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complete the proof of Theorem 1.4, we need only count the number of trivial hypergraphs. By
Lemma 2.4, it suffices to verify (4). We have

2 log T +N2 −N0 = 2 log

(
n

t

)
+

(
n− t− 1

k − t− 1

)
−
(
n− t
k − t

)
≤ 2t log

(ne
t

)
−
(
n− t− 1

k − t

)
→ −∞

for k − t ≥ 2 or k − t = 1 and n ≥ 20t. It follows that the number of t-intersecting k-uniform

hypergraphs on [n] is
((
n
t

)
+ o(1)

)
2(n−t

k−t), as claimed.

We conclude this section with the proof of Theorem 1.6, showing that even in sparse random
hypergraphs, when the edge probability is as given in (1) the largest intersecting subhypergraphs
are trivial.

Proof of Theorem 1.6. The proof follows that of Theorem 1.3. Let T denote a fixed maximal
trivial hypergraph, and let (T )p = T ∩ Hk(n, p) be those edges of T selected in Hk(n, p). Let
F1,F2, . . . ,FM be the maximal non-trivial hypergraphs, where by Proposition 4.1 we have M <(
n
k

)(2k−1
k−1 ) < 2k log(

ne
k )(2k−1

k−1 ), and let (Fi)p = Fi ∩Hk(n, p) denote the corresponding random subhy-
pergraphs.

Observe that |T | = N0 =
(
n−1
k−1
)
, while by the Hilton–Milner theorem [20], |Fi| ≤ N1 =(

n−1
k−1
)
−
(
n−k−1
k−1

)
+ 1. Setting τ = p

(
n−k−1
k−1

)
/3, define events E0 = {|(T )p| ≤ pN0 − τ} and Ei =

{|(Fi)p| ≥ pN1 + τ} for 1 ≤ i ≤ M . By our choice of τ , if none of the events {Ei}Mi=0 occur then
|(T )p| > maxi {|(Fi)p|}, and so the largest intersecting subhypergraphs in Hk(n, p) are trivial.

Applying Theorem 3.3, we find

P(E0) ≤ exp

(
− τ2

2pN0

)
and P(Ei) ≤ exp

(
− τ2

2pN1

)
≤ exp

(
− τ2

2pN0

)
.

Hence, by the union bound,

P
(
∪Mi=0Ei

)
≤ (M + 1)exp

(
− τ2

2pN0

)
≤
(

2k log(
ne
k )(2k−1

k−1 ) + 1
)

exp

−p(n−k−1k−1
)2

18
(
n−1
k−1
)
→ 0

when p ≥ p0(n, k) =
9n log(ne

k )(2kk )(nk)

(n−k
k )

2 ≥ 18k log(ne
k )(2k−1

k−1 )(n−1
k−1)

(n−k−1
k−1 )

2 , giving the bound in (1).

As proven in [5], when k �
√
n log logn and logn

(n−1
k )
� p � ek

2/2n

(nk)
, a simple first moment

argument shows that the largest intersecting subhypergraph of Hk(n, p) is non-trivial with high
probability. This holds for p considerably smaller than in (1), and it would be very interesting
to determine the threshold at which trivial hypergraphs become the largest intersecting subhyper-
graphs of Hk(n, p).

5 Hypergraphs of large uniformity

Although Theorem 1.4 provides very sharp results, it is somewhat incomplete in the case t = 1, as
we require n ≥ 3k + 8 ln k instead of the Erdős–Ko–Rado threshold n ≥ 2k + 1. In this section we
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prove Theorem 1.5, which fills in the gap with a slightly weaker result, providing the asymptotics
of the logarithm of the number of intersecting hypergraphs.

We combine spectral methods with the theory of graph containers5 to prove this theorem. Such
an approach has previously been used for other enumerative problems in combinatorics; see, for
instance, the work of Sapozhenko [28] or Alon, Balogh, Morris and Samotij [1]. To use these methods
in our setting, we exploit the connection between intersecting hypergraphs and independent sets in
Kneser graphs.

The Kneser graph KG(n, k) is a graph with vertex set
([n]
k

)
and an edge between vertices

F1, F2 ∈
([n]
k

)
if and only if F1 ∩ F2 = ∅. This graph has N =

(
n
k

)
vertices and is D-regular, where

D =
(
n−k
k

)
. Moreover, subsets of vertices of KG(n, k) correspond to k-uniform hypergraphs on [n],

and independent sets correspond directly to intersecting hypergraphs. Our problem thus reduces
to counting the number of independent sets in KG(n, k).

The following graph containers theorem, appearing the form below in [23], provides a method
to bound the number of independent sets in a graph.

