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The sudden flashes of inspiration that arise when two or more previously unconnected planes 
of reference are brought together in the mind of an individual is termed an ‘Aha!’ Moment. 
These planes may take on various forms, including visual, verbal, symbolic, aesthetic truth, 
beauty. Sometimes they lead to major advances in insight, but they may also be faulty, leading 
to the need to review the situation and revise ideas to produce a more reliable solution. On other 
occasions, differing individuals or differing communities of practice, unfamiliar with one or 
more planes of reference, may reject the insight, producing a negative ‘Uh-Huh!’ response. The 
purpose of this chapter is to offer a framework for meaningful long-term development of 
mathematical theories that balances these aspects, providing insights that can be widely 
observed by teachers, learners and experts at all levels. 

1. Introduction 

This chapter focuses on how we humans make sense of mathematics in the long-term, which 
involves not only grasping the positive side that gives us insight into understanding and creating 
more sophisticated mathematical ideas, but also the negative side that impedes our progress. 

In The Act of Creation, Koestler speaks of the creativity of the Aha! Moment as: 
“the spontaneous leap of insight … which connects previously unconnected matrices 
of experience and makes us experience reality on several planes at once.”  
 (Koestler, 1964, p.45.) 

The connection of previously unlinked frameworks in mathematics operates not only in the 
creation of original ideas but also in teaching and learning mathematics, where learners are 
faced with the need to make new connections in their own minds. This involves not only the 
linking of different mathematical ideas, but also a range of attitudes and emotions personal to 
each individual. Positive attitudes include developing personal confidence in addressing new 
problems, building on previous success. Positive emotions include the pleasure of making 
connections and a sense of aesthetic beauty in the ways in which the mathematical ideas fit 
together. 

    The chapter seeks to promote the positive development of mathematical thinking, but this 
cannot be done while ignoring negative aspects that arise from personal difficulties with 
mathematics and emotions such as fear and anxiety. For an individual who has a personal sense 
of confidence based on previous success, it may be possible in the absence of an Aha! insight 
to write down the word ‘Stuck!’ and think positively about alternative possibilities (Mason et 
al., 1981). However, if this does not lead to further progress, the individual may sense a negative 
emotion that I term an ‘Uh-Huh!’ experience. This may simply be a barrier that impedes 
progress at the time. It may also have longer-term consequences not only in the individual, but 
also shared by others, impeding the progress of the whole community. This is a phenomenon 
that is particularly significant today as new technological tools offer new insights at a pace that 
moves too fast to implement in the wider society. 

 This chapter begins with a study of the structure and operation of the human brain sufficient 
to understand the relationship between mathematical thinking and personal aspects of 
emotional reactions and attitudes towards mathematics. Then we consider the cultural 
development of mathematical thinking to gain insight into how communities can hold very 
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different views of the nature of mathematics. This is related to a long-term framework of 
development of mathematical thinking in the individual to address how the learner faces 
significant changes in meaning as new mathematical contexts are encountered.  

    Problem-solving will be seen in conjunction with Skemp’s (1979) affective theory of 
goals (that the individual wishes to achieve) and anti-goals (to be avoided), to integrate 
cognitive and affective aspects. This will be related to the way in which Japanese Lesson Study 
seeks to provoke the Aha! integration of different planes of thought, how this may be integrated 
in the meaningful mathematics framework, and how the desire to transfer different practices to 
other communities is affected by cultural differences. 

    I will then consider several of my own personal ‘Aha!s’ that have offered me insight into 
the development of mathematical thinking – such as ‘concept image’ (Tall & Vinner, 1981), 
the notion of ‘local straightness’ to give embodied meaning to the derivative (Tall, 1985), 
mathematical symbols interpreted flexibly as process and concept (procept) (Gray & Tall, 
1994), three worlds of mathematics (Tall, 2004), structure theorems to give embodied and 
symbolic meaning to formal structures (Tall, 2013), and making sense of mathematical 
expressions through spoken articulation (Tall, Tall & Tall, 2017). I will consider how in certain 
curricula, some have been partially adopted in modified forms while others have not, and relate 
these to Aha! or Uh-Huh! experiences. I conclude on a positive note by considering broader 
ideas of ‘Aha!s’ in dreams and in the aesthetic qualities of mathematical beauty. 

2. Mathematical thinking in the biological brain 

Mathematical thinking occurs in the human brain, and is supported by communication with 
others, building on the accumulated knowledge of succeeding generations. To relate 
mathematics to the structure and operation of the brain requires a link between mathematics 
and a completely different plane of reference. This may result in an Aha! experience for the 
reader, one that gives insight, or an Uh-Huh! experience that fails to make the link. To illustrate 
the nature of the difficulty, I will offer a brief outline of some aspects of brain structure and 
operation and then seek to translate the essential features related to mathematics and emotion 
into more familiar language. 

 
Figure 1: A cross-sectional view of the brain from the left side 

Figure 1 shows an outline representation of the left-side of the brain with some details of its 
structure. The outer layer of the brain surface – the cortex – deals with cognitive issues of 
receiving sensory information and processing it to take actions, with the frontal cortex making 
conscious decisions. In the middle of the brain is a collection of structures – the limbic system 
– that operates subconsciously, fulfilling a diverse range of functions, from moderating the 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1981a-concept-image.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1985a-und-calc-mt.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1994a-gray-jrme.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2004a-3worlds-flm.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2017a-long-term-problem-posing.pdf
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automatic controls of the body, sensing pleasure and pain, reacting immediately in terms of 
‘fight or flight’, and other major activities such as storing and retrieving long-term memory.  

The brain has two essentially symmetric parts on the left and the right which serve different 
functions while cooperating through a structure consisting of around two hundred million nerve 
fibres called the corpus callosum. 

Seen from above, the brain’s left and right parts have areas in the cortex that receive sensory 
input and output action across the middle top surface of the brain. Paradoxically, in humans, 
but not in many other species, the left side of the brain deals with the right side of the body and 
the right side deals with the left but, in other ways, the two halves of the brain have different 
functions, cooperating together by connections through the corpus callosum. Most right-
handers and 90% of left-handers interpret hearing (from both ears) and output speech in the left 
brain, which also specializes in sequential activities such as counting, while the right brain 
specializes in more global aspects such as estimating size (Figure 2). Visual information from 
the eyes passes along connections to the visual cortex at the back of the brain, again in subtle 
ways to bring together information from the left and right to give stereoscopic vision.  

 

  
Figure 2: The brain from above 

The limbic system is duplicated on each side of the brain, each with its own connections to 
other parts of the brain, collaborating through the corpus callosum. There is evidence that the 
right amygdala senses negative emotions such as fear and sadness while the left amygdala plays 
a role in the brain’s reward system. The right amygdala also plays a role associating memories 
of time and place with emotional properties.1 Another limbic structure, the nucleus accumbens, 
acts as a kind of ‘pleasure centre’, responding to a range of reward and reinforcement. 

    An immediate problem in attempting to come to terms with the structure and operation of 
the human brain for someone interested mainly in mathematics is that the names given to the 
parts relate to Latin and Greek descriptions of the position and shape as seen when the brain is 
dissected and give no clue as to their function. For example, the amygdala has an almond shape, 
the thalamus is egg-shaped, and the hippocampus looks like a seahorse from ‘hippo’ meaning 
‘horse’ and ‘campo’ meaning ‘monster’. The ‘hypothalamus’ is situated ‘above’ (hypo) the 

 
i https://en.wikipedia.org/wiki/Limbic_system 
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thalamus and the ‘nucleus accumbens’ is a shortened form of ‘nucleus accumbens septi’ which 
is Latin for ‘nucleus adjacent to the septum’. 

