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What do you see as the most significant advances, changes, and/or gaps in the field of 
research in university mathematics education? These advances, changes, or gaps might relate 
to theory, methodology, classroom practices, curricular changes, digital environments, 
purposes and roles of universities, social policies, preparation of university teachers, etc. 
Please elaborate on just one or two advances, changes, or gaps most relevant to your 
experience and expertise. If possible, please include a few key references. 

1. Response

The question, as posed, already puts a structure on the discussion, requesting a wide range of 

possibilities and then encouraging a response to focus on one or two aspects. My response is to 

look at the bigger picture to develop an overall balanced view of positive and negative 

developments and, within this overall framework, to offer specific examples. 

University Mathematics Education should not be seen in isolation. Insights and 

difficulties that students encounter at university level are already affected by their earlier 

experiences. The same is true for university professors in different disciplines (such as pure, 

applied, engineering, biology, economics, computing, etc) who may have radically different 

approaches that may be appropriate in one context yet entirely inappropriate in another. For 

example, a pure mathematician may deal with mathematical analysis based on the epsilon-delta 

definition of limit and the completeness of the real numbers which do not contain infinitesimals, 

while an engineer may consider infinitesimals as ‘arbitrarily small quantities.’ 

Those present in the ICME-14 working group will probably be mainly concerned with 

teaching and learning of undergraduate and graduate mathematics. However, it is essential for 

the participants to be aware of aspects that affect the ways in which differing experts and 

learners interpret mathematical ideas. 

Recent developments in technology have offered us radically new tools to support our 

mathematical thinking. For example, the introduction of interactive retinal screens on smart 

phones offers new ways of interpreting what we see. Less obviously for mathematicians and 

mathematics educators, research into brain structure and brain activity has subtle implications 

for how we make sense of mathematics. This causes a variety of emotional reactions, including 

positive willingness to address problems and negative mathematical anxiety that can inhibit 

coherent thinking. Then there are cultural aspects in which different communities of practice 

interpret mathematics according to their own shared views that may cause them to be 

completely unaware of the root causes of positive and negative aspects of mathematical 

thinking in their own minds and in the minds of their students. 

I will report evidence that cultural views of mathematicians and mathematics educators 

have led to reforms that are not meaningful for many students and will propose broad principles 

that may be implemented in current approaches to lead to long-term meaningful growth. 

The cultural differences between different communities of mathematics is analysed in 

Tall (2019b) in terms of ‘long-term principles for meaningful teaching and learning of 

mathematics’ at university level. Essential aspects of the differences as applied to calculus and 

analysis are considered in the video Tall (2019c). The theory I present here applies throughout 

the whole of mathematics, including the full range of mathematics at university level. 

mailto:david.tall@warwick.ac.uk
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019c-long-term-framework.pdf
https://www.youtube.com/watch?v=eOwQlEPKCfY&feature=youtu.be
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The long-term growth of sophistication in mathematical thinking can usefully be seen in 

terms of three successive levels that I term practical, theoretical and formal. This analysis 

applies both to the long-term learning of individuals from child to adult and to the evolution of 

mathematical thinking in different cultures in history. 

Pure mathematicians tend to see mathematics in terms of axiomatic definitions and formal 

proof, while being concerned that intuitive ideas so often fail and are in need of formally defined 

structure. I offer an analysis based on structure theorems in formal mathematics that lead to 

more sophisticated forms of visual and symbolic thinking that involve refined forms of 

intuition. This is supported by research in the structure and operation of the human brain related 

to mathematical thinking and cultural relationships between different communities of practice. 

2. Practical, Theoretical and Formal Mathematics

Practical mathematics involves recognising properties and patterns, performing operations and 

noting relationships that link together coherently, occurring at the same time. Theoretical 

mathematics involves explicitly formulating definitions that can be used to reason about 

properties of familiar situations where other properties can be deduced as a consequence of the 

definitions. Formal mathematics involves quantified set-theoretic definition and proof where 

all properties are deduced from axioms and definitions using formal proof. 

