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Abstract 

The framework of ‘three worlds of mathematics’ was designed to reveal the growth of 

mathematical thinking in individuals over a lifetime to include all abilities and interests (Tall, 

2013). This paper outlines the framework and introduces new developments that simplify and 

extend it. These involve aspects that anyone can observe, such as how we say mathematical 

expressions, how we hear someone else speak mathematically, how we see moving objects, 

how we think about mathematical symbols as processes or mental objects. These new 

developments have direct application to mathematical thinking at all levels, in different 

individuals, in differing cultural settings, and also in our understanding of the historical growth 

of the subject. They offer new ways of making sense of ‘math wars’ in which different 

approaches to mathematical ideas cause debates over which is preferable or even correct. The 

broader framework takes account of differing approaches by different communities of practice. 

The plan is to offer factual information so that readers can make their own judgement of how 

to proceed in their current situation, to make sense of mathematical thinking over the long term. 

This is formulated to take account of the fact that different communities may have valid 

approaches that are appropriate in their own context but are problematic in another. 

1. Introduction 

The last half century has seen immense changes in our understanding of mathematical thinking, 

not only through the development of mathematics education as a research topic but also through 

the invention of digital technology and a deeper understanding of the structure and function of 

the human brain. These changes have been so immense in such a relatively short time that they 

probably outstrip any other period of mathematical development in the whole evolution of our 

human species. It is an interesting time to be alive. 

How Humans Learn to Think Mathematically (Tall, 2013) sought to construct an overall 

framework for long-term growth of mathematical thinking from child to adult. It also proved 

insightful in making sense of historical development where intellectual adults in history have a 

personal development from child to adult occurring in different societies with different 

accumulated resources. The framework is based on three distinct forms of thinking that have 

evolved in increasingly shorter periods of development: ‘embodiment’, evolving in many 

species over millions of years, ‘symbolism’, evolving in in a mathematical sense in Homo 

Sapiens over a period of around fifty thousand years, Greek ideas of ‘formal’ proof arising 

about two and a half thousand years ago, developing into set-theoretic ‘axiomatic formal’ proof 

in the last century. 

Our children are faced with making sense of appropriate parts of mathematics within a 

lifetime. A major aim is to understand why some individuals are highly successful in gaining 

pleasure and power through thinking mathematically while others find mathematics a source of 

anxiety and confusion. 

Part of the task is to consider the mathematical content and development of different 

topics in arithmetic, algebra, geometry, calculus and more advanced forms of mathematics. But 

it is equally important to study how we actually think about mathematics. This involves 
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investigating what is known about the structure and operation of the human brain and to 

translate it into a form that is relevant to teachers, learners and others involved in the 

development and use of mathematics. 

This paper first summarises the main ideas of the three-world framework in terms of the 

increasing sophistication of mathematics and how a human brain operates mathematically. It 

takes account of both the development of mathematical knowledge and the emotional reactions 

to changes in mathematical context. Some aspects of previous experience may continue to work 

and are supportive in a new context, but others may involve changes of meaning that are 

problematic. For example, arithmetic facts such as ‘2+2 makes 4’ continue to be supportive, 

but more subtle implicit properties, such as ‘you cannot have less than zero’, or ‘adding a 

number gives a bigger result’ no longer hold when introducing negative numbers. 

The new extensions to the framework consider simple observations of how we operate in 

everyday life – speaking, hearing, seeing, thinking, and communicating with others. These offer 

insight into how we can improve long-term understanding of mathematics by highlighting 

simple principles that remain supportive over several changes in context while dealing 

explicitly with problematic aspects that impede development. For instance, it is possible to 

begin to make sense of complicated mathematical expressions by realising that a simple 

expression such as ‘two plus three times four’ can have different answers depending on how it 

is spoken. (Try saying it in different ways by leaving short gaps between different words.) 

By becoming aware of this ambiguity, it becomes more reasonable to seek meaningful 

ways to symbolise the difference in meaning rather than simply present ‘rules’ such as 

‘multiplication takes precedence over addition’ to be learnt by rote. This leads to the 

Articulation Principle in which the spoken articulation of an expression gives it an unambiguous 

meaning. This proves to be valuable in giving genuine meaning to mathematical expressions, 

not only in simple arithmetic, but also throughout the whole mathematics curriculum. 

Over the longer term, mathematics educators are aware that expressions such as ‘2 + 3’ 

are initially interpreted as operations to be performed in time in a variety of possible ways, and 

then as a single mental object – the sum ‘2+3’, which is ‘5’. This paper offers an explicit new 

way of interpreting expressions and sub-expressions as operations or objects that fits with the 

mathematical meaning, as opposed to reading words in the standard textual sequence. 

In the wider scheme of making sense of mathematics, different communities will have 

very different needs to satisfy very different objectives. For instance, most people use relatively 

simple mathematics in their everyday lives, but various professions require very different kinds 

of mathematics for different tasks. Some may involve practical mathematics in commerce, 

some may require more theoretical mathematics to model a situation and predict its outcome. 

A small proportion of the population may go on to research more advanced areas of pure 

mathematics and logic. 

A major aim of this paper is to present a general framework that takes an overall view of 

the differing approaches of different communities. Its purpose is to enable each of us to see our 

own viewpoint as part of a broader journey to make long-term sense of mathematical thinking 

appropriate for differing needs. 

The journey begins in the next section by considering aspects of the operation of the 

human brain that support the long-term growth of mathematical thinking. While it is evident 

that language is a foundation for the success of our species, we will find that there are other 

aspects of human perception and action that are mathematically even more essential. Based on 

these, we will move on to consider observable aspects of human activity that contribute 

significantly to success and failure. This offers the potential for focusing on supportive aspects 

that enhance confidence and insight over several changes in context, while dealing with 
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problematic aspects that inhibit mathematical thinking for differing individuals in their own 

society. It will lead to new ways of simplifying increasingly sophisticated mathematical ideas 

that can be integrated into current approaches to teaching and learning. 

2. Mathematical operations in the brain  

The brain has two essentially symmetric halves performing complementary roles that are 

connected together to operate as a whole. Facility with language takes place in the left brain for 

all but a few who tend to be left-handed. Wernicke’s area, making sense of spoken input from 

both ears, is in the back part of the left brain just behind the left ear. Broca’s area, responsible 

for spoken output, is further forward on the left side. The right-hand side deals with more global 

non-verbal thinking. 

The front part of the brain has an overview executive function, making more conscious 

decisions. In the centre of the brain is a complicated array of structures, collectively referred to 

as the limbic system, which performs diverse tasks, such as laying down and fetching long-

term memories and responding emotionally to pleasure and danger. 

Figure 1 shows a view from above the brain and a view of the inside of the brain, revealing 

one side of the limbic system, which is in two parts symmetrically placed on either side of the 

brain that are connected together. 

 

Figure 1: The human brain 

As it stands, the complexity of the brain needs substantial work to translate its operation into a 

form suitable for teachers and learners to link to mathematical thinking in their everyday 

activities. An alternative approach is to work in the opposite direction to see how the long-term 

development of mathematics links to the operation of the brain. 

Mathematical thinking arises in the young child with an intuitive sense of space and 

number and develops into more structured forms of geometry, arithmetic, algebra, calculus, 

and, for a few experts, into more formal mathematics, logic and mathematical proof. All of 

these involve thinking about objects (mental or physical), operations on objects and their 

properties. Some of these activities (such as geometry) focus more on objects and their 

properties. Others (such as arithmetic and algebra) focus on operations and their properties. 

More sophisticated formal mathematics, used mainly by pure mathematicians, focuses on 

structures based solely on properties given by axioms and definitions from which all other 

properties are deduced by formal proof. 
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2.1 Three worlds of mathematics 

The framework for long-term mathematical thinking based on three interrelated strands of 

developing sophistication is called ‘the three worlds of mathematics’ (Tall, 2013). One focuses 

on objects and their properties, initially physical, then constructed mentally, termed conceptual 

embodiment. Another focuses on operations and their properties, called operational symbolism. 

Both develop in sophistication from practical mathematics based on the coherence of observed 

properties to theoretical mathematics where one property may be deduced as a consequence of 

another. A third strand, that develops from theoretical mathematics into the formal mathematics 

of the twentieth century based on properties, defined using set theory or logic, is called 

axiomatic formalism. 