    For our purposes it is more important to gain a broad sense of how the limbic structures 
operate. They are intimately interconnected and play a variety of roles. For example, the 
thalamus receives and analyses sensory input and passes it on to relevant areas of the brain. 
This includes sensing threatening situations and reacting in a ‘fight or flight’ response that 
floods the whole brain with biochemical neurotransmitters that enhance or suppress 
connections between neurons. The ‘fight’ mechanism enhances connections to think about the 
problem, while the ‘flight’ response suppresses connections to avoid it.  

A major role of parts of the limbic system, such as the hypothalamus and cingulate gyrus, is 
to regulate subconscious autonomic functions such as body temperature and heart rate. This 
enables emotional responses to be translated into physical responses such as damp sweaty palms 
or increased pulse rate. More generally the limbic system is part of an overall relationship 
between the operation of the brain and our feelings, preferences and prejudices. 

Conscious thinking requires information to be passed within the brain, such as visual 
information being taken in by the eyes, passed back to the visual cortex, then moving forward 
to other parts of the brain before taking conscious decisions in the frontal cortex. Meanwhile, 
incoming sensory data also passes directly to the limbic system and initiates automatic action 
before the frontal cortex takes conscious decisions (Kahneman, 2011). This underpins 
mathematical thinking with personal attitudes and emotions before we take considered 
conscious decisions. 

Neurotransmitters that flood the brain to suppress connections not only affect our feelings, 
they affect our attitudes and ability to think about mathematics. On the positive side, successful 
experiences in mathematics – especially Aha! experiences linking ideas together – enhance 
connections, putting the brain on alert to improve mathematical thinking. On the other hand, 
negative experiences failing to make sense of mathematics can give rise to negative feelings, 
such as mathematical anxiety, that suppress connections and make mathematical thinking 
difficult, or even impossible. 

The operation of the limbic system is a built-in part of our human nature that links our 
cognitive actions in mathematical thinking to our emotional feelings and attitudes. An Aha! 
reaction that proves to be successful can give insight to an individual and can lead a whole 
community into new ways of thinking. More subtly, if a community of mathematicians fail to 
make a particular connection, this can lead to an Uh-Huh! experience that causes the whole 
community to reject a particular way of thinking, with long-term consequences that may last 
for many generations, even for thousands of years. (We will shortly see an example when we 
consider the evolution of the calculus.) 

3. The cultural evolution of mathematical thinking 

In the book Evolution of Mathematical Concepts, the mathematician Raymond Wilder (1968) 
interpreted the historical development of number and geometry using the anthropological term 
‘culture’, which he described as: 

A collection of customs rituals, beliefs, tools, mores, and so on, called cultural 
elements, possessed by a group of people who are related by some associative factor 
(or factors) such as common membership in a primitive tribe, geographical 
contiguity, or common occupation. (Wilder, 1968, p. 18.) 

Cultural elements, such as counting and number, arose from needs within the culture that 
proved to be of benefit. Wilder speaks of cultural stress that occurs when there is a need in the 
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culture to be satisfied, such as understanding the seasons to know when to plant crops, and 
developing counting and number systems to plan civilised activities such as barter and trade. 

    Cultures benefit from shared elements that are stable and useful. These may diffuse from 
one culture to another, but this is likely to take time to do so, called cultural lag, and may even 
encounter cultural resistance if the new element challenges current elements that are considered 
to operate successfully. To balance elements that resist change, I would add the notion of 
cultural stability, which seeks to maintain familiar elements that allow the culture to continue 
to operate in a shared coherent manner. 

    In recent times, many changes have occurred in our cultural approach to life in general 
and mathematics in particular, aided by advances such as those in digital technology. As new 
possibilities arise, mathematicians and mathematics educators have sought to implement them 
in their approaches to mathematics and its teaching. But cultural lag and cultural resistance 
affect progress, as Wilder cautioned: 

Attempts to change the direction of mathematical research by individuals who deem 
the tendencies prevailing at the given time to be “wrong,” seem to be of little avail. 
Only strong environmental and internal pressures […] appear to be effective in 
changing the course of mathematical development.  (ibid. p. xi.) 

3.1 The example of calculus 

In the 1980s, the invention of dynamic computer graphics allowed a new approach to 
differentiation in which the student could use dynamic graphics to zoom in on familiar graphs 
such as polynomials, trigonometric and exponential functions to reveal that under higher 
magnification they ‘looked straight’. This offered a completely new frame of reference to 
interpret the notion of differentiation: knowing that a graph is locally straight enables the learner 
to look along it to see its changing slope to give a meaning for the changing slope function 
(Tall, 1985). For a function such as f(x) = x2, it is possible to draw a ‘practical slope function’ 
(f(x + c) – f(x))/c for small values of c, in this case, 2x + c, to see it visibly stabilize on 2x for 
small c. 

    This enables the student to link several different planes of reference for the graph and for 
its change in slope in terms of: 

• the visual picture of the graph, 
• the symbolic representation of the function, 
• embodied gestures tracing the graph and its visual change in slope. 
 

In my very first study using my Graphic Calculus software in a mathematics class of sixteen-
year-olds (Tall, 1986), some of the students who were also taking physics had been told in their 
physics lessons that the derivative of sin(x) is cos(x). Student Graham wanted to know why. He 
used the software to draw the practical slope function and there was a delighted Aha! to see that 
the changing slope of the graph of sin(x) looked like cos(x). The students were then asked what 
they thought the slope function of cos(x) might be and guessed it might be sin(x). On drawing 
the slope function (figure 3) there was an even bigger Aha! when the slope function of cos(x) 
looked like the graph of sin(x) upside down, which gives a meaning why the derivative of cos(x) 
is minus sin(x) (ibid., p.192). 

    At this point there was an Uh-Huh! response from student Brian who had transferred from 
another school where he had been well-drilled in examination techniques. He did not see why 
he should be asked to guess the formula. Why couldn’t the teacher say what the derivatives 
were so that he could learn them to pass the test? 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1985a-und-calc-mt.pdf
http://wrap.warwick.ac.uk/2409/
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Figure 3: plotting the slope functions for sinx and cosx 

 Other Aha! Moments occurred as the teacher and students used embodied gestures to give 
meaning to other calculus concepts. For example, in discussing the idea of maxima and minima, 
the teacher sketched a maximum on the board and traced along it with his finger. He asked the 
students how they might tell if there was a maximum or minimum and student Andrew gestured 
with his hand, suggesting that the slope would be positive before and negative after. There was 
general assent from the rest of the class (ibid., pp. 195-6). 

Over time, as the students could see dynamic graphical ideas on the computer, they were 
shown conceptual examples that enhanced the meaning of the calculus so that it became easier 
to imagine subtle properties without the need for the computer. Even Brian steadily realized 
that it was of value to make sense of the ideas. 

3.2 Cultural stress in the development of calculus 

The graphic approach to the calculus was quickly taken up by projects in the UK and used as 
an introduction to differentiation. But cultural pressures required the students to pass tests that 
were mainly based on symbolic techniques for calculating symbolic derivatives. Cultural 
resistance came into play and the curriculum to this day continues to focus on aspects that can 
be tested. This can be interpreted not only in terms of a desire for cultural stability but also an 
Uh-Huh! reaction to reject an alternative approach that builds on natural intuition rather than 
on the formal definition inherited from the precision of mathematical analysis. 

In the USA, the MAA report (Bressoud, Mesa, Rasmussen, 2015) on college calculus 
complains that the students taking a first course in calculus, either in school or in college, focus 
on a limited ability to perform routine symbolic processes. The curriculum does not attempt to 
mention meaning in terms of local straightness. In high school calculus, the forces of cultural 
stability operate to maintain traditional elements that can be tested in a multi-choice 
examination system (College Board, 2018). 