Practical mathematics involves sensing general properties. For example, shopping in a 

supermarket and collecting together a basket of items, the order in which the items are selected, 

or the prices are added at the checkout, always gives the same total cost. Practical mathematics 

observes general principles, such as the principle of conservation, that the number of elements 

in a collection is always the same, no matter how it is counted. This principle extends 

successively to sums in the context of whole numbers, fractions, signed numbers, decimal 

expansions, real and complex numbers and to more general properties in algebra. 

Theoretical mathematics notices properties, such as the commutative, associative and 

distributive properties that can be used as a basis for a theoretical approach to arithmetic and 

algebra. For instance, the property xm+n = xmxn which has a practical meaning for whole 

numbers m and n can be used to derive theoretical properties for fractional and negative powers. 

The deduction of more general properties in arithmetic and algebra require more subtle 

principles, such as proof by induction. Here, the proof is potentially infinite: get started at an 

initial value, say n = 1, then prove the general statement that if it is true at n = k, then it is true 

at n = k+1, then, repeat the process for k = 1, 2, …, and so on, potentially reaching any desired 

value of n, no matter how large. 

Formal mathematics involves an enormous compression of knowledge. Instead of 

speaking of the potential infinity of the set of counting numbers, think of it as a single mental 

object: the set ℕ of natural numbers. Now write down just two axioms: 

1. there is a successor function s: ℕ → ℕ which is one-to-one but not onto (so ℕ has

an element, 1, which is not a successor, s(n) ≠ 1, for any n in ℕ).

2. If S is any subset of ℕ where 1 ∊ ℕ and (k ∊ S ⟹ s(k) ∊ S), then S = ℕ.

A proof by induction is now finite. It has just three steps. Let S be the set of n for which a given 

statement is true: 

i) prove 1 ∊ ℕ,

ii) prove k ∊ S ⟹ s(k)  ∊ S,

iii) then quote axiom 2 to deduce that S is the whole of ℕ.
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The three levels of practical, theoretical and formal mathematics are clearly hierarchical in that 

practical mathematics begins before theoretical mathematics and most individuals never reach 

the formal level of mathematics. They are also cumulative in that any level includes interchange 

with previous levels within an individual and between different individuals. The difference in 

level of interpretation may exist explicitly or implicitly between expert and student or between 

different experts or differing cultural communities. Theoretical notions involving potentially 

infinite processes may co-exist with formal notions of axiomatic mathematical objects. 

In How Humans Learn to Think Mathematically (Tall, 2013), I analysed the cognitive 

growth of mathematical thinking throughout the curriculum. This involves highly subtle detail. 

Now I stand back to look at mathematical growth, not just in terms of what we teach and 

what students learn in a curriculum sequence, but in terms of how the meaning of the 

mathematics changes as new contexts are encountered. This involves a new way of balancing 

positive and negative effects of experiences encountered earlier. Some continue to be 

supportive in the new context (such as the general principle that a sum is independent of the 

order of calculation) and others become problematic in the new context (such as the notion of 

uniqueness of factorization of prime numbers, which changes meaning when shifting from 

whole numbers to algebraic numbers). The simple principle I advocate is: 

The principle of long-term meaningful learning: It is essential for the teacher to 

be consciously aware of those ideas that remain supportive through several changes 

of context, to give confidence to the learner, and to make explicit those ideas that are 

problematic so that they can be addressed meaningfully. 

3. Thinking Mathematically through Conceptual Embodiment, Operational Symbolism,

Axiomatic Formalism

Many university mathematicians see formal mathematics as the summit of mathematical 

thinking. It may be the final stage of proving a particular theorem or building a sequence of 

theorems into a formal theory, but it is not the end of the creative process of developing new 

mathematical theory. Fundamentally, we need to be aware of how our thinking becomes more 

sophisticated through the use of visual dynamic representations and symbolic expressions in 

advanced forms of mathematics and will offer particular instances in calculus and analysis. 