These three names can be shortened to ‘embodied’, ‘symbolic’ and ‘formal’ when their 

meaning is clear. However, each of them is has very different meanings in various theories and 

it is essential to be aware of their particular meaning in the three-world framework. 

For instance, an ‘embodied’ approach for younger children may use physical materials to 

‘embody’ mathematical concepts (as in multi-base blocks and logic blocks of Dienes (1960), 

Cuisenaire Rods (Cuisenaire, 1952), the Geoboard of Gattegno (1971)). More generally it may 

refer to how we ‘embody’ abstract concepts in our bodily perceptions and actions which involve 

mental imagery and gesture (Lakoff & Núñez, 2000). Conceptual embodiment refers to the 

long-term development of the properties of objects as their conception becomes more 

sophisticated, from making sense of the relationships between physical objects, to more abstract 

relationships between mental objects. 

The term ‘symbol’ is generally used to denote ‘a word or mark or anything that represents 

or signifies an idea, object, or relationship.’ Bruner’s (1966) classification of communication 

consists of three different modes: ‘enactive’ (based on gestures) ‘iconic’ (based on pictorial 

imagery) and ‘symbolic’. He used the term ‘symbolic’ to apply not only to natural languages 

but also to specialist areas such as arithmetic or logic, which form the basis for the operational 

symbolic and axiomatic formal worlds respectively. The term ‘operational symbolism’ 

specifically refers to symbolic expressions that represent operations, such as addition of two 

numbers 3+2, with the understanding that the same symbol can also stand for a mental object, 

namely ‘the sum of 3 and 2’, which is ‘5’. 

The term ‘formal’ is used by pure mathematicians to refer to structures specified by verbal 

axioms and definitions which includes the axiomatic approach of Euclidean geometry. In the 

three-world framework, Euclidean geometry is classified as ‘theoretical mathematics’ along 

with mathematics in natural science and other applications which involve modelling real world 

problems and deducing consequences. This is because it is inspired by naturally occurring 

objects (in this case, geometric figures) which are then formulated verbally in terms of axioms 

and common notions from which all other properties are deduced by Euclidean proof. 

There is an essential difference between the long-term development of embodiment and 

that of symbolism. Whereas embodiment focuses mainly on objects and classifies their 

properties verbally in increasingly sophisticated ways, symbolism goes through many 

individual stages, encountering new ways of operating with new forms of number, first through 

calculation, then through manipulation of increasingly sophisticated symbolism. The 

development of symbolism is therefore more intricate than that of embodiment. 

Before the end of the nineteenth century, the study of mathematics and science based on 

naturally occurring phenomena was described as ‘natural philosophy’. It is useful to distinguish 

between theoretical mathematics, based on naturally occurring phenomena, and axiomatic 

formal mathematics, based only on properties defined using set theory and logic. Axiomatic 

formal mathematics can be applied to any context where the axioms and definitions hold. It is 
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conceptually more powerful than theoretical mathematics as it applies not only to known 

contexts, but also to any as yet unknown future context that satisfies the axioms and definitions. 

In this sense it is ‘future-proofed’ in that it applies to future evolution of ideas in axiomatic 

formal mathematics, always with the possibility that we will develop even more sophisticated 

ways of thinking in the future that we have not yet considered. 

I will later show that the future is already here in the sense that it is possible to prove 

formal structure theorems that take us on to more sophisticated forms of embodiment and 

symbolism. This can still be encompassed in the current framework with three forms of 

mathematics (embodiment, symbolism, formalism) in three levels of sophistication (practical, 

theoretical, axiomatic formal) (Figure 2). 

 

Figure 2: the long-term development of mathematical thinking 

These three different worlds develop in succession over time, both in the life of an individual 

and in historical evolution. In the Piagetian theory of individual development, the young child 

begins with a ‘sensori-motor’ stage, passes through a ‘pre-operational’ stage to ‘concrete 

operational’, then to a ‘formal operational’ stage which develops in adolescence as abstract 

thought independent of concrete referents. Piaget’s theory is foundational in focusing on the 

long-term changes of thinking in the individual, but it needs more specific clarification to apply 

to the long-term development of mathematics. The three-world framework for mathematics 

follows a corresponding path from embodiment through practical mathematics for everyday 

use and, as appropriate, to more theoretical and formal mathematics. 

In historical evolution, the early development of embodiment existed in our ancestors, 

and in many other species, hundreds of thousands of years ago. Operational symbolism evolved 

in Homo Sapiens in the last fifty thousand years or so, proliferating in various communities in 

Egypt, Babylon, India, China around five thousand years ago, becoming increasingly 

theoretical in Greek mathematics with the first flowering of mathematical proof two and a half 

thousand years ago. Axiomatic formal mathematics has been around for little more than a 

century. Now new possibilities are emerging in our digital age, enabling Homo Sapiens to use 

new digital tools to enhance an embodied (enactive) interface, dynamic visualisation, symbolic 

computation and the emergence of new forms of artificial intelligence. 
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2.2 Studying brain structure and operation 

The picture in figure 2 is by no means complete. It omits emotional affective aspects and offers 

no detail about brain activity, although further analysis of the growth of mathematical 

sophistication will include the study of supportive and problematic changes in context. 

Modern techniques include non-invasive study of surface brain activity by attaching 

electrodes to the head, and magnetic resonance imagery (MRI) to map the internal structure. 

More subtle techniques using functional MRI (fMRI) can track the activity of the brain over 

time, but this only measures the flow of blood moving to more active parts of the brain over a 

period of seconds and lacks the resolution to record the subtlety of mathematical thinking that 

changes in milliseconds. 

In the paper Left Brain, Right Brain: Facts and Fantasies, Corbalis  (2014)  exposes some 

of the suppositions about brain activity that are widely believed, yet either lack, or are 

contradicted by, empirical evidence. For instance, even though language may function mainly 

on one side while the other deals with non-verbal intuition, the actual operation of the brain is 

far more complex as the two sides cooperate together. Furthermore, there is evidence that, 

although language plays a vital role through verbalising properties of arithmetic and geometry, 

mathematical thinking also involves activities that may not link to language at all, as suggested 

by a recent study that declares: 

Our work addresses the long-standing issue of the relationship between mathematics 

and language. By scanning professional mathematicians, we show that high-level 

mathematical reasoning rests on a set of brain areas that do not overlap with the 

classical left-hemisphere regions involved in language processing or verbal 

semantics. Instead, all domains of mathematics we tested (algebra, analysis, 

geometry, and topology) recruit a bilateral network, of prefrontal, parietal, and 

inferior temporal regions, which is also activated when mathematicians or 

nonmathematicians recognize and manipulate numbers mentally. Our results suggest 

that high level mathematical thinking makes minimal use of language areas and 

instead recruits circuits initially involved in space and number. This result may 

explain why knowledge of number and space, during early childhood, predicts 

mathematical achievement. (Almeric & Dehaene, 2016) 

The three-world framework observes that language plays different roles in each world. 

Conceptual embodiment relies on ‘categorization’ of properties, using language to formulate 

successive levels of embodied thought, with a focus on thought experiments to imagine 

situations spatially. Successful operational symbolism uses symbols to ‘encapsulate’ processes 

as flexible mental objects at successive levels of sophistication in ways that may not be 

available to learners who only learn by rote. Axiomatic formal mathematics can be inspired by 

spatial and/or symbolic thinking to formulate set-theoretic definitions and make conjectures to 

prove properties by formal proof. 

The overall theory of three worlds of mathematics has two over-arching concepts: 

set-before: a genetically endowed facility ‘set before’ birth in our genes, 

and 

met-before: an aspect of the current mental state as it is affected by experiences 

that were ‘met before’ by the individual in previous contexts. 

(The term ‘met-before’ arose to consider the new context from the individual’s personal 

viewpoint, as compared to the related term ‘metaphor’ which interprets the situation from a 

more sophisticated top-down philosophical viewpoint.) 

Language, which plays a major role in formulating the overall theory, is specified as a 

‘set-before’. It is used extensively throughout the theory to give explicit explanations of our 

https://doi.org/10.1371/journal.pbio.1001767
https://doi.org/10.1073/pnas.1603205113
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conscious mental ideas while many links within our brain relate to visual and operational 

activities that are performed automatically and sub-consciously. 