Theorem 5.1 (Kohayakawa–Lee–Rödl–Samotij). Let G be a graph on N vertices, let R and ` be
integers, and let β > 0 be a positive real. Then, provided

e−β`N ≤ R, (10)

and, for every subset S ⊂ V (G) of at least R vertices, we have

e(S) ≥ β
(
|S|
2

)
, (11)

there is a collection of sets Ci ⊂ V (G), 1 ≤ i ≤
(
N
`

)
, such that |Ci| ≤ R + ` for every i and, for

every independent set I ⊂ V (G), there is some i satisfying I ⊂ Ci.

The supersaturation condition of (11) in Theorem 5.1 requires large vertex subsets to induce
subgraphs of positive density. We use spectral methods to show that the Kneser graph satisfies this
property; a similar approach was used by Gauy, Hàn and Oliveira in [17]. The expander-mixing
lemma, due to Alon and Chung [2], relates the eigenvalues of a graph to its distribution of edges.

Theorem 5.2 (Alon–Chung). Let G be a D-regular graph on N vertices, and let λ be its minimum
eigenvalue. Then for all S ⊆ V (G),

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S| (N − |S|) .

To employ this result, we require the spectrum of the Kneser graph, which was determined in a
seminal paper of Lovász [25]. In particular, the minimum eigenvalue of the Kneser graph KG(n, k)
is λ = −

(
n−k−1
k−1

)
= − k

n−kD. Combined with Theorem 5.2, this gives the following supersaturation
bound.

Proposition 5.3. Given ε > 0, any set S of at least (1 + ε)
(
n−1
k−1
)

vertices in the Kneser graph

KG(n, k) induces at least
(

1− 1
1+ε

)
Dn

N(n−k)
(|S|

2

)
edges.

5For the general theory of containers, we refer the reader to the papers of Balogh, Morris and Samotij [6] and
Saxton and Thomason [29].
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Proof. Given a vertex set S with |S| ≥ (1 + ε)
(
n−1
k−1
)

= (1 + ε) kNn , we apply Theorem 5.2 and the

fact that λ = − k
n−kD to find

e(G[S]) ≥ D

2N
|S|2 +

λ

2N
|S| (N − |S|) ≥

(
D − λ
N

+
λ

|S|

)(
|S|
2

)
≥
(

1− 1

1 + ε

)
Dn

N(n− k)

(
|S|
2

)
.

Having established supersaturation, we may now apply Theorem 5.1 to find a small set of
containers of independent sets in the Kneser graph, from which we shall derive Theorem 1.5.

Proposition 5.4. For ε > 0 and 2 ≤ k ≤ n−1
2 , let R = (1 + ε)

(
n−1
k−1
)

and

` =
1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln

(
n

(1 + ε)k

)
.

Then there exist k-uniform hypergraphs Fi over [n], 1 ≤ i ≤
((nk)
`

)
, each of size at most R+ `, such

that every intersecting k-uniform hypergraph F over [n] is a subhypergraph of Fi for some i.

Proof. We apply Theorem 5.1 to the Kneser graph KG(n, k). By Proposition 5.3, condition (11)
is satisfied by taking

β =

(
1− 1

1 + ε

)
Dn

N(n− k)
,

where D =
(
n−k
k

)
and N =

(
n
k

)
. In order to satisfy (10), we take

` =
1

β
ln

(
N

R

)
=

1

β
ln

(
n

(1 + ε)k

)
=

1 + ε

ε
·

(n− k)
(
n
k

)
n
(
n−k
k

) ln

(
n

(1 + ε)k

)
.

Applying Theorem 5.1, the result follows by taking Fi to be the hypergraph with edges Ci ⊂
([n]
k

)
,

since every intersecting hypergraph is an independent set of KG(n, k).

We now derive Theorem 1.5.

Proof of Theorem 1.5. Since there is an intersecting hypergraph of size
(
n−1
k−1
)
, and each of its sub-

hypergraphs is also intersecting, we have a lower bound log I(n, k) ≥
(
n−1
k−1
)
. We therefore need to

show that log I(n, k) ≤ (1 + o(1))
(
n−1
k−1
)
. Using Proposition 5.4, we will show that for any small

ε > 0, log I(n, k) ≤ (1 + 2ε)
(
n−1
k−1
)
, provided n ≥ 2k + 1 is sufficiently large with respect to ε.

We know that every intersecting hypergraph is contained in one of
(
N
`

)
containers, each of size

at most R+ `, where R and ` are as in the statement of the proposition. By a simple union bound,
the total number of intersecting hypergraphs is at most

(
N
`

)
2R+`. Therefore, since N =

(
n
k

)
,

log I(n, k) ≤ R+ `+ ` log

(
Ne

`

)
= R+ ` log

(
2e
(
n
k

)
`

)
.