In Tall (2013), I formulated three distinct forms of development of human thinking that I 

termed ‘three worlds of mathematics’ that grow in sophistication and are founded on the 

structure and operation of the human brain. I named these: conceptual embodiment, operational 

symbolism and axiomatic formalism, abbreviated to embodiment, symbolism and formalism 

where the context is clear. 

Conceptual embodiment began for me in the physical embodiment of Dienes (1960), 

developing through practical drawing, theoretical definitions and Euclidean proof in geometry, 

and moving on to visual dynamic representations and enactive gestures in the calculus and to 

mental thought experiments that may act as a prelude to axiomatic formal proof. Essentially 

this follows the broad ideas of levels of sophistication inspired by van Hiele (1986). 

Operational symbolism focuses on the flexible meaning of mathematical expressions 

dually representing a process or a mental object (Gray & Tall, 1994), taking account of the 

precedence of operations. (Initially I called this ‘proceptual symbolism’ (Tall, 2004) but 

changed to ‘operational symbolism’ to include the reality that many individuals learn symbolic 

algorithms by rote without meaning.)  

Axiomatic formalism involves structures defined using set-theoretic axioms and 

definitions formulated as quantified statements where all other properties of the structures must 

be deduced from these axioms and definitions using formal proof. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1994a-gray-jrme.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2004a-3worlds-flm.pdf
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Pure mathematicians often regard Euclidean geometry as the first stage of formal proof. 

This is consistent with the categorization of Euclidean geometry as theoretical mathematics and 

set-theoretic mathematics as axiomatic formal mathematics. The difference is that Euclidean 

geometry builds on mental imagination of visual figures, which may be termed ‘natural 

mathematics’ following the historical interpretation of mathematics as ‘natural philosophy’ 

before the change to the formal approach of Hilbert (1900) at the turn of the twentieth century. 

All three forms of development are relevant to university mathematics. Axiomatic 

formalism refers to the final precising stage of axiomatic mathematical theories based on set-

theoretic definitions and mathematical proof. These emerge as the result of more informal 

thinking about possible relationships, formulating hypotheses, bouncing off ideas with other 

mathematicians and deep, thoughtful reflection on how to organise the formal proof. 

4. An Example: The Teaching and Learning of Calculus and Analysis

The framework of embodiment, symbolism and formalism evolving through practical, 

theoretical and formal mathematics applies directly to the long-term teaching and learning of 

calculus and analysis. This is particularly relevant in recent years as the development of digital 

technology offers us new tools to make sense of ideas in new ways. For example, the recent 

international explosion in the use of smart phones with retinal displays offers new ways to look 

at the graphs of functions to see that, as the graph of a differentiable function is magnified, a 

small part looks less curved until it looks ‘locally straight’. Once an individual realises this, it 

becomes possible to look along the graph to see its changing slope. This embodies the meaning 

of the process of differentiation and the concept of derivative. The derivative is now represented 

by a graph whose value at any point equals the slope of the original function at that point. 

At a practical level, the visual embodiment offers a human meaning for the rate of 

change of a quantity. In a simple case such as y = x2, the slope over a short distance from x to 

x + h can be calculated symbolically as 2x + h, and for small values of h, the slope stabilises 

on the value 2x. The same technique generalises to powers of x and polynomials. 

At a theoretical level, once the property of powers of a variable is generalised to give 

the power law xm+n = xmxn, it becomes possible to deduce new meanings for fractional and 

negative powers and to draw the graphs of 2x and 3x. Both are increasing steadily while the 

slope for 2x is below the graph of 2x and the slope of 3x is above the graph of 3x, so it is 

straightforward to seek a polynomial approximation to the value of e between 2 and 3 

where the slope of ex is again ex. It is also possible to look at the slope functions of sin(x) and 

cos(x) in radians to see the slope of sin(x) is cos(x) and the slope of cos(x) is the same as 

the graph of sin(x) upside down, so the derivative of sin(x) is  minus cos(x). 