It is helpful, wherever possible, to become explicitly aware of these underlying processes 

and the longer-term development of more sophisticated processes. For example, the human 

brain is very good at recognizing the same thing from different viewpoints, such as being able 

to recognize a human face from any direction. Less obvious is the manner in which different 

mathematical operations give rise to the same mathematical concept. 

2.3 From counting processes in time to the concept of number as a mental object 

An important principle that takes time to realise is the fact that the number of objects in a given 

(finite) collection is independent of the way it is laid out and how it is counted (Figure 3).  

 

Figure 3: The number of objects in a collection is independent of order and layout 

This underlies the general idea that the sum of a list of whole numbers is independent of order 

and method of calculation. The same idea works for the product of two whole numbers 

exemplified by the idea that six objects can be placed in two rows of three or three columns of 

two (Figure 4). 

 

Figure 4: The product of two numbers is independent of order of calculation 

These are both instances of Piaget’s notion of conservation of number: 

The Principle of Conservation of Number: The number of objects in a collection 

is independent of the layout and of the manner of counting. 

This leads to more general principles of arithmetic: 

The General Principle of Addition for Numbers: A finite sequence of additions of 

numbers is independent of the order of calculation. 
 

The General Principle of Multiplication for Numbers: A finite sequence of 

multiplications of numbers is independent of the order of calculation. 

These principles belong initially in practical mathematics, for example, adding a column of 

numbers is independent of the order of operations and continues to generalise to addition of 

signed numbers, decimal representations, real numbers and even complex numbers. They 

operate as supportive principles throughout elementary mathematics. 

The theoretical sequence, in which addition and multiplication are defined as binary 

operations that satisfy certain rules from which more general properties can be deduced, is far 

more sophisticated. 

Brackets are not required in practical mathematics until addition and multiplication are 

used in the same expression. Figure 5 shows two representations of 3 rows with 4+2 objects in 
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each. The first has distinct objects and the numbers are used to count the objects: the second 

has an area with vertical side 3 and horizontal side 4+2 and numbers are used to measure the 

area. Using brackets to enclose the sum 4+2, both pictures represent 

3 × (4 + 2) = 3×4 + 3×2. 

The same layout works whatever numbers are used, giving a generic view of the property that 

later generalises to the algebraic distributive property: 

a×(b + c) = a×b + a×c. 

 

Figure 5: The distributive property 

This illustrates the  Distributive Law , which easily generalises to having several numbers 

inside the brackets, such as 

3 × (4 + 2 + 5) = 3×4 + 3×2 + 3×5 

with the additional flexibility that the result of the calculation is independent of the order of 

terms inside the brackets. 

It is also possible to formulate a more general principle for multiple products of sums 

inside brackets. However, this increases the complication and it is sensible in the initial stages 

to deal mainly with the simple case of a single number times a bracketed list of numbers, which 

is unchanged if the order of the list is changed. 

The literature is full of detail showing that many students have difficulty passing from 

arithmetic to algebra. 

We now consider how these problematic aspects may be related to the natural way in 

which we operate as human beings. 

3. Simple observations that can be noticed by any reader 

There are ways in which we can see the mental subtleties of mathematical thinking with our 

own eyes and ears. All we need to do is to pay attention to what is happening automatically as 

we read and speak mathematically as compared with other aspects of everyday life. 

3.1 How humans read text 

If you read this paragraph several times and notice what happens to your eyes, you will sense 

that they move in a sequence of jumps alighting temporarily on small parts of the text as the 

brain builds the meaning of the text by putting the pieces of information together. 

Please read any paragraph on this page, several times if necessary, so that you become 

aware of what is happening. You will find that your eye does not move smoothly over the text 

as you read, instead it moves in a sequence of jumps (called ‘saccades’). Read any paragraph 

again to make sure you are aware of this. 

The retina at the back of the eye has millions of cells called rods and cones that react to 

light. Rods are more numerous and are highly sensitive for night vision. Cones are sensitive to 

colour and detail in daylight and predominate in a circular area around 5.5 mm in diameter (the 

macula) with an even more sensitive central area consisting mainly of cones around 1.5 mm in 

3

4 2

4 + 2

3

4 2

4 + 2

3×(4 + 2) = 3×4 + 3×2
as whole numbers 

3×(4 + 2) = 3×4 + 3×2
as areas 
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diameter (the fovea) (Figure 6). The edge of the macula overlaps the blind spot where the eye 

sends signals to the brain along the optic nerve. 

 

Figure 6: The central part of the retina seen through the pupil of the eye 

The fovea is estimated to have around 200,000 cones (Kolb, 2007). The precise number is not 

important, but the order of size is. A modern smart phone with a so-called ‘retina screen’ may 

have a million or more pixels which is considerably larger than the number of cones in the 

fovea. Depending on how far you hold the phone from your eye, you may be able to focus on 

a different number of characters. When I hold my iPhone a comfortable distance from my eye 

to look at a list of song titles in iTunes, I can read the title ‘Wonderful’ in a single glance but it 

takes two or three saccades or even more to read ‘My one and only’ or ‘Nice work if you can 

get it’. You should look at text on a phone to get a sense of the phenomenon for yourself. 

The eye focuses only on a few syllables of text at a time, and the brain puts the separate 

pieces together to build up the meaning. With languages that are written from left to right, 

reading text is performed sequentially in the same direction, though there may be small 

variations that can be accommodated over short stretches. (For instance, in German, the 

numtber 123 is read as ‘ein hundert, drei und zwanzig’, which is ‘1 hundred, 3 and twenty’, 

requiring the digits to be spoken in the sequence 1, 3, 2.) In this case, the number can be read 

in a single chunk and the brain is able to put the chunks together as the eye jumps along a line. 

If the same technique is used to read an expression such as 

2 + 3 × 4 

then this is likely to be read in sequence as ‘two plus three times four’. This natural order 

interprets ‘two plus three’ as ‘five’ and then ‘five plus four’ is ‘nine’. However, in arithmetic 

we are taught the convention that ‘multiplication takes precedence over addition’, so we must 

first calculate ‘three times four’ to get ‘twelve’, then ‘two plus twelve’ gives ‘fourteen’. 

For many this is a bewildering experience, as it violates the natural sequence for 

interpreting language. It can give the impression that mathematics involves arbitrary ‘rules’ that 

need to be remembered even if they have no meaning. If such rules are remembered using 

language, neurophysiological observations suggest that they may occur in language areas of the 

brain without meaningful connections to areas related to space and number. If this happens, 

long-term learning in mathematics may involve learning ‘rules without reason’ so that 

mathematical ideas are not well-connected and become more complicated and error prone. 
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But need it necessarily be this way? When we speak language, we use other techniques 

such as tone of voice and articulation to give extra meaning. Why not seek to use such 

techniques to make sense of arithmetic? 

3.2 How we speak mathematical expressions: the Articulation Principle 

When we speak an expression such as ‘2 + 3 × 4’, we can leave small gaps between words to 

give different meanings. An ellipsis symbol ‘…’  consisting of three dots is often used to mark 

where words are omitted in a quotation, usually enclosed in square brackets as […]. Here I use 

the ellipsis symbol on its own to represent a slight break between characters when the 

expression is spoken. If we leave a slight gap in ‘2 + 3 × 4’ after 3, written as ‘2 + 3 … × 4’ 

then this is read as ‘2 + 3’, which is ‘5’, then ‘× 4’ which gives ‘5 × 4’ which is ‘20’. Written 

symbolically, the different articulations for 

2 + 3 × 4 

can be spoken as 

2 + 3 … × 4, which is 5 + 4, giving 9 

or as 

2 +…  3 × 4, which is 2 + 12, giving 14. 

Once the ambiguity for the expression 2 + 3 × 4 is recognised, it leads to: 

The Articulation Principle: The meaning of a sequence of operations can be 

expressed by the manner in which the sequence is articulated.  (Tall, 2019a) 

This is not a definition in a mathematical sense. However, it is fundamental to giving meaning 

to mathematical thinking throughout the long-term development of the subject. For instance, 

the expression ‘–x2’ is usually read as ‘minus x squared.’ Does it mean ‘minus x … squared’ or 

‘minus … x squared’? According to the rule ‘the product of two minuses is a plus’, for x = –2, 

the first is +4, but the second is –4. If such rules are learnt verbally by rote without linking to 

deeper mathematical meaning, this can only lead to increasingly complicated error-prone long-

term learning. The mathematics education literature is replete with horror stories of student 

misconceptions. 