    Experts in formal proof often distrust intuition, especially in analysis because, without a 
proof, so many intuitions can be proved to be false by a carefully designed counter-example. 
This distrust for intuition can lead to widely shared beliefs that impede insight for alternative 
theories. For instance, there is a common belief that the completeness axiom fills out the whole 
number line and there is no room for infinitesimals, leading to an ‘Uh-Huh!’ reaction from pure 
mathematical analysts who deprecate the use of infinitesimals. Meanwhile, applied 
mathematicians often think of ‘infinitesimal calculus’ in terms of variable quantities that can 
be ‘arbitrarily small’. We will return to this difference of meaning in §7.4. 

4. Transitions in mathematical meaning over the long term 

In How Humans Learn to Think Mathematically (Tall, 2013), I formulated a long-term 
framework for the evolution of ideas in the individual and in communities over time, from early 
beginnings to highly sophisticated theories. This reveals transitions in meaning as new contexts 
are encountered where established methods of approach require modification to proceed. 

https://www.maa.org/sites/default/files/pdf/cspcc/InsightsandRecommendations.pdf
https://apcentral.collegeboard.org/courses/ap-calculus-ab/course
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    Mathematical thinking takes place in the human brain where the left side usually deals 
with language and sequential thought and the right side deals with more global aspects, with 
the two sides cooperating as a whole. The fore-brain takes conscious decisions through more 
in-depth mathematical thinking while the limbic system in the mid-brain links cognitive actions 
to emotional feelings and attitudes. 

    This leads to a cognitive framework for mathematical thinking which integrates human 
perception, action and internal imagery into a long-term development that I termed conceptual 
embodiment, together with the long-term development of operational symbolism and the more 
sophisticated set-theoretic development of axiomatic formalism. I referred to these as three 
‘worlds’ of mathematics. Broadly speaking, they may be related to the global activity of the 
right brain, the sequential activity of the left brain and the reasoning of the fore-brain, with 
connections between these cognitive activities working together and linking to emotional 
attitudes and feelings through the limbic system. I will consider this in more detail in §7.3. 

    As we encounter new contexts, we need to link together ideas in new ways. Sometimes 
this involves an Aha! Moment linking together previously unconnected planes of thought, but 
sometimes the link may not occur, preventing the transition from being made. This happens 
with individuals as they encounter more sophisticated mathematical contexts in learning 
mathematics and also in different communities of practice as cultural forces come into play. 

4.1 Transition in context 

As an individual learns to think mathematically over the long term, different kinds of transition 
occur within and between different worlds of mathematics. In conceptual embodiment, 
practical activities involve recognizing and describing properties of objects, later developing 
into theoretical definition and deduction. Van Hiele (1986) analysed the growth of ideas in 
geometry in terms of successive levels where the language changes subtly in meaning. This 
applies not only in Euclidean geometry, but in the transition to calculus where the definition of 
a tangent in Euclidean geometry as a ‘line which touches the curve in one point only’ defines a 
tangent to a circle but is problematic in defining a tangent for more general curves in calculus. 

Operational symbolism has more complicated transitions. Not only do operations, such as 
addition, become mental objects, such as sum, but there is also a succession of new number 
systems with new properties, from whole numbers, to fractions, signed numbers, rationals and 
irrationals which make up the real number system, real and imaginary numbers in the complex 
number system, and various extensions such as vectors, matrices and so on. Algebra grows out 
of the patterns of arithmetic and develops into a theoretical framework of symbol manipulation 
to formulate and solve problems. Theoretical proof arises from formulating definitions and 
making deductions based on practical experience and mental imagination. There is a major 
change from the theoretical use of definition and proof to the axiomatic formal mathematical 
world in which mathematical structures are formulated solely in terms of set-theoretic 
definitions and all other properties must be deduced by formal proof. 

4.2 Cultural transition between communities 

As mathematics evolves over the generations in different cultural settings, it goes through 
various transitions that may lead to very different kinds of mathematics. The cultural 
differences may be of such a nature that it builds a boundary between them that is an 
impediment to linking them together. These cultural differences may arise between different 
civilisations, different religions, or between differing subcultures in the same society, such as 
theoretical engineering and formal pure mathematics. Using religious terminology, if an 
individual in community A changes beliefs to those in community B, this may be considered 
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as a transgression by community A, and an enlightenment by community B. If their differences 
are fundamental, they may seem irreconcilable. However, it may also be possible to build 
bridges between the two in a multi-community overview in which the two sides recognise 
aspects on which they agree and use them as common ground to address their differences (figure 
4). 

 

 
Figure 4: Cultural transition between different communities (Tall, 2019a) 

In summary, the possibilities may be characterised as: 
 Impediment: inability to leave the current community to cross over a boundary 
 Transgression: crossing out of the current community over a boundary 
 Enlightenment: crossing into a new community over a boundary 
 Overview: encouraging communication between communities. 

Examples include differences between communities of pure and applied mathematicians, 
between mathematicians and educators, between politicians who prescribe the curriculum, 
curriculum designers, teachers and assessors, between different levels of teaching in early 
learning, primary, secondary, university, and different forms of expertise in mathematics. 

7b.4.3 Personal transitions 
A similar analysis may be performed for an individual learner attempting to make sense of 

increasingly sophisticated mathematical ideas over the long-term. The individual may be 
familiar with one context, say context A, and is attempting to make sense of a second context 
B which may not be understood because the change in meaning places a mental boundary 
between the two. For example, the individual may be familiar with whole number arithmetic, 
but is unable to contemplate taking away a larger number from a smaller one, because it is not 
possible to take away more objects from a collection that has less. 

 
Figure 5: Personal transition between different mathematical contexts (Tall, 2019a) 

In the case of an individual seeking to make a change in context within a single community, 
the possibilities include: 

 Impediment: inability to change context 
 Transgression: unwillingness to change context 
 Enlightenment: ability to change context 
 Overview: ability to switch between contexts. 
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Examples include generalising number systems from counting numbers to fractions, to 
signed numbers, to rational numbers, reals, complex numbers, from arithmetic to algebra, from 
practical drawing to Euclidean proof, through changes in meaning in geometry (van Hiele, 
1986), from school mathematics to university, and so on. 

 The learner may also be faced with the possibility that he is able to invent new ideas 
that are not familiar to the teacher. My son Nic at the age of 4 years and 5 months was watching 
the television weather forecast and asked what ‘minus two centigrade’ meant. I took him into 
the garden and showed him a wall thermometer and talked about temperatures above and below 
zero, which is when water freezes to form ice. We had the first of a number of conversations, 
some of which I recorded, that allowed me to later write up a number of instances of an Aha! 
Moment, including the idea that starting at a temperature of 2° and going down 3°, ends up at 
–1° (Tall, 2001). At school, he was invited to write down a sum of his own choosing and 
invented his own symbolism using a downward pointing arrow to write this as 2 ↓ 3 = –1. His 
teacher marked it wrong (Uh-Huh!). I asked Nic if he was upset by this, but he simply said, 
‘No, he [the teacher] didn’t understand.’ 

5. Problem solving and Skemp’s goals and anti-goals 
To encourage undergraduates to make sense of mathematics for themselves and not simply 
learn facts by rote, I designed a course based on Thinking Mathematically (Mason et al., 1982) 
for mathematics undergraduates. It was a ten-week course with one two-hour large group 
problem-solving session with around 40 students, and one-hour small group sessions to reflect 
on the problems more deeply. The two-hour session began with a plenary of about 20 minutes 
to introduce the focus for the day, then I left the room for an hour and, on my return, always 
found the class buzzing with activity ready for a concluding discussion of around 20 to 30 
minutes. As a policy I did not work on the problems myself beforehand, so that the solving 
activity was genuinely student-led, though, over several years I did see patterns emerging in the 
solutions which I did not reveal to the students until we had reflected on their ideas. The students 
were encouraged to keep notes on their developing work, including writing ‘Aha!’ when they 
had an insight and ‘Stuck!’ when they came to a difficulty they could not resolve. The 
assessment included a written analysis of their problem-solving development, so it was actually 
sometimes an advantage to be stuck. 

 To encourage the students to reflect on their emotional reactions, the course was 
accompanied with a study of Richard Skemp’s (1979) psychological theory of goals that are 
desired objectives and anti-goals that are to be avoided. He theorized that very different 
emotions are sensed as one moves towards or away from a goal or antigoal, and other feelings 
were caused by the belief that a goal could be achieved or an anti-goal avoided. 

 A goal that one believes is achievable is accompanied by a feeling of confidence, which 
may change to frustration if it proves subsequently to be difficult to achieve. Frustration sensed 
by a confident person is likely to act as a positive encouragement to redouble the effort to 
achieve the goal. Moving towards a goal gives pleasure and moving away from it gives 
unpleasure—a term used in Freudian analysis to denote the opposite of pleasure.  

 Coping with an anti-goal is quite different. According to Skemp, an anti-goal that one 
believes one can avoid gives a sense of security but, when it cannot be avoided, the emotion 
turns to anxiety. Moving towards a goal instils a sense of fear, while moving away gives relief.  

 This theory is represented in figure 6 (as drawn in Tall, 2013, p.120) where arrows 
represent movement to or away from a goal or anti-goal and smiling or frowning icons represent 
the belief related to the ability to achieve a goal or avoid an anti-goal. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2001l-childs-infinity.pdf
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Figure 6: Emotional reactions to goals and anti-goals 

This reveals the vast difference between positive emotions of confidence and pleasure relating 
to goals that are considered achievable and emotions relating to anti-goals which offer, at best, 
a sense of security and relief and, at worst, a sense of anxiety and fear. 

This theory was included to encourage students to realise that when they were feeling 
negative thoughts, this should not be interpreted as personal failure, but as a sign that the path 
being taken was not currently productive and it may be helpful to reflect on other possibilities, 
such as looking at a simpler case to see if progress can be made in another  direction. 

6. Provoking Aha! in Lesson Study 
Japanese Lesson Study is a teaching philosophy that has been developed for over a century, 

working in large classroom settings. In mathematics, lessons are planned to encourage each 
learner to think about different approaches to any given problem to make sense of the ideas in 
their own way (Isoda, Stephens, Miyakawa, 2007). The sequence of lessons is carefully planned 
and tested to develop an approach that can be used by the wider teaching community. The 
lessons are organised to begin with simple problems that can be solved in a range of different 
ways, so that at a later stage, when the main topic is introduced, the learners have a specific 
array of strategies available that enable the teacher to build up the mathematics using their ideas. 
In essence, the system is designed to provoke a corporate Aha! reaction where different learners 
participate using their own ideas. 

 It was my privilege to work as a consultant with the APEC (Asia Pacific Economic 
Cooperation) study group on Lesson Study involving 20 communities around the Pacific and 
to contribute to the theoretical framework. Tall (2015) presents an analysis of four specific 
lessons covering a range of different kinds of topic: a non-routine problem involving triangular 
and rectangular shapes (grade 2), multiplication of a double digit number by a single digit 
number (grade 3), area of a circle (grade 5), thinking systematically (grade 6). What is 
impressive is the way that children of widely differing levels of development can benefit in 
personal ways from the same lesson. For example, the lesson on multiplication we saw had 
been preceded by a lesson solving a problem to find the number of disks in two rows which 
happened to have twenty disks. In the new lesson the children were faced with three long 
parallel rows of disks. Figure 7 shows the working of an individual child, and two parts of the 
notation on the long wallboard filling the whole width of the classroom wall. 

 
Figure 7: calculating 3 times 23, visually and symbolically 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2015b-lessonstudy-longtermframework.pdf
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On the left side of the wall-board, children have taken it in turns to subdivide the rows into 
various subsets: 20+3, 10+10+3, 10+3+10 to multiply each part by 3 and add them together. 
There was an audible Aha! from many in the class who were moved by the beautiful symmetry 
with two tens on either side of a three in the middle, something that I had not expected as my 
experience with arithmetic saw 10+3+10 being the same as 10+10+3. On the other hand, I was 
moved when a little boy stood up and remarked that the solutions were essentially the same, all 
separating each line of disks into a twenty and a three. Other children suggested alternatives 
such as 9+5+9 or 11+12 and another possibility in terms of 2 ten-yen coins and 3 one-yen coins. 
These were written on the centre of the board (not shown) and the picture on the right shows 
the teacher near the end of the discussion as he asks questions of the children and writes up the 
responses to show the links between the visual and symbolic representations. At the end of the 
session, the whole story unfolding the ideas remained on the board from left to right. 

 There were several different planes of reference, including the embodied layout of the 
three rows subdivided in various ways, the embodied symbolism of 2 tens and 3 ones, and the 
standard symbolic layout for long multiplication. Some children were pleased with their clever 
alternative representations such as 9+5+9, but this was overcomplicated for others. Some 
experienced an Aha! Moment linking together different frames of reference. Even those who 
were struggling with the arithmetic had the possibility of seeing that the standard layout was 
the simplest and most efficient symbolic way of calculating the product. 

 The children were asked to write up their experiences for homework. What impressed 
me most was the total enthusiasm of the whole class and the impression that children of 
different abilities seemed to make progress appropriate for their personal needs. 

6.1 Cultural resistance to transfer 

After my experience with Lesson Study in Japan, I was invited to act as a consultant for a 
research project in the Netherlands, the home of ‘realistic mathematics’, which focuses on 
children solving realistic problems to make sense of mathematics for themselves. Although this 
approach found international interest, in its own country there was cultural resistance from 
university academics who found students were arriving at university lacking in traditional 
mathematical skills. 

 The research project planned to teach high school students calculus of polynomials and 
trigonometric functions using a Lesson Study approach, together with my three-world format 
blending embodiment and symbolism, supported by Skemp’s (1976) theory comparing 
instrumental and relational understanding. The teachers and researchers in the research team 
were committed to making a success of their project but were hampered by cultural differences. 
Each of the three Dutch teachers initially interpreted the project according to their own personal 
views based on the cultural approach in the current Dutch syllabus, competing to present their 
best version of the mathematics with little room for student discussion (Verhoef et al., 2014). 
An awareness of student thinking developed as the project continued in subsequent years, 
settling on a locally straight approach to differentiation using software developed in GeoGebra 
by one of the team (Verhoef et al., 2015). The project exemplified the cultural effects on 
diffusion between different traditions, with the desire for cultural stability, the cultural lag in 
incorporating new ideas and the cultural resistance of subcultures. 

Personal Aha!s and Uh-Huh!s 

It has been a privilege to live through a time of significant innovation in human society 
including technological change that was unthinkable when I was young. As Wilder commented: 

https://www.researchgate.net/publication/258163087_THE_COMPLEXITIES_OF_A_LESSON_STUDY_IN_A_DUTCH_SITUATION_MATHEMATICS_TEACHER_LEARNING
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2015c-verhoef-et-al-derivative-geogebra.pdf
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When a cultural system grows to a point where a new concept or method is likely to 
be invented, then one can predict that, not only will it be invented but that more than 
one of the scientists concerned will independently carry out the invention. […] 
original discoveries, especially if related to an important and rapidly developing area, 
will usually be made by more than one researcher.  (Wilder, 1981, p. 23.) 

In my own case, I was fortunate to put together several different planes of reference, often 
arising in Aha! insights inspired by sharing ideas with colleagues. Sometimes an insight may 
not reach the wider community, it may spread to others and it may evoke various Uh-Huh! 
reactions arising from a desire for cultural stability, or a rejection through cultural resistance. 
In the following I will consider various examples. 

7.1 Concept image 
In 1969, I was appointed to a position in the mathematics department at Warwick University as 
‘Lecturer in Mathematics with Special Interests in Education’. The appointment was to oversee 
the mathematical content of a new undergraduate degree for mathematics teachers at Coventry 
College of Education on an adjoining campus, but I was encouraged to research in mathematics 
and/or in mathematics education. At the time, apart from behaviourist theory and the general 
theories of Piaget, there was no research tradition in mathematics education and I began to 
gather data about our undergraduate mathematics students’ ideas. This included the observation 
that most undergraduate students and school teachers thought that 0.999… was ‘just less than 
1’ and a number of subtle meanings for phrases such as ‘some rationals are real’ which many 
considered false because ‘all rationals are real.’ My problem was that I had no theoretical 
framework to make sense of all these disparate pieces of information. 

Then Shlomo Vinner visited Warwick in 1980 and showed me his latest paper which said: 
Let C denote a concept and let P denote a certain person. Then P’s mental picture of 
C is the set of all pictures that have ever been associated with C in P’s mind. 
Besides the mental picture of a concept there might be a set of properties associated 
with the concept (in the mind of our person P). […] This set of properties together 
with the mental picture will be called by us the concept image.  
 (Vinner & Hershkowitz, 1980, p.177, Vinner, 1983, p.293.) 

Aha! In a flash I realised that the term ‘concept image’ brought all my data together. I drafted 
a paper to share with him between lunchtime on a Monday and late afternoon the next day in 
which I freely used his idea to formulate the definition in the following terms: 

We shall use the term concept image to describe the total cognitive structure that is 
associated with the concept, which includes all the mental pictures and associated 
properties and processes. (Tall & Vinner, 1981.)  

The two final words ‘and processes’ did not appear in his original, which related to geometry 
but were essential in the new paper on the processes of limit and continuity. The original idea 
of ‘image’ also included visual imagery of symbolism, but not yet in terms of the relationship 
between process and concept. It would be another ten years before the notion of concept image 
of a process was interpreted as the duality of process and concept in the flexible use of ‘procept’. 

 Vinner’s original idea referred to concept image and concept definition as ‘two cells 
(not biological) in the cognitive structure’ while I referred to them in terms of the operation of 
the biological human brain. Despite the fact that the two authors have different interpretations 
for the notion of concept image, it has entered the folk-lore of the subject with over 2,500 
citations and was selected for inclusion in the NCTM publication as one of seventeen papers 
from the 20th century that every mathematics teacher should read. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1981a-concept-image.pdf
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7.2 Symbols as process and concept 
The 1970s and 80s saw the notion of ‘compression of knowledge’ from process to object 
emerge in mathematics education. In 1970 I specified Dienes’ Building Up Mathematics (1960) 
as one recommended text in a course I gave, which included the notion of ‘the predicate of a 
sentence becoming the subject in another’. My departmental chairman Christopher Zeeman 
talked about the grammatical notion of gerund, where the participle ‘running’ in the sentence 
‘I am running’ becomes the subject in the sentence ‘running is good for my health’ and applied 
the construction in mathematics. I was fully aware of Dienes’ idea that repeated addition 
becomes the product and repeated multiplication becomes the power of a number, but I could 
not see how to take the idea further (Uh-Huh!). When I was invited to Israel in 1986 to 
demonstrate my Graphic Calculus software, Anna Sfard told me of her PhD study on 
operational and structural approaches to mathematics, which I interpreted differently as a 
combination of Dienes’ ideas and the French Bourbaki structure (another Uh-Huh!). I visited 
Ed Dubinsky in early 1989 when he was developing college level mathematics based on 
Piaget’s reflective abstraction, compressing process into object in his APOS theory (Action  
Process  Object  Schema).  

In the autumn of 1989, my colleague Eddie Gray was completing his PhD (Gray, 1993) 
under my supervision and explained his experiences talking to children aged 6-11 about their 
methods of calculating simple addition and subtraction. Anna Sfard was a visitor to the 
university at the time and the three of us had various discussions about her operational-
structural theory which was published shortly afterwards (Sfard, 1991). As Eddie and I 
considered his data, it became evident that when a child spoke an expression such as ‘three plus 
two’, then we were unable to distinguish as to whether the child was thinking about the phrase 
as a process (an instruction to add) or as a concept (the object as a sum). Then a light-bulb 
moment occurred. Aha! Perhaps the child was able to switch from one meaning to the other or 
deal with both at the same time. To be able to talk about this, we needed a new word that could 
be used to represent either, or both, and the name ‘procept’ was formed. (Anna Sfard later 
suggested the alternative word ‘project’ to represent process or object, but this was not 
appropriate.) It was immediately evident that the term procept applied throughout mathematical 
expressions as process or concept, including expressions in arithmetic, algebra and calculus. 

 The PhD thesis was not received well by its examiners, both internationally known 
professors, one a philosopher who objected to the notion of procept, the other a mathematics 
educator who objected to the methodology (Uh-Huh!). To counter this conclusion, Eddie and I 
wrote up the research (Gray & Tall, 1994) in its original form, where it has been widely 
accepted, with over 2,500 citations in the research literature. 

7.3 Three worlds of mathematics 

Over the years I had experience of mathematics learning covering a wide age range from young 
children to university mathematics at undergraduate and graduate level. So I was primed for 
the next major personal discovery. The insight that led to the three worlds of mathematics 
occurred in a single Aha! Moment in 2002, reviewing the research data of my doctoral student 
Anna Poynter.  

As an engineer, she taught mathematics using physical modelling with a free vector 
represented by pushing a triangle across a table ending up pointing in the same direction. 
Student Joshua explained that the sum of two free vectors was the single free vector that had 
the same effect as the combination of two individual free vectors. This key unlocked the door 
of the relationship between embodiment and process-object encapsulation. The switch in focus 

http://wrap.warwick.ac.uk/2309/1/WRAP_THESIS_Gray_1993.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1994a-gray-jrme.pdf
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from operation to effect paralleled the compression of a process into an object. This gave me a 
link between the previously unconnected frames of reference in embodiment and symbolism. 
Linking this to the formal theory of vector spaces at university level I declared: ‘there are three 
worlds of mathematics: embodiment, symbolism and formalism.’ 

I had conflicting feelings. The insight made sense to me, but I realised that experts from 
different specialisms were likely to interpret the framework in different ways and it needed 
considerable reflection and discussion in seminars before it could be published. The notion of 
‘embodiment’ for me started with the physical embodiment of Dienes and developed through 
my use of visual dynamic representations and enactive gestures in the calculus. In geometry, 
embodiment developed in sophistication from practical drawing to theoretical definitions and 
Euclidean proof, so I named the long-term development ‘conceptual embodiment’ to relate to 
its long-term development from practical activity to mental imagery and theoretical definition 
and deductive proof. 

In the literature, ‘symbolism’ is used to refer to all kinds of symbols, including words, 
mathematical symbols and pictures used to represent something. Because I wanted to focus on 
the flexible (proceptual) use of mathematical expressions, I first called it ‘proceptual 
symbolism’, but later changed it to ‘operational symbolism’ to include the reality that many 
individuals learnt symbolic algorithms by rote-learning.  

The more sophisticated levels of embodiment and of symbolism both include formal 
definitions and deductions, based on selecting familiar properties as the foundations of a 
theoretical framework. This includes Euclidean geometry, with its axioms and ‘common 
notions’ as a basis for Euclidean proof, and arithmetic and algebra, based on the rules of 
arithmetic. To describe this use of definition and deduction I used the term ‘theoretical 
mathematics’. 

 This is very different from formal mathematics based on set theory where structures are 
defined using set-theoretic axioms and definitions formulated as quantified statements and all 
other properties of the structures must be deduced from these axioms and definitions using 
formal proof. I term this type of mathematics ‘axiomatic formal mathematics’. To comply with 
the pure mathematician’s view of Euclidean proof as the first stage of formal mathematics, I 
see formal mathematics consisting of theoretical and axiomatic formal mathematics. Most 
individuals encounter only practical mathematics in everyday use and theoretical mathematics 
in applications. 

An outline of this cognitive development of the three worlds is given in figure 8.  

 
Figure 8. The three-world framework 
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Given the wide-ranging communities that use mathematics in some form or other, this is likely 
to be interpreted very differently by individuals who do not share the same frames of reference. 
Some will only be aware of part of the framework and others will have very different 
interpretations of various aspects. The framework was published in Tall (2013), seeking to 
present the ideas in a manner that could make sense to the general reader. Since then, further 
insights have broadened the framework. 

7.4 Structure theorems 

The three-world framework as given in figure 8 makes it seem as if axiomatic formalism is 
the highest manifestation of mathematical thinking. However, this does not mean that we cannot 
have successively higher levels of embodied and symbolic thinking. An axiomatic structure 
such as a complete ordered field specified by axioms of arithmetic, order and the completeness 
axiom (that every non-empty subset that is bounded above has a least upper bound) can be 
proved to have structures that allow it to be embodied (as points on a number line) and 
symbolised (as infinite decimals). In this case the familiar line consists only of real numbers. 

However, it does not mean that it is not possible to have a number line that contains 
infinitesimals. They may not lie in the real number system, but they can easily be imagined in 
a larger system that includes real numbers and infinitesimals. 

I will now explain how this can be done using axiomatic formal mathematics. For a reader 
who does not share this mathematical culture, I will offer an informal interpretation of the 
principles involved. So do not despair if the following discussion makes you feel uncomfortable 
(Uh-Huh!). It is an essential part of the big picture to show that experts in different communities 
may have beliefs that are at variance with each other yet are totally satisfactory in their own 
context. In particular, I will show how the completeness axiom, which proves that the real 
numbers cannot contain infinitesimals also proves that any ordered field K that contains the real 
numbers as an ordered subfield must contain infinitesimals. 

 I will refer to elements of the real numbers ℝ as ‘constants’ and elements of the larger 
system K as ‘quantities’. A quantity x is said to be finite if it lies between two real numbers a, 
b, so that, in the ordering of K, we have a < x < b. A quantity ε is said to be an infinitesimal if 
ε ≠ 0 and –a < ε < a for every positive real number a. 

It is then straightforward to prove: 
Structure Theorem for any ordered field extension K of the real numbers. 
Every finite quantity is either a real number or a real number plus an infinitesimal. 

The proof is straightforward. If x is a finite quantity, the set of real numbers L = {t ∊ ℝ | t < x} 
is non-empty (because it contains a) and is bounded above by b, so it has a unique least upper 
bound c ∊ ℝ. Let ε = x – c, then, by a contradiction argument, it can be proved that ε is either 
zero or infinitesimal. The unique real number c is called the standard part of x, written as 
c = st(x). 

Infinitesimal detail for a quantity t near x can then be seen using the linear map 
m(t) = (t – c)/ε 

This map is called the ε-microscope pointed at c. The subset V of quantities such that (t – c)/ε 
is finite is called the field of view of the microscope. Taking the standard part of m(t) gives the 
optical ε-microscope pointed at c as μ : V → ℝ where  

μ(t)  = st(m(t)) = st(t – c)/ε) 
For a real number k, μ(c – kε) = k, so the optical microscope maps the field of view onto the 
whole real line. 
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The notion of optical microscope was first published in Tall, 1982: more detailed 
information can be found in Tall, 2009. This can be generalised to multiple dimensions by using 
an optical microscope on each coordinate, for instance in two dimensions the (ε, δ)-microscope 
pointed at (c, d) is 

μ(s, t)  = (st((s – c)/ε, st(t – d)/δ) 
It is not appropriate to go into further detail here. I content myself by showing a picture in two 
dimensions where the infinitesimals ε, δ are taken to be equal, allowing an infinite 
magnification of a differentiable function y = f(x). Here I have denoted the points in the image 
with their original names in K2 and denoted any real number change in x in the image as dx and 
its corresponding change in y as dy. Then f '(x) = dy/dx. 

 

 
Figure 9: Infinite magnification of a locally straight graph 

7.4.1 The full cognitive framework for the three worlds of mathematics 

The example of extending previous meanings of mathematical contexts – here developing new 
embodied and symbolic forms of axiomatic mathematics – is yet another example of a system 
that works in one context being extended with new meanings in a more sophisticated context. 
Those who make sense of the context may see the extension as an Aha! insight that increases 
their power in mathematical thinking. Others may not share all the required planes of reference 
and may reject the transition as a transgression into unknown territory as an Uh-Huh!, with the 
power of cultural stability causing them to see their action in a positive light as they remain in 
a framework that is familiar to them and their peers. 

The notion of ‘structure theorem’ applies widely in axiomatic formal mathematics where 
many axiomatically-defined structures can involve proving theorems that enable more 
sophisticated levels of embodiment and symbolism. Our practical perception and operation are 
limited by the nature of our biological brains and the three-dimensional world we live in, but 
our understanding of these limitations can allow us to imagine mathematical ideas beyond our 
physical experience. 

Not only can we imagine multi-dimensional ideas in analysis, including such things as the 
two-dimensional Klein bottle that cannot be represented in three dimensions, we can also prove 
structure theorems in algebra, topology, and other areas of mathematics that offer new forms 
of embodiment and symbolism. For example, the formal notion of vector space includes 
definitions of linear independence and spanning sets that allow us to speak of finite dimensional 
vector spaces over the real numbers that we can embody in two and three-dimensional space. 
Meanwhile, using symbolic coordinate systems and matrices it is possible in theory to operate 
symbolically for any value of n.  

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1982b-axioms-for-infls.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2009c-zdm-dynamic-calculus.pdf


  

 17 9:32 PM, Sunday, 18 August 2019 

The formal notion of finite group with n elements can be interpreted with the operations of 
the group permuting the elements, allowing us, in principle, to visualize ideas as operations on 
a figure with n vertices and operate symbolically with the elements of the group in terms of the 
theory of generators and relations. 

 The cognitive frame for the three worlds of mathematics therefore goes beyond the 
axiomatic level to new forms of embodiment and symbolism that can be imagined as an upward 
spiral of successive levels or, more simply as structure theorems folding back from formal 
mathematics to embodiment and symbolism (figure 10). 

 
Figure 10: From formalism, folding back to more sophisticated embodiment and symbolism 

This, in turn, needs to be seen in the wider aspects of mathematical thinking, including personal 
attitudinal and emotional development within evolving cultures that encourage or impede 
progress.  

7.5 The Articulation Principle 

Since the formulation of the long-term development in How Humans Learn to Think 
Mathematically, I have sought to reflect on fundamental ideas that are widely recognised by 
teachers and experts and yet also have potential to give long-term insight into mathematical 
thinking at all levels. These include an amazing Aha! experience shared with my then 11-year 
old grandson that completely changed my own view of the long-term development of 
operational symbolism (Tall, Tall & Tall, 2017). 

The idea is simple. When we speak a mathematical expression, or hear it spoken, then its 
meaning is affected by the way it is articulated. Generally speaking, a phrase like ‘two plus two 
times two’ is processed in the order it is heard. However, we can give different meanings by 
leaving slight gaps between phrases, here denoted by three dots ‘…’ (an ellipsis). Thus 

‘Two plus two … times two’ is interpreted as ‘four … times two’, giving ‘eight’, 
while 

‘Two plus … two times two’ is interpreted as ‘two plus … four’, giving ‘six’. 
Speaking informally to different individuals at different ages, including young children and 
adults, I have found that almost all are able to make sense of the distinction, often responding 
with an audible ‘Aha!’. This includes many who admit to mathematics anxiety and also many 
responsible adults who use mathematics professionally yet do not remember the rote-learnt rule 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2017a-long-term-problem-posing.pdf
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‘multiplication takes precedence over addition’. For so many, 2+2×2 is calculated in the order 
it is presented as 8, not the technically correct value 6. Uh-Huh! 

The reader should consider different articulations of the following expressions: 
‘five take away three plus one’ 
‘minus three squared’ 
‘the square root of nine times nine’. 
Written as symbolic expressions, brackets can be used to distinguish between the two 

meanings, for example between (–3)2 and –(32). The reader should experience this by writing 
the other two expressions using brackets. 

The huge difference between giving meaning through articulation and learning by rote is 
that making sense using articulation connects ideas together while rote learning may not. This 
has been elaborated in a number of papers written for differing communities including 
elementary mathematics teachers (Tall, 2017), cognitive scientists (Tall, 2019b) and 
mathematicians (Tall, 2019c).2 I introduce the Articulation Principle as follows: 

The Articulation Principle: The meaning of a sequence of operations can be 
expressed by the manner in which the sequence is articulated.  

Note that, even though this applies to mathematics, it is not a mathematical definition. Instead, 
it links different frames of reference in ways that have the potential to make sense for a wider 
population. It seems to me that this is something that is widely ‘known’ implicitly by many 
teachers and experts, but for some strange reason, as far as I know, it has not been formulated 
as an explicit principle for long-term mathematics learning in teacher preparation or in research. 

It is a simple idea that can be introduced at any level, to prepare the young learner for 
meaningful operations in arithmetic and algebra or at any later stage to offer insight to rote 
learners who have so far failed to build meaningful connections. It can be coupled with the idea 
of the flexibility of expressions as processes or objects to offer a coherent development of the 
meaning of increasingly sophisticated symbolism. This offers a major extension of the original 
conceptual embodiment of my original framework in Graphic Calculus. It now includes a 
meaningful long-term development of operational symbolism, the further axiomatic formal 
approach to mathematical analysis and more sophisticated forms of embodiment and 
symbolism. It opens up the continuing evolution of a broader theoretical framework for the 
whole long-term development of mathematical thinking. 

7.6 Towards a framework for long-term meaningful mathematical thinking 

A theoretical framework does not evolve in a sequential manner. As the previous discussion 
shows, I first encountered the notion of ‘embodiment’ from the work of Dienes manipulating 
physical materials. I extended this to manipulating visual imagery by programming software to 
allow the learner to see the local straightness of familiar graphs and trace along the curve to see 
the practical slope function that visually settles on the derivative as the ‘theoretical slope 
function’. Paradoxically, because our vision is less precise than numerical calculation, this 
allows us to have a sense of the derivative as the slope function, while the numerical 
approximations, calculated sufficiently accurately, may be sensed as getting ‘as close as is 
desired, but never quite reaching the limit’. Embodiment offers a meaningful perceptual ‘sense’ 
of the derivative as a mathematical object produced by the process of getting close. For learners 
it may be an Aha!, offering fundamental insight, while for pure mathematical experts it may be 
an Uh-Huh! because it is seen as offering an intuitive version that lacks formal precision. 

 
2 My papers are available for download in pre-publication form from http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html  

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2017x-long-term-sense-making.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019b-biol-brain-math-mind.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019c-long-term-framework.pdf
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However, now that it can be shown that the use of structure theorems can extend formal 
structures to more sophisticated forms of embodiment and symbolism, pure mathematicians 
should consider how sophisticated embodiment can support the development of more subtle 
mathematical theories. We all differ as individuals and it would be sensible to shift to a multi-
community overview to share our different perspectives rather than to engage in mathematics 
wars between different communities. 

The continuing development of theory requires an ongoing clarification of the differences 
that occur between current theoretical positions, particularly between those relating to the 
working of the human brain as represented in neurophysiology compared to what may be 
observed by teachers, learners, mathematicians and other users of mathematics. 

Neurophysiological evidence is collected using various forms of brain scanning technology 
limited to changes that occur in a period of a couple of seconds. The limbic system reacts 
unconsciously before the frontal cortex can make conscious decisions. As a consequence, 
studies that seek immediate short-term responses may only register unconscious activities that 
occur spontaneously rather than reveal considered mathematical reasoning operating over a 
longer period of time. 

This relates to the major question concerning the use of language in mathematics. Language 
is essential to name ideas and be able to build up sophisticated theories. But recent studies in 
neurophysiology question the role of language in mathematical thinking: 

By scanning professional mathematicians, we show that high-level mathematical 
reasoning rests on a set of brain areas that do not overlap with the classical left-
hemisphere regions involved in language processing or verbal semantics. Instead, all 
domains of mathematics we tested (algebra, analysis, geometry, and topology) recruit 
a bilateral network, of prefrontal, parietal, and inferior temporal regions, which is 
also activated when mathematicians or nonmathematicians recognize and manipulate 
numbers mentally. Our results suggest that high level mathematical thinking makes 
minimal use of language areas and instead recruits circuits initially involved in space 
and number. This result may explain why knowledge of number and space, during 
early childhood, predicts mathematical achievement. (Amalric & Dehaene, 2016.) 

This research is based on fMRI scans where mathematicians and non-mathematicians listened 
to a spoken statement and responded four seconds later to classify it as true, false, or 
meaningless. In a further study (Amalric & Dehaene, 2019), mathematicians listened to spoken 
mathematical and non-mathematical statements and were given 2.5 seconds to press a right-
hand button for true or a left-hand button for false. This collects very different data from the 
long-term meaningful learning theory given in the current paper, where conceptual embodiment 
involves changes of meaning in language as contexts change. At the same time, operational 
symbolic learning involves sequences of mental operations in time being compressed into a 
network of related concepts that offers a rich environment for mathematical thinking. 

What they have in common is that rote learning of mathematical methods and concepts 
without meaning may involve spoken statements in language areas which do not connect to 
sophisticated networks of mathematical relationships. Such networks can be a rich environment 
for creating new mathematical theories. 

I had the privilege of studying for my doctoral degree in mathematics with Michael Atiyah 
who was awarded his Fields medal while I was one of his students. He always sought to think 
geometrically, bringing together ideas from very different planes of reference. For instance, my 
own thesis arose from a suggestion he made about links between geometry, topology and 
algebra, saying that ‘a vector bundle is a topological generalization of a vector space, while a 
module is an algebraic generalization of a vector space, so they must have something in 

https://www.pnas.org/content/113/18/4909
https://doi.org/10.1016/j.neuroimage.2019.01.001
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common.’ While this statement will make little sense to readers unfamiliar with these highly 
technical areas of mathematics, it is indicative of higher thinking processes in the creation of 
significant new mathematical theories through linking together previously unconnected frames 
of reference. When the connection is made, it can be accompanied by an enormous Aha! 
reaction related to a huge sense of achievement and aesthetic insight. But where does it come 
from? 

8. Dreams and mathematical beauty 

Mathematical thinking is the construction of human minds, going beyond what can be 
encountered in the natural world to an inner mental world that can create amazing new insights. 
Aha! Moments which connect together previously disparate frames of reference give a sense of 
pleasure and aesthetic beauty which may be likened to experiences in other areas of artistic 
achievement.  

People think mathematics begins when you write down a theorem followed by a 
proof. That’s not the beginning, that’s the end. For me the creative place in 
mathematics comes before you start to put things down on paper, before you try to 
write a formula. You picture various things, you turn them over in your mind. You’re 
trying to create, just as a musician is trying to create music, or a poet. There are no 
rules laid down. You have to do it your own way. But at the end, just as a composer 
has to put it down on paper, you have to write things down. But the most important 
stage is understanding. A proof by itself doesn’t give you understanding. You can 
have a long proof and no idea at the end of why it works. But to understand why it 
works, you have to have a kind of gut reaction to the thing. You’ve got to feel it.  
 (Michael Atiyah, quoted in Roberts, 2016.) 

The emotional aesthetic reaction to mathematics has aspects in common with other areas of 
endeavour. For instance, Atiyah likened the most beautiful equation of all to Shakespeare: 

Ah, the most famous of all, Euler’s equation: 
 eiπ + 1 = 0. 
It involves π; the mathematical constant e [Euler’s number, 2.71828 …]; i, the 
imaginary unit; 1; and 0 — it combines all the most important things in mathematics 
in one formula, and that formula is really quite deep. So everybody agreed that that 
was the most beautiful equation. I used to say it was the mathematical equivalent of 
Hamlet’s phrase “To be, or not to be” — very short, very succinct, but at the same 
time very deep. Euler’s equation uses only five symbols, but it also encapsulates 
beautifully deep ideas, and brevity is an important part of beauty.  
 (Michael Atiyah, ibid.) 

He related his creative activities to dreaming: 
 [...] Dreams happen during the daytime, they happen at night. You can call them a 
vision or intuition. But basically they’re a state of mind — without words, pictures, 
formulas or statements. It’s “pre” all that. It’s pre-Plato. It’s a very primordial feeling. 
And again, if you try to grasp it, it always dies. So when you wake up in the morning, 
some vague residue lingers, the ghost of an idea. You try to remember what it was 
and you only get half of it right, and maybe that’s the best you can do. 
 (Michael Atiyah, ibid.) 

This happened to me as I wrote this paper, struggling with some of the links I was seeking to 
make and then having an amazing breakthrough, until I awoke in the morning to realise how 
many more steps I would need to take before I could hope to write the complicated detail 
necessary to make the ideas available to a broader readership. 

https://www.scientificamerican.com/article/mathematical-beauty-a-q-a-with-fields-medalist-michael-atiyah/
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The problem with an Aha! Moment is that it makes a possible breakthrough based on a 
personally connected cognitive structure but it may not make sense to others who do not share 
essential parts of that structure. In the case of the equation, eiπ + 1 = 0, to make sense of its 
beauty requires a knowledge of so many disparate frames of reference: the calculation of π in 
geometrical terms, the notion of limit, complex numbers, complex powers, and so on. It is only 
beautiful to those who have a sense of the sophisticated relationships involved. 

Nevertheless, for those who do share sophisticated cognitive structures in mathematics, this 
does gives a shared sense of aesthetic beauty: 

The logical deductive system of the brain, whatever its details, is inherited and is 
therefore similar in mathematicians belonging otherwise to different races and 
cultures. It is in this sense that mathematical beauty has its roots in a biologically 
inherited logical-deductive system that is similar for all brains.  
 (Zeki, Chén & Romaya, 2018.) 

This relates back to an earlier paper by Zeki, Romaya, Benincasa, and Atiyah, (2014) which 
Atiyah gleefully said: 

That’s the most-read article I’ve ever written! It’s been known for a long time that 
some part of the brain lights up when you listen to nice music, or read nice poetry, or 
look at nice pictures—and all of those reactions happen in the same place. And the 
question was: Is the appreciation of mathematical beauty the same, or is it different? 
And the conclusion was, it is the same. The same bit of the brain that appreciates 
beauty in music, art and poetry is also involved in the appreciation of mathematical 
beauty. And that was a big discovery. (Michael Atiyah, quoted in Roberts, 2016.) 

9. Reflections 

In this paper I have considered the personal and cultural aspects of an Aha! Moment where two 
or more previously unconnected planes of reference are suddenly brought together and related 
it to what I call an ‘Uh-Huh!’ experience where the connection fails to be made. An Aha! may 
not be correct. It may need reflection to think through its implications and seek a better solution. 
On the other hand, an Uh-Huh! experience may be very insidious, impeding the development 
of a better theory, especially when it occurs not just at an individual level but as a shared belief 
in a wider community. 

An Uh-Huh! may arise from a particular belief that works well at a given point in 
development. Consider, for example, the Euclidean common notion that ‘the whole is greater 
than the part’. This is totally satisfactory in dealing with finite sets or with parts of a geometric 
figure. It survived for over two thousand years and led to cultural rejection of  Galileo’s paradox 
that there is a one-to-one correspondence between the set of whole numbers 1, 2, 3, … and the 
set of squares 1, 4, 9, …, even though the set of squares is clearly a subset of the whole numbers. 
When Cantor realised that the idea that a set can be put in one-to-one correspondence with a 
subset is the very definition of an infinite set, he was met with hostility and cultural rejection 
that caused him to have a mental breakdown. 

I observe, with some regret, that cultural rejection, even when it is done for laudable reasons 
of maintaining cultural stability, can result in causing mathematical anxiety for a significant 
portion of the population. For instance, I believe this is happening with many modern 
approaches to teaching mathematics, in arithmetic, algebra, geometry and calculus based on 
rote learning. 

I offer alternative approaches in this chapter which build on ideas that make natural sense 
for a wider population if we only make ourselves consciously aware of simple ideas that we 
can use in practice. The Principle of Articulation shows how we can make better sense of the 

https://www.frontiersin.org/articles/10.3389/fnhum.2018.00467/full
https://doi.org/10.3389/fnhum.2014.00068
https://www.scientificamerican.com/article/mathematical-beauty-a-q-a-with-fields-medalist-michael-atiyah/
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meaning of operations in arithmetic and algebra, and it can be introduced at any stage to 
improve understanding and to build more coherent relationships as mathematics becomes more 
sophisticated. Being aware of its application can highlight the patterns that arise in arithmetic 
and make the transition to algebra more transparent. This can be enhanced by a specific focus 
on the flexibility of operational symbols as operations or as mental objects. 

The transition to the calculus can be supported by the embodiment of local straightness. In 
fact, this is just one aspect of embodiment that can make the calculus more meaningful (see, 
for example, Tall, 2009). Taken with the meaningful interpretation of symbolism, this offers a 
more compelling reason for taking a locally straight embodied approach to the calculus, leading 
naturally to an embodied basis for mathematical analysis. 

The use of structure theorems to reveal the power of embodied ideas even at the highest level 
shows how different interpretations of mathematics may be appropriate for different 
communities dependent on the role that they play in society. 

But will it happen? Is it possible to seek the Aha! experience by focusing on making 
meaningful links or will the Uh-Huh! of cultural resistance – even in the form of cultural 
stability – hold evolution back? 

Only time will tell. It is evident that the varied cultures currently immersed in the teaching, 
learning and using of mathematics will often be subject to cultural lag compared with the speed 
of change of technology. On the other hand, technology has reached a level where the 
widespread availability of smart phones with insightful mathematical apps, such as GeoGebra 
and Desmos, to manipulate symbols and graphs has the potential to move things on. 

As Buckminster Fuller has said: 
You never change things by fighting the existing reality. To change something, build 
a new model that makes the existing model obsolete. (Buckminster Fuller, 1981.) 
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