By such methods it is possible to give meaning to the standard derivatives and to 

experience the process in which the practical slope function (f(x + h) – f(x)/h gets close to the 

derivative as h gets small. The theoretical slope function involves a change of focus from the 

process of getting close to the derivative f ' (x) to the object that the process stabilises upon. In 

analysis, the formal level involves translating the theoretical definition into its set-theoretic 

epsilon-delta form. 

In the cognitive development of calculus, this framework reveals the increasing 

sophistication from the embodied notion of local straightness to the symbolic notion of local 

linearity. There is a huge difference between the two. Local straightness is a simple visual idea, 

that arises as a natural product of how the eye and brain interpret visual information (Tall, 

2019b). This can be introduced meaningfully before introducing the more sophisticated notion 

of symbolic local linearity. AP calculus, as designed by the US College Board (2019), bases its 

development on local linearity and makes no mention of local straightness or embodiment. This 

is a serious issue in the teaching and learning of calculus that needs to be addressed. 

https://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00881-8/S0273-0979-00-00881-8.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019c-long-term-framework.pdf
https://apcentral.collegeboard.org/pdf/ap-calculus-ab-and-bc-course-and-exam-description.pdf
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5. Structure Theorems: from Formalism to Refined Embodiment and Symbolism

While formal proof is the final precising stage of pure mathematics, it is not the final stage of 

mathematical thinking. Given a formal theory, it may be possible to prove theorems, called 

structure theorems, that give more sophisticated forms of embodiment and symbolism. In the 

second edition of Foundations of Mathematics (Stewart & Tall, 2014) we focus on the role of 

structure theorems that give more sophisticated embodied and symbolic forms of various 

axiomatic systems. These include the interpretation of the natural numbers and the real numbers 

as unique systems represented visually as points on a number line and symbolically as decimal 

representations. Visual embodiment and symbolic representation can also be proved in other 

axiomatic systems such as finite dimensional vector spaces, and more general structures such 

as group theory. 

Structure theorems lift the discourse to a more sophisticated level of embodiment and 

symbolism and, from there, the process may be repeated with the new embodiment and 

symbolism, suggesting new possible relationships, hypotheses and the quest for even more 

sophisticated theorems and proof. 

Representing such a framework in a two-dimensional picture is necessarily limited. It 

may be imagined as an upward spiral, moving to successive levels of embodiment, symbolism 

and formalism, or as a ‘folding back’ of formalism to more sophisticated forms of embodiment 

and symbolism (Figure 1). 

Figure 1: Practical, theoretical and formal mathematics 

moving through the worlds of embodiment, symbolism and formalism 

As an example, there is a simple structure theorem that takes us beyond the real number 

system represented visually on the number line. It reveals that the completeness axiom (that 

every non-empty subset bounded above has a least upper bound) not only tells us that the real 

number line consists only of infinite decimals and cannot contain infinitesimals that are 

‘arbitrarily small, but not zero’. The very same axiom proves that any ordered extension field 

of the real numbers must contain infinitesimal quantities. 

The rational number system does not contain the irrational number √2, but this lies in the 

larger ordered field of real numbers which again can be represented on a number line. By the 

same token, the completeness axiom can be used to prove that any ordered field K that contains 

the real numbers as an ordered subfield must contain infinitesimals.  
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Elements of the real numbers ℝ will be referred to as ‘constants’ and elements of the 

larger system K as ‘quantities.’ A quantity x is said to be finite if it lies between two real 

numbers a, b, so that, in the ordering of K, we have a < x < b. A quantity ε is said to be an 

infinitesimal if ε ≠ 0 and –a < ε < a for every positive real number a. 

It is then straightforward to prove: 

Structure Theorem for any ordered field extension K of the real numbers ℝ. 

Every finite quantity is either a real number or a real number plus an infinitesimal. 

The proof considers any finite quantity x and the set of real numbers, L = {t ∊ ℝ | t < x}. This 

is non-empty (because it contains a) and bounded above by b, so it has a unique least upper 

bound c ∊ ℝ. Let ε = x – c, then, by a contradiction argument, it can be proved that ε is either 

zero or infinitesimal. The unique