The articulation principle leads to a more natural way of expressing meaning through the 

use of brackets (or ‘parentheses’ in American English) to indicate what parts of an expression 

need to be given precedence. For instance, 

2 + 3 … × 4 may be written as (2 + 3) × 4, 

and 

2 +…  3 × 4 as 2 + (3 × 4). 

Using the articulation principle and the general principles for addition and multiplication, this 

offers a meaningful starting point for precise interpretation of mathematical expressions. 

Combining addition and subtraction involves using brackets to clarify meaning of 

expressions such as 5 – 2 + 1. Here the principle of articulation shows that 5 – 2 … + 1 is very 

different from 5 – … 2 + 1 and these can be distinguished as (5 – 2) + 1, which is 4 and 

5 – (2 + 1), which is 2. 

In the absence of brackets, it is natural to perform operations in sequence left to right, so that 

the expression 5 – 2 + 1 gives 4. When adding a collection of whole numbers, the order of 

addition does not matter. This also happens when addition and subtraction are mixed. But 

there is one problematic aspect. If the terms are re-ordered as 1 – 2 + 5, then the first 

operation is not possible working with whole numbers counting objects because you can’t 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
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take two objects away if you only have one. In this case, the operations need to be performed 

in an order where each step gives a whole number result. 

However, over the longer term, when contexts arise that include negative numbers (such 

as a bank account or temperatures above or below zero) then an extended general principle 

arises: 

The General Principle of Addition and Subtraction: A finite sequence of additions 

and subtractions of quantities is independent of the order of calculation. 

This principle makes sense as new number systems arise, including signed numbers, real 

numbers and complex numbers. It also holds later for constant and variable quantities in algebra 

and symbolic calculus. 

A similar principle holds for multiplication and division, though in this case, division has 

different properties for whole numbers (in terms of quotients and remainders) and for real and 

complex numbers, where division by a non-zero number is always possible. For fractions, 

rational, real and complex numbers there is a longer-term principle: 

The General Principle of Multiplication and Division: A finite sequence of 

multiplications and division of quantities is independent of the order of calculation. 

Here the term ‘quantity’ will again apply to constant and variable quantities in algebra and 

calculus. In other more advanced contexts, such as linear algebra or group theory, there are 

major changes in which multiplication is no longer independent of order of operation. This 

problematic situation will be more easily addressed if learners have been encouraged over the 

years to deal explicitly with new ideas that do not fit with previous experience. 

In any context where both principles are satisfied, their combination with the use of 

brackets and the distributive law will be called 

The General Principles of Arithmetic for brackets, exponents and operations +, –, 

×, ÷. 

These principles using the operations of arithmetic are satisfied in arithmetic and algebra and 

in all number contexts from whole numbers, integers, rational numbers, to real numbers and 

complex numbers. In particular, they make coherent sense in practical mathematics, satisfactory 

for everyday use. 

3.3 Interpreting an expression as operation or object 

To make sense of more sophisticated symbolism in arithmetic, algebra and calculus, it is helpful 

to be able to see how an expression is built up hierarchically from sub-expressions. This can be 

achieved in an explicit manner by paying attention to how the component parts operate 

successively as operation or object. 

An expression, such as 4 + 2, is first encountered as an operation of counting that can be 

performed in several different ways. Later the same expression can be conceived as a mental 

object, the sum 4 + 2, which is 6. 

This idea that an expression can be conceived as an operation that takes place in time, or 

as a mental object that can be manipulated as an entity in the mind, is crucial to coping with 

increasingly sophisticated use of symbolism throughout long-term mathematical development. 

The literature introduces a variety of terminology and subtle differences in meaning to 

discuss the mental compression of a process into an object. Here I will use the term ‘operation’ 

interchangeably with ‘process’, and the word ‘object’ interchangeably with ‘concept’. Gray & 

Tall (1994) referred to an expression that can be used as a process or concept as a procept. The 

transition of turning an operation into an object is called ‘encapsulation’ or ‘reification’. 

Another, simpler word is ‘objectify’. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1994a-gray-jrme.pdf
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To objectify an idea means to give it a name, then to talk about it as if it were an entity as 

a whole. Language already has a construct to turn a process into an object, namely the notion 

of ‘gerund’ where a participle such as ‘walking’ is a process when used as part of a verb, as in 

‘I am walking’, but then becomes a noun in a statement, as in ‘walking is good for my health’. 

The transition from process to object occurs throughout mathematics. For instance, the 

process of sharing, represented by fractions, can have many different processes giving the same 

object. Dividing something into six equal shares and selecting three (written as  3/6) is a different 

process from dividing into four and selecting two (2/4) but they both give the same quantity (½) 

and, when marked on a number line, they are the same point. The fractions 3/6 and 2/4 are said 

to be ‘equivalent’ but, as a rational number, they are one and the same. As operations they are 

different, but embodied as a point on the number line, they give a single point. 

In algebra, a symbol such as 𝑥2 − 1 may be conceived both a process (‘square the value 

of x and take away 1’) and also as an object that can be operated upon, such as being factorised 

to give another expression (x + 1)(x – 1). In the calculus, a symbol such as ∫ f(x) dx is both an 

instruction to carry out the operation of finding the integral of the function f(x) and also the 

value of the integral which is an entity that can itself be manipulated. 

3.4 Representing an expression as operation or object 

As mathematics becomes more sophisticated, the shift from operation to object is not always 

made explicit. In learning to be aware of the two meanings, it is possible to make the distinction 

by placing boxes around sub-expressions that are thought of as objects (Tall, 2019a). A symbol 

such as 4 + 2 can be written as:  

 as the process of adding objects 4 and 2, 

 as the mental object, 4 + 2. 

Initially it may be helpful to draw the boxes explicitly, but once the distinction is made, it may 

be imagined in the mind’s eye to take account of the hierarchical structure of expressions. 

To interpret more extended expressions involving operations with different orders of 

precedence, the technique is to look along the expression from left to right to find the 

occurrences of the operation with the highest preference and put them inside a box. For 

example, with the convention that ‘multiplication has precedence over addition’ the operation 

of highest precedence in the expression ‘2 + 3 × 4’ is ‘3 × 4’. Placing this into a box, as an 

object, reveals the expression as a sum of objects: 

  . 

By the general principles of arithmetic, the objects  and  can be combined in any 

order, as can the numbers in the product . Of course, the numbers 3 and 4 here are also 

objects and could be placed inside boxes, but visually it is clearer not to overcomplicate the 

notation. 

If there is more than one instance of the highest order of operation in succession, then 

these should be placed in a single box. For instance, in the expression ‘3 + 2 × 4 × 4 – 1’ the 

terms ‘2 × 4 × 4’ are associated together to give 

 

By the general principles of arithmetic, the boxes can be placed in any order as can the 

operations inside the product  box . 

This principle extends naturally to more general expressions where there is an agreed 

order of precedence, such as the order given in the USA curriculum as 

Parentheses – Exponents – Multiplication/Division – Addition/Subtraction 

4 + 2

4 + 2

2 + 3 4

2 3 4

3 4

3 + 2 44 4 1

2 4 4

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
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which is memorised using the mnemonic PEMDAS (Please Excuse My Dear Aunt Sally). 

Parentheses are given the highest precedence, then Exponents, then Multiplication and Division 

together at the same level, followed by Addition and Subtraction together at the lowest level. 

In the UK the mnemonic BIDMAS is used for the same purpose with levels representing 

Brackets – Index – Division/Multiplication – Addition/Subtraction. 

Neurophysiological evidence suggests that, if these mnemonics are learnt by rote, they may 

connect to language areas of the brain but not to areas that deal with number (Maruama et al. 

2012). Personally, I wonder how ‘Dear Aunt Sally’ links to mathematics … There is enormous 

evidence in the literature to show that multiple difficulties arise in many students as they 

encounter more complicated expressions. 

These new principles have the potential to introduce meaningful connections to the 

conventions of operational symbolism. The articulation principle reveals the ambiguity of 

speaking and hearing mathematical expressions, offering a meaningful reason to require the use 

of brackets and to interpret notation more precisely. The duality of symbolism as operation and 

object offers insight into the hierarchical meanings of expressions nested one within another. 

3.4 Compression of knowledge over the longer term 

Over time, as the brain makes new connections, more sophisticated thinking becomes possible 

as operations that occur in time are symbolised and conceived as mental objects that can then 

be manipulated at a more sophisticate level. 

The successive compression of ideas into more compact forms can be shortened by 

further conventions to reduce the number of symbols required. When single letter variables are 

involved, we can omit the multiplication sign between numbers and variables and between 

variables themselves. By the general principle of multiplication, we can write a product of 

several terms with the number first and the variables in alphabetical order. So, b × 2 × a can 

be written as 2ab. If a power is involved, as in x^2, with the power written as a superscript as 

x2, then the power is of higher order than a product, so 2 × x^2 × a can be written as 2ax2. 

With the lower order operations +, × remaining explicit, this gives a compact notation for a 

quadratic expression such as ax2 + bx + c where the term ax2 clearly means  a × x2 because the 

power has a higher precedence than the product. 

Later developments represent expressions in two-dimensional layouts rather than simply 

on a straight line. For instance, division of rational expressions is written spatially with one 

expression written above another with a horizontal line in between. Once again, a rational 

expression can be seen as an object or an operation (Figure 7): 

 
Figure 7: A rational function as an object or operation 

The same technique works for any expression as a two-dimensional template written by hand 

or using a digital layout system such as TeX or MathType, whether it is a unary operation (such 

as the square root) or a more general expression, such as the solution of a quadratic equation 

(Tall  2019a, 2019b). The process of reading an expression as a hierarchy can be interpreted, 

first by seeing the whole expression as an object, then looking at it as an operation in which any 

expressions in brackets are boxed as individual objects, then burrowing down recursively in 

each object as an operation eventually builds the hierarchical meaning of the whole expression. 

x 1

x2 + 2
as an
object

x 1

x2 + 2
as an

operation

https://www.ncbi.nlm.nih.gov/pubmed/22521479
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
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This is not an easy task for most learners. It is virtually impossible for the many who 

simply learn the rules by rote, but it is a process that seems to be performed implicitly by those 

who make sense of the hierarchical structure. 

The ‘box method’ is not proposed as another rote-learnt technique to help students get 

‘the right answers’. What is more important is that the learner senses the different strengths of 

binding operations  to make sense of more complicated expressions. Over time, with increasing 

familiarity, it may enable the structure to be conceptualised in the mind’s eye to manipulate the 

symbols subconsciously while focusing consciously on more sophisticated ideas. 

3.5 How the eye follows a moving object 

Hold a finger in front of your eye and move it sideways, keeping your gaze on the finger as it 

moves. Do this now and sense what is happening. 

Whether you keep your head still and move your eyes, or you move your head to follow 

your finger, you should find that the eye remains smoothly in focus while the background is out 

of focus. This is using the same mechanisms in the eye and brain that are employed in reading, 

but rather than jumping along text in saccades, there is a single saccade to jump to focus on the 

finger and then the moving finger is followed in a smoother fashion. 

This relates to the fact that the fovea in the eye which takes in the highest detail has around 

200,000 cones which gives a linear diameter with around 500 cones in a line. Each of these 

takes a fraction of a second to register a signal. The time for this to happen can again be 

evidenced by personal experience. Standard movies on a computer are currently set to renew 

the picture at 25 frames a second in the UK and 30 frames a second in the USA though faster 

speeds are now becoming widely available. Yet only a decade or so ago, movies on a computer 

were set at a much slower rate and a speed of around 15 frames per second is as low as can be 

used to give a sense of continuous movement. Any lower and the viewer becomes aware of the 

separate pictures. 

An object moving along in a line will successively alight a thin strip of cones in the retina 

as it moves along, continually refreshing in short periods of time, to detect movement. What 

we actually see is not a mathematical real line with infinite decimals, but a practical line which 

may be described as a continuum. 

The Oxford English Dictionary defines a continuum as ‘A continuous sequence in which 

adjacent elements are not perceptibly different from each other, but the extremes are quite 

distinct’, while the Cambridge Dictionary says, 'something that changes in character gradually 

or in very slight stages without any clear dividing points’. 

When we look at a point moving along a line, our eyes see a continuum as the cones in 

our retina recognising the point come into play successively. If we watch a football match on a 

retina screen, even though the actual ball may be moving smoothly, the image is moving in 

imperceptible small steps. It is natural to imagine a point which moves on a line as a variable 

and a point that stays in the same position as a constant (Figure 8). 

Figure 8: constant and variable points on a line 

In a practical embodied sense, we can see a variable point x moving to a constant c and, 

according to what we see, the variable x will become indistinguishable from c. We can therefore 

imagine that as x → c the variable tends to the fixed value c. Meanwhile, in the operational 

fixed
point

(constant)

moving
point

(variable)

x c
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symbolic world, if we consider an expression such as (x2 – 4)/(x – 2) then, for x ≠ 2, we can 

factorise and cancel to get

(x2 – 4)/(x – 2) = x + 2 (for x ≠ 2). 

This brings us to the problem that has dogged us for three and a half centuries: we can let x get 

‘as close as we wish’ to 2 and the answer is x + 2, but we cannot put x = 2, because then the 

expression is not defined. 

The solution to this dilemma is simple. It is a matter of whether the focus is on the process 

or on the object. If we think about the process of x getting arbitrarily close to 2 without actually 

getting there, then this is never-ending, but if we focus on the object that the expression gets 

close to, then this is the constant 4. 

3.6 Practical, theoretical and formal levels of conceptualising a limit 

The three-world framework identifies three levels in the calculation of a limit, whether it is the 

limit of a continuous function, of an infinite sequence or series, the derivative, integral, the 

fundamental theorem of calculus, the solution of a differential equation, functions of several 

variables, partial derivatives, or vector calculus. These three levels are: practical, theoretical 

and formal. 

The practical limit is the result of an approximation calculated numerically, symbolically 

or visually. It is an object that arises as a close approximation. Visually the embodied limit 

object can usually be seen. For example, at a later stage of the calculus, consider the Taylor 

series for sin(x): 

Drawing successive practical approximations for n = 1, 2, …, 6, using Mathematica, we can 

see the graph of successive approximations stabilise visually on the graph of sin(x) (Figure 9: 

Kidron & Tall, 2015). 

Figure 9: A sequence of practical graphs stabilises on the embodied limit 

This is not a formal proof, it is not intended to be. It is a practical visual embodiment in which 

the sequence of practical approximations stabilises on the limit object. It gives human meaning 

that can develop into more sophisticated interpretations. 

The theoretical limit is the object that arises from the (infinite) process of stabilisation. It 

is the object that the process of approximation gets ‘as close as is required. 

The formal limit in all cases is re-defined in terms of quantified epsilon-delta or epsilon-

N definitions and proof. Handling the quantifiers is far more sophisticated and is usually 

postponed to a formal course in analysis. (See Tall, 2013 or Stewart & Tall, 2014). 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2015a-kidron-potential-actual.pdf
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3.6 Embodying limits, differentiation, continuity, integration and the calculus 

Now we have visual interactive displays, it becomes possible to manipulate visual 

representations of the limiting process as it stabilises on its limit object. This offers insightful 

new ways of embodying the notions of continuity, differentiation, integration and so on. In 

particular, it allows us to build a coherent long-term sequence of meanings, starting from 

practical experience of drawing by hand and moving to the theoretical ideas that can be 

approached as close as is desired, then (if one desires) to move on to the formal definitions 

given in mathematical analysis. 

Once we grasp that the curve that we draw with a pencil on paper is a continuum, we can 

begin with the idea that a continuous curve is given by the practical action of drawing a curve 

dynamically with a pencil without the pencil leaving the paper. In the same way, a number line 

is just a practical continuum with a chosen unit to represent the numerical length 1 where the 

line is marked with integer points at equal intervals to the left and right of the origin, with 

rational numbers added by dividing the units into equal size parts and the realisation that there 

are even more points, such as √2, √17, π, e, etc which are not precisely rational numbers. 

The real number line is a theoretical construct in which we imagine any position on the 

real line can be represented precisely as a rational or irrational number. This will later be defined 

more formally in terms of Cauchy sequences or Dedekind cuts. In the initial stages of drawing 

graphs, numbers are theoretical ‘infinite decimals’ that can be represented practically as 

accurately as is desired by calculating a suitable number of places. 

By drawing a horizontal x-axis and a vertical y-axis, we can describe the plane as a two-

dimensional continuum with theoretical points identified precisely as ordered pairs (x, y) of real 

numbers. Now a real function y = f(x) can be drawn practically as a physical curve which we 

can imagine as a theoretical graph made of up of theoretical points (x, f(x)). 

The study of calculus involves the two operations of differentiation and integration which 

are complementary. However, we need to be aware of how we interpret the picture, particularly 

if we change the scale on the two axes while maintaining the same numerical values. If the scale 

is changed, the visual slope of the tangent will change, but the symbolic value of the derivative 

f’(x) and of its practical slope function (f(x+h)–f(x))/h for a small value of h remain the same. 

The same happens for the area under the curve. The numerical value of the practical area 

found by adding up strips width h, height f(x) and the corresponding integral remain the same 

but the picture looks different. When we calculate the derivative and integral using visual 

pictures and symbolic calculations, we need to interpret the calculations as remaining the same, 

even if the scales on the two axes are changed in the picture. 

As we study the calculus, we can consider differentiation and integration beginning with 

either one first. Historically calculating areas and volumes came first because it was of practical 

use while the rate of change was not a focus of attention because time could not be measured 

accurately. In modern teaching it is more sensible to study differentiation first because the 

practical derivative only involves calculating the practical slope function (f(x+h)–f(x))/h for a 

small value of h, whereas practical integration involves adding the areas of many strips height 

f(x), width h, which is intrinsically more complicated. 

3.6.1 Differentiation: a differentiable function is ‘locally straight’ 

In Leibniz’s original formulation of differentiation (1684), he defined what we now term the 

derivative at a point (x,y) as the quotient dy/dx where dx and dy are the components of the 

tangent. Its first definition was therefore as the quotient of two lengths. The devil is in the detail: 

what is meant precisely by ‘the tangent’ and how can it be calculated algebraically. The word 

‘tangent’ comes from the Latin ‘tangere’ to touch. In Euclidean geometry, for a circle, the 
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definition is simple: it is the line through a point on the circle that is at right angles to the radius. 

It ‘touches the circle at just one point and does not cross it.’ However, if this definition is used 

for a more general curve, it is highly problematic. There are many studies that show the 

complications students encounter with the notion of tangent. 

This relates to the long-term development of conceptual embodiment which uses 

increasingly sophisticated levels of language to categorize human perception and action. In the 

context of circle geometry, the phrase ‘a straight line that touches the circle but does not cross 

it’ clearly identifies a tangent. When the word ‘circle’ is replaced by ‘curve’, the description is 

no longer adequate. To operate with more general curves as graphs in the calculus requires a 

new mental image to make sense of a tangent in the new context. This is precisely the problem 

of shifting the context to a new level where language may mean something different, as 

observed by van Hiele (1986) . 

Before the advent of high-resolution dynamic graphics, the usual way a tangent was 

represented visually was as a static picture in a book (figure 10). 

 

Figure 10: A static picture introducing the tangent (Durell & Robson, 1933) 

This method was introduced in England to encourage the use of the continental Leibniz notation 

alongside the more cumbersome notation of Newton in a textbook by Robert Woodhouse 

(1803). From here it spread through the English-speaking world including the USA. 

Woodhouse used the notation δx for the change PR in x and δy for the change RQ in y, to give 

the slope of the chord PQ as the quotient δy/δx. But he disapproved of Leibniz’s interpretation 

of dy/dx as a quotient of infinitesimals and insisted that it represents the limit of δy/δx as δx 

tends to zero. This interpretation passed on from generation to generation. Now we are again 

aware of Leibniz’s original definition, we can see it as the quotient of the components of the 

tangent vector. The problem is how to interpret the situation and calculate the derivative in a 

meaningful way. 

Using a graphical display, we can zoom in on the curve at P and, if the graph is 

sufficiently smooth to have a tangent, we will find that a small portion of the magnified graph 

looks less and less curved as is it magnified. In practical terms, under high magnification, a 

small part of the graph is indistinguishable from a straight line: it is ‘locally straight’. 

Magnification of a graph can be performed in many current graphic software programs. 

Unlike the picture in figure 10, where a physical magnification will also magnify the thickness 

of the curve, a digitally magnified graph so that, unlike the magnification of a physical picture 

such as figure 10, the magnified graph can be drawn with the same thickness as the original. 

Figure 11 shows a picture representing a smart phone with a standard resolution in the square 

on the left and a small square centred on a point P with coordinates (x, y) has been selected and 

its contents magnified to fill the square on the right. As the magnification is increased, if the 

graph has a derivative at P, the magnified portion will become less curved until it looks ‘locally 

straight’. What is important here is not the particular software, but the imaginative idea that, as 

the point x is moved to the left or right, then the slope of the graph changes and it is possible to 

look along the graph to see its changing slope. 
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Figure 11: Under high magnification the graph of a differentiable function is locally straight 

Software can be designed to plot the numerical value of (f(x+h)–f(x))/h) for small fixed h to 

give the practical slope function, which, for a differentiable function, for sufficiently small h 

will stabilise on the theoretical slope function – the derivative f’(x). 

Figure 12 shows the practical slope functions for sin(x) and cos(x), visually revealing the 

practical slope functions stabilising on cos(x) and –sin(x) respectively. Now we can see why 

the derivative of cos(x) is minus sin(x): it is the graph of sin(x) upside-down. 

 

Figure 12: Seeing the practical slope functions of sin(x) and cos(x) 

This approach can be used to visualise the derivatives for all the standard functions in the 

calculus in a practical and theoretical approach to the calculus. It also provides the foundations 

for increasingly sophisticated ideas in formal mathematical analysis and logical non-standard 

analysis (Tall, 2013, chapter 11, Stewart & Tall, 2014, 2018). 

3.6.2 Integration: a continuous function pulls ‘locally flat’ when stretched horizontally 

The theory of integration to calculate the area under a graph y = f(x) from x = a to x = b involves 

taking thin strips width dx (which may vary) and height f(x) for successive values of x in the 

strip and add them all together. The sum may be written as  or, more compactly, as 

Σ y dx when the context is clear. Note that the symbol dx now simply refers to the actual 

(variable) width of the strip.  

Calculating such a sum can now be performed efficiently using technology. Adding them 

to give an algebraic formula is far more difficult. For example, if f(x) = xn for a whole number 

n, then the derivative is easy to calculate as nxn-1, but the sum  of strips involves the 

formula for the sum of nth powers Σ rn. Even the case n = 2 is difficult for beginners and 

successively higher values of n become too complicated, even for experts. 

An important aspect is the meaning of ‘continuity’. Informally, a function  y = f (x) is said to 

be continuous if ‘the graph can be drawn without taking the pencil off the paper.’ When we 
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draw a continuous function, some functions, such as y = x3 from x = –5 to 5, grow so large (in 

this case from y = –125 to y = 125) which would be too tall to draw on the page of a book. Such 

graphs are often drawn with different x and y scales. What is rarely done is to stretch the picture 

horizontally to stretch a thin x-interval to fill the width of a picture while maintaining the same 

vertical scale. This proves to be the representation that links the informal version of continuity 

to the formal definition. 

Figure 13 shows a graph drawn with a continuous movement on the left in a fixed 

rectangle and on the right the graph is stretched horizontally while maintaining the vertical 

scale. Imagine the graph being drawn in a fixed window on a high resolution display. 

 

Figure 13: Pulling a continuous graph flat within a fixed window 

The graph is said to ‘pull flat’ if it is stretched out to look like a horizontal line of pixels. This 

links directly to the formal notion of continuity. Suppose that the point x0 is in the middle 

horizontally and the line of pixels is height f(x0) ± ε, then for the graph to ‘pull flat’ to lie in the 

line of pixels, we need to be able to find δ > 0 such that if x lies in the interval between x0 ± δ, 

then f(x) lies between f(x0)  ± ε (Figure 14). This links to the formal definition of continuity in 

the form that a function is continuous at x0 if, for given any ε > 0, there can be found a δ > 0 

such that | f(x) – f(x0)| < ε. 

  

Figure 14: A continuous graph pulled flat 

To represent the dynamic process of stretching a graph horizontally, it is possible to program 

two boxes side by side to allow the user to select a thin vertical strip, height y, width dx above 

a point x on the horizontal axis in the left box and then picture it stretched horizontally in the 

box on the right, as in figure 15. 

The exact area under the graph  from a to b is denoted by A and the exact change 

in area from x to x + dx as dA. Stretching the graph horizontally changes the visual appearance, 

but the numerical calculation of the rectangular area y times dx remains the same. If the pixels 

covered in drawing the graph represent a height h, the numerical difference between dA and 

y dx is less than h dx. Adding together the rectangular strips, the practical area calculation 

 differs from the theoretical area by less than  = h(b – a). If this can be carried 

out for any value of h > 0, however small, then the process of calculating the practical area 

 can be made as close as is desired to the limit object, the theoretical area, . 
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Figure 15: When stretched horizontally, the graph of a continuous function ‘pulls flat’ 

3.6.3 The Fundamental Theorem 

We are now in a position to visualise the Fundamental Theorem of Calculus. In the picture of 

the horizontally stretched strip, the difference between the actual area dA and the calculated 

value of y dx lies in the horizontal line width dx, height h. The error between dA and y dx is 

therefore less than h dx. The total error between the precise area and Σ y dx is therefore less 

than (b – a)×h. As we draw more accurate pictures in our mind’s eye, we can imagine h being 

as small as desired, so the difference between the finite pratical sum Σ y dx and the value of the 

area A can be made as small as desired. Denoting the theoretical limit value A as ∫ y dx, it is 

possible to think of the integral as the precise area where dx as an arbitrarily small variable. 

Problem solved! 

Or is it? 

4. Competing views of different communities 

Now we reach the great impasse. Can we really think of dx in the integral as an infinitesimal? 

Since the real numbers have been formulated as a ‘complete ordered field’ which can be proved 

to not contain any infinitesimals, the visual number line has widely been seen as ‘complete’ 

with its rational and irrational numbers. Many pure mathematicians researching mathematical 

analysis denied the existence of infinitesimals on the number line while applied mathematicians 

usually think of them pragmatically as ‘arbitrarily small quantities.’ So, two apparently 

conflicting theoretical approaches continue side by side. 

The reason for this can be explained in terms of beliefs that arise in different communities 

of practice, each of which works coherently in its own community but is unacceptable to the 

other. This happens, for example, in religion where one community regards the beliefs of 

another to be unacceptable and, if an individual moves from one religion to another, the first 

community may consider it to be a transgression while the second regard it as an enlightenment 

Tall, 2019a). 

This idea of shifting contexts also applies in other situations, including mathematics. It 

occurs in van Hiele’s theory of levels where an expert may seek to offer enlightenment to a 

student but they may use language in different ways so that each one fails to understand the 

thinking of the other. 

It also happens when an individual is faced with a shift to a new context where the 

transition is problematic and the individual is not able to make a meaningful transition.  Over 

the longer term the individual may seek to learn the new material by rote to pass an exam but 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
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does not build connected mental structures that are compressed into flexible concepts 

appropriate for longer-term evolution of ideas. 

As new contexts are encountered, some concepts (such as the theory of prime numbers 

for whole numbers) may not be relevant in another context (such as the arithmetic of real 

numbers): or may even be inappropriate (as in algebraic number theory where factorisation may 

not be unique). 

To address the relationship between different communities and different contexts requires 

a higher-level multi-contextual overview (Tall  2019a, 2019b). In a religious context this may  

involve a dialogue between different faiths to identify aspects that they have in common and 

others in which they differ. A resolution may be found by a multi-faith collaboration in which 

different religions share those aspects that they have in common and agree to differ on 

conflicting aspects that that each community holds sacred. 

In the historical evolution of mathematics, conflicts may arise as new contexts are 

encountered and different communities hold their own views for their own purposes. The notion 

of infinitesimal is a classic case. In the early twentieth century, infinitesimals were banned from 

conventional standard analysis because they did not fit into the system of real numbers and their 

use was deprecated, yet they work in simple and meaningful ways in many applications. 

This has been a recurring mantra over the centuries. Negative numbers cannot exist, 

‘because you cannot have less than zero’, complex numbers cannot exist ‘because the product 

of two non-zero (real) numbers must be positive, so -1 must be ‘imaginary’. In his critique 

of the calculus, Bishop Berkeley (1734) denied the existence of infinitesimals, saying it is 

‘impossible to understand them in any sense whatsoever.’ 

Axiomatic formal mathematics takes us into a new contextual level where it is possible 

to imagine the number line has more points on it than just real numbers. The practical real line 

that we see with our human eyes is a continuum which needs to be imagined theoretically to 

think of it consisting of an infinite number of rational and irrational points. A further leap of 

imagination is required to be able to conceptualise infinitesimal quantities in analysis. This was 

proposed using higher level logic by Abraham Robinson (1966). Although some pure 

mathematicians hailed this as a magnificent insight, many others in classical analysis 

considered it as a transgression and retained their long-established beliefs.. 

When I developed a course on the development of mathematical thinking for pure 

mathematics undergraduates in the early seventies, I translated Robinson’s logical approach 

into algebraic set theory, beginning with simple examples of ordered fields that contained the 

real numbers as a subfield and proved a theorem that was so simple I didn’t have the courage 

to submit it to any mathematical journal. Frankly, it could be set as an undergraduate  exercise 

for anyone who grasped the axiomatic formal approach. 

The theorem applies to any ordered field K which contains the real numbers as an ordered 

subfield. If K extends the real numbers, it  must contain at least one element k that is not real 

and is either ‘finite’, in the sense that a < k < b for some real numbers a, b, or positive infinite 

(satisfying k > c for every real number c), or negative infinite  (satisfying k < c for every real 

c). The completeness of the real numbers can then be used to prove 

Any finite element x in an ordered extension field K of the real numbers is either a 

real number or of the form x = c + ε where c is real and ε is infinitesimal. 

This is a structure theorem which proves new forms of conceptual embodiment and operational 

symbolism. The conceptual embodiment can be seen in the form of a map m(x) = (x–c)/ε which 

magnifies infinitesimal detail near c and draws a practical picture for finite m(x). For those 

values of x for which m(x) is finite, the optical microscope μ is defined to have real values by 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
https://www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.pdf
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defining μ(x) to be the unique real number that differs from m(x) by an infinitesimal. (See details 

in Tall, 2013, chapter 13.) This works quite naturally in higher dimensions and, using an optical 

microscope to look at infinitesimal detail around a point (x, f(x)) on the graph of a differentiable 

function, the image seen in the optical microscope is a full line of slope f’(x) (Figure 14). 

 

Figure 16: An optical microscope pointing at an infinitesimal part of a locally straight graph 

The same technique works with different scales on the x and y axes to visualise the notion of 

local flatness of continuous functions and applies more generally to multiple dimensions, 

differential equations, partial derivatives, complex functions and other aspects of mathematical 

analysis (Tall, 2013, Stewart & Tall, 2014, 2018). 

In this way, the theory of three worlds of mathematics does not end with axiomatic formal 

mathematics at the highest level: structure theorems rise up from the formalism to give even 

more sophisticated forms of conceptual embodiment and operational symbolism. The three 

worlds of mathematics spiral upwards together as embodiment and symbolism interact with 

each other to inspire axiomatic formal theory which in turn leads to more sophisticated 

embodiment and symbolism through proving structure theorems. 

Since only a tiny percentage of the population will spend their lives studying axiomatic 

formal mathematics, the consequence of this insight is not to encourage the population to fly 

higher in the stratosphere. Such higher levels of mathematics may be of benefit to society as a 

whole (such as the use of large prime numbers to encrypt information on the internet). The 

message here is that different communities may have genuine reasons to think mathematically 

in different ways that are appropriate both for individuals within that community and for society 

as a whole. 

5. Discussion 

The framework of three worlds of mathematics offers a multi-contextual overview of the long-

term evolution of mathematical thinking which builds from the past and develops into the 

future. Different readers may interpret it in different ways. It is the privilege of an individual to 

form a personal opinion. However, we also have responsibilities to others. The question for the 

reader to consider is whether the framework encourages you to reflect on the attitudes of others 

and the nature of your students’ sense-making in a way that is supportive for their (and your) 

long-term thinking. 

The framework offers immediate ways to re-think how we as individuals make sense of 

mathematics and how we can help others to progress in their mathematical thinking. The 

Principle of Articulation can be introduced at any level to open up discussion about the meaning 
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of mathematical expressions. It can be used with young children or with adults with learning 

difficulties. It can be helpful to teachers to encourage long-term strategies to grasp the meanings 

of operations in arithmetic and algebra and it can help experts and curriculum designers to plan 

for long-term success. By using the Articulation Principle and the long-term principles for the 

operations of arithmetic, the underlying principles of algebra arise naturally and offer a 

supportive basis to build confidence throughout the whole curriculum. 

Many of the problems raised in the literature can be linked to the interpretation of 

symbolic expressions. For example, children first encounter simple operations such as 2+3 = 5 

where there is a process on the left giving a result on the right. In algebra an equation such as 

2x+1 = 7 with a process on the left and a number on the right can be ‘undone’ by reversing the 

process. Meanwhile an equation with expressions on both sides is better understood as having 

an object on either side expressed in different ways and is solved by ‘doing the same thing to 

both sides.’ 

Over the long-term, there are successive transitions as different processes give the same 

object: counting a set in any way gives the same number, equivalent fractions become a single 

rational number, algebraic equivalences become the same function, equivalent Cauchy 

sequences give the same real number. While this is usually interpreted symbolically using the 

concept of equivalence, it is more meaningfully sensed as different symbolic representations of 

the same object. Visually, equivalent fractions represent the same point on the number line, 

algebraically equivalent expressions and trigonometric identities give the same graph, and, 

more generally, infinite limiting processes stabilise visibly on their limit object. 

This may be approached by building from natural embodiment to symbolism by 

encountering several different experiences from which generalities grow (as proposed 

insightfully by Dienes, 1960). But a more powerful alternative is to identify foundational 

supportive principles so that learners can use them to build confidence to address the 

problematic aspects that impede the transition to new contexts. 

A serious problem is a fragmentation of the whole system into dealing with learning by 

developing expertise in separate parts of the whole: pre-school, early learning, kindergarten, 

primary, secondary, high school, college, adult learning, university, post-graduate, special 

needs, gifted and talented, and so on. All of these are essential, but they need to be seen as part 

of a greater whole, so that different communities of practice are aware of a bigger picture. What 

happens currently is that learning is broken into stages, with tests to decide who passes on from 

one stage to another. 

Personally, I always enjoyed examinations because they incentivised me to reflect on 

what I had learnt and helped me put everything in perspective. But this is not an experience 

shared by many. 

Instead there may be a desire to pass the examination by rote learning, especially when 

there are problematic aspects involving a change in meaning. Over the longer term, cumulative 

changes that occur without making meaningful connections are likely to make mathematics 

more complicated. Long-term success may be enhanced by meaningful connections that 

compress complex operations into mental objects that can be manipulated in simpler ways in 

more sophisticated situations. 

5.1 Evolving practice from theory 

The book How Humans Learn to Think Mathematically (Tall, 2013) builds theory from practice 

through analysing the development of mathematical thinking of individuals from pre-school 

beginnings to post-graduate research. Since that publication, the theory has expanded to 

incorporate a range of insights reported in this paper. Of particular value are experiences that 



 

Thursday, 21 May 2020, 12:06 PM 24 

everyone can observe for themselves and simple principles that can be introduced explicitly to 

learners to enhance long-term growth. They open up a new stage in the relationship between 

theory and practice. Instead of using research to develop theory from practice, we may reverse 

the direction and use theory to develop practice, based on meaningful principles. 

For example, the Articulation Principle enables us to give precise meanings to symbolic 

expressions. For instance, 2 × … 3 + 4 may be written as 2 × (3 + 4) where 3 + 4 is to be 

calculated first give 2 × 7. More generally, a sub-expression inside a bracket may be seen as a 

single entity to be calculated first and given the highest order of precedence. 

The General Principle for Addition and Subtraction underpins the rule that performing 

these operations on a list of quantities in different ways does not change the result, so Addition 

and Subtraction have the same order of precedence. 

Likewise, the General Principle for Multiplication and Division underpins the rule that 

Addition and Subtraction have the same order of precedence. 

It is now a matter of seeing some operations bound together more strongly than others. 

Brackets (Parentheses) have the highest order of precedence. Exponents such as x3 take 

precedence over multiplication, so that 2x3 is seen as 2(x3) rather than (2x)3. Over time the 

learner becomes acquainted with simpler expressions involving a small number of terms, such 

as a + 2b where the implicit multiplication is bound together as (2 × b) and the terms a 

and (2 × b) can be re-ordered as (2 × b) + a. More generally, the interpretation of expressions 

can be made meaningful by encouraging the learner (and the teacher) to imagine the strength 

of binding of operations between quantities and to deal with stronger bound sub-expressions 

first. Meanwhile any subsequence of operations having the same order of precedence can be 

moved around and performed in any order. 

These general principles now give a precise meaning to the order of operations in the 

mnemonic 

P > E > M = D > A = S. 

As shown in §3.4, this meaning extends to more sophisticated symbolic expressions throughout 

mathematics, giving meaning to the long-term development of symbolism. 

The enhanced framework also emphasises the fundamental role of embodiment to give 

human meaning to the powerful use of symbolic operations in increasingly sophisticated theory. 

In addition, it acknowledges the underlying emotional linkages between supportive and 

problematic aspects that cause not only pleasure or fear but also our very ability to make, or 

fail to make, connections in mathematical thinking. It enhances making mathematics 

meaningful over the longer term. 

5.2 Evolving mathematical thinking in the present and future 

The enhanced framework observes that different communities interpret mathematics in 

different ways that may be appropriate in their own context but may not apply in others. It 

formulates a broader overview to encourage individuals in different communities to 

communicate with each other, to respect viewpoints that may be appropriate for others but may 

differ from their own. This is not a simple task, as each community will have ways of working 

that they share amongst themselves but which may not be shared by others. 

In writing up the developing theory as it evolved, I found that I was expressing ideas in 

different ways for different audiences. These included elementary school teachers (Tall, 2017), 

a conference on ‘mathematical transgressions’ for philosophers of mathematics and educators 

(2019a), cognitive science (2019b), the ‘Aha!’ experience (2020a), and the relationship 

between university mathematics and mathematics education (2020b). Reviews of these papers 

were encouraging, but there is a need for reflective research into the effectiveness of the 
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practical approach to the theory in different contexts. This is no longer a simple matter as 

different communities may view the situation in different ways and come to different 

conclusions. What is of paramount importance is that the teaching and learning in a particular 

community is fit for the purpose of that community. 

A major ingredient is the Articulation Principle that can be used to give meaning to 

operational symbolism at any level from young children encountering simple arithmetic to 

adults who may have deeply problematic difficulties with arithmetic and algebra. A further 

aspect is the realisation that embodiment, in terms of gesture, dynamic visualisation and mental 

thought experiment, plays an important role in the long-term development of sophistication, 

even at the highest formal level where structure theorems pave the way to support human 

thought processes to imagine new levels of thinking. This includes the way in which we imagine 

constant and variable quantities that allow us to see arbitrarily small quantities as infinitesimals 

that can be magnified to see them in a finite magnification. It extends to the visualisation of 

concepts such as continuity, differentiation, integration, passing through levels of practical, 

theoretical and formal mathematics.  

This has serious consequences that can affect the whole curriculum, such as calculus in 

the United States where the College Board (2016) specifies a curriculum that can be tested 

without mentioning visual ideas such as local straightness of differentiable functions and local 

flatness of continuous functions. Yet the MAA National Study of College Calculus (Bressoud 

et al., 2015) reports serious difficulties with the calculus that may be meaningfully resolved by 

taking account of their dynamic visual representations coupled with the flexible interpretations 

of the symbolism. 

In my most recently completed publication at the time of writing (Tall, 2020b) I proposed 

an overall principle for long-term meaningful learning which I named in honour of my 11-year 

old grandson who explained the idea of the Articulation Principle to me (Tall, Tall & Tall, 

2017): 

The Simon Principle: The teacher should be aware of those ideas that remain 

supportive through several changes of context, to give confidence to the learner, 

and to make explicit those ideas that are problematic so that they can be addressed 

meaningfully. 

This requires a total rethink of the entire curriculum so that fundamental principles are fully 

integrated into the experience of teachers and learners. It also suggests that mathematicians and 

curriculum designers should reflect on how to make mathematics meaningful over the long-

term in a manner appropriate both for the developing individual and the needs of society. This 

is likely to involve mathematicians, mathematics educators and others involved in the use of 

mathematics to realise that their belief systems need to be radically overhauled to make sense 

of the present and to prepare for the future. 
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