Because R = (1 + ε)
(
n−1
k−1
)
, it is enough to show that ` log

(
2e(nk)
`

)
≤ ε
(
n−1
k−1
)
. We have

` =
(1 + ε)(n− k) ln n

(1+ε)k

εk
(
n−k
k

) (
n− 1

k − 1

)
≤

2nk ln n
k

ε
(
n−k
k

) (n− 1

k − 1

)
,
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and, provided ε < 1
20 ,

log

(
2e
(
n
k

)
`

)
= log

(
2εen

(1 + ε)(n− k) ln n
(1+ε)k

·
(
n− k
k

))
≤ log

(
n− k
k

)
.

Hence it suffices to have 2nk ln n
k ≤ ε2

(
n−k
k

)
/ log

(
n−k
k

)
. If n = 2k + 1, the left-hand side is

constant, while the right-hand side is Ω(n/ log n). If n ≥ 2k + 2, the left-hand side is O(n log n),
while the right-hand side is Ω(n2/ log n), and thus the inequality holds for large enough n.

Letting ε→ 0, we have log I(n, k) ≤ (1 + o(1))
(
n−1
k−1
)
, as desired.

We conclude this section by observing that the n ≥ 2k + 1 bound in Theorem 1.5 is best
possible. When n = 2k, the k-sets in [n] come in 1

2

(
n
k

)
=
(
n−1
k−1
)

complementary pairs, and a
hypergraph is intersecting if and only if it does not contain both edges from a single pair. We thus

have I(n, k) = 3(n−1
k−1) when n = 2k. For n < 2k, the complete hypergraph

([n]
k

)
is itself intersecting,

and thus I(n, k) = 2(nk).

6 Vector spaces

In this section we prove Theorem 1.7, showing that almost all intersecting families of subspaces
of a finite vector space are trivial. We begin, as always, with a bound on the number of maximal
families.

Proposition 6.1. The number of maximal intersecting families of k-dimensional subspaces of Fnq
is at most

(2k−1
k−1 )∑
i=0

([n
k

]
q

i

)
≤
[
n

k

](2k−1
k−1 )

q

.

Proof. Once again, we follow the strategy of Proposition 2.2, seeking to show that every maximal
intersecting family of subspaces contains a minimal generating set of at most 1

2

(
2k
k

)
=
(
2k−1
k−1

)
subspaces. We must replace Theorem 2.1 with its vector space analogue, proven by Lovász [24]
and appearing in the form below in [4].

Theorem 6.2 (Lovász). Let U1, . . . , Um be a-dimensional and V1, . . . , Vm be b-dimensional sub-
spaces of a vector space W over a field F such that Ui∩Vi = {0} and Ui∩Vi 6= {0} for 1 ≤ i < j ≤ m.
Then m ≤

(
a+b
a

)
.

This gives a map from maximal intersecting families of subspaces to sets of at most
(
2k−1
k−1

)
subspaces, resulting in the above bound.

This proposition gives a value for M to be used when applying Lemma 2.3. As stated in
Section 1.3, the corresponding extremal result was proven by Hsieh [21], who showed that when
n ≥ 2k + 1, the largest intersecting families are trivial, with size N0 =

[
n−1
k−1
]
q
. Each trivial

family fixes a one-dimensial subspace, and hence there are T =
[
n
1

]
q

maximal trivial families. The

intersection of any two fixes a two-dimensional subspace, and thus has size N2 =
[
n−2
k−2
]
q
.

A stability result was obtained by Blokhuis, Brouwer, Chowdhury, Frankl, Mussche, Patkós
and Szőnyi [7], who determined the size of the largest non-trivial intersecting family to be N1 =
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[
n−1
k−1
]
q
− qk(k−1)

[
n−k−1
k−1

]
+ qk when q ≥ 3 and n ≥ 2k + 1 or q = 2 and n ≥ 2k + 2. With these

results in hand, we prove Theorem 1.7.

Proof of Theorem 1.7. We shall first verify that (2) of Lemma 2.3 holds, thus showing that almost
all intersecting families are trivial. Since either q ≥ 3 and n ≥ 2k + 1 or q = 2 and n ≥ 2k + 2,

the extremal and stability results hold, and thus M ≤
[
n
k

](2k−1
k−1 )

q
, N0 =

[
n−1
k−1
]
q

and N1 =
[
n−1
k−1
]
q
−

qk(k−1)
[
n−k−1
k−1

]
q

+ qk. This gives

logM +N1 −N0 = log

([
n

k

]
q

)(
2k − 1

k − 1

)
+ qk − qk(k−1)

[
n− k − 1

k − 1

]
q

. (12)

We bound the Gaussian binomial coefficients above and below by

q(n−k)k ≤
[
n

k

]
q

=

k−1∏
i=0

qn−i − 1

qk−i − 1
≤ (2qn−k)k

and use the fact that
(
2k−1
k−1

)
< 4k to show that the right-hand side of (12) is at most

k(n− k)4k log (2q) + qk − qk(k−1) · q(n−2k)(k−1) ≤ n24k log (2q) + qk − q(n−k)(k−1). (13)

If k = 2, then the right-hand side of (13) is 16n2 log(2q) + q2 − qn−2 → −∞ as n→∞. On the
other hand, if 3 ≤ k < n/2 then (n−k)(k−1) ≥ 2(n−3), so the right-hand side of (13) is bounded
above by n22n log (2q) + qn/2 − q2(n−3) → −∞. In either case, we have logM + N1 − N0 → −∞,
and, by Lemma 2.3, almost all intersecting families are trivial.

Now we need only show that there are
([
n
1

]
q

+ o(1)
)

2
[n−1
k−1]q trivial families, which will follow by

verifying (4) and applying Lemma 2.4. We have

2 log T +N2 −N0 = 2 log

([
n

1

]
q

)
+

[
n− 2

k − 2

]
q

−
[
n− 1

k − 1

]
q

≤ 2n log q −
(

1− qk−1 − 1

qn−1 − 1

)[
n− 1

k − 1

]
q

≤ 2n log q − 1

2
q(k−1)(n−k) → −∞,

as required. This completes the proof.

7 Concluding remarks

In this paper we study the typical structure of intersecting families within various settings in discrete
mathematics. We estimate the number of maximal intersecting families, and from these bounds are
able to derive asymptotics of the total number of intersecting families and deduce sparse versions
of the extremal results. Nevertheless, numerous open problems remain.

One of the motivating problems behind this project was the sparse analogue of the Erdős–
Ko–Rado theorem. We show that for 3 ≤ k ≤ n/4 and p not too small, the largest intersecting
subhypergraphs of the random hypergraph Hk(n, p) are trivial with high probability. This extends
previous results, which held for k = O

(√
n log n

)
. However, there is a considerable gap between our
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lower bound on p in Theorem 1.6 and the upper bound for which it is known that the sparse Erdős–
Ko–Rado theorem is false. What happens in this intermediate range of probabilities? Different
techniques will also be required to study the problem for larger k; in this direction, Hamm and
Kahn [19] recently established the sparse result for n = 2k + 1 and p = 1− c for some c > 0.

There is also the question of obtaining the sharp asymptotics on the number of intersecting
k-uniform hypergraphs, I(n, k). Theorem 1.4 gives these asymptotics for n ≥ 3k + 8 ln k, showing
that almost all intersecting hypergraphs are trivial. For n ≥ 2k + 1, Theorem 1.5 provides a
slightly weaker result, showing log I(n, k) ≈

(
n−1
k−1
)
. New methods will be required to obtain the

asymptotics of I(n, k) itself for the complete range, as our bounds on the maximal intersecting
families are not strong enough to apply when n ≤ 3k. It is worth noting that when n = 2k + 1,
the typical intersecting families are non-trivial, as the Hilton–Milner families outnumber the trivial
ones. However, we suspect that n ≥ 2k + 2 may already suffice for the trivial families to become
typical.

The problem of enumerating maximal intersecting structures is interesting in its own right. Here
we provide reasonably sharp upper bounds through the use of the Bollobás set-pairs inequality and
its variants. We can also obtain lower bounds of a similar nature. For instance, form t-intersecting
k-uniform hypergraphs by, for each bipartition [2(k− t)+2] = X1∪X2, selecting one of X1∪ [2(k−
t)+3, 2k−t+1] or X2∪[2(k−t)+3, 2k−t+1] to be an edge in the hypergraph. This gives 2(2(k−t)+1

k−t )

hypergraphs, each of which can be extended to a distinct maximal t-intersecting hypergraph over

[n], while Proposition 4.1 gives an upper bound of 2n(
2(k−t)+1

k−t ). Related constructions give similar
lower bounds in the permutation and vector space settings. We believe the lower bounds to be
closer to the truth, and more refined arguments could bridge the gap. Recent work of Nagy and
Patkós [27] bridges the gap between the bounds in the case of intersecting hypergraphs.

Finally, one can pursue these ideas for various other extremal problems in discrete mathematics.
For example, we say that a family of permutations of [n] is t-set-intersecting if for every pair of
permutations σ, π there is some t-set X ⊂ [n] such that σ(X) = π(X). Ellis [10] proved that for n
sufficiently large, the biggest t-set-intersecting families are trivial; namely, they send a fixed set of
t indices to a fixed set of t images. Can we show that these trivial families are also typical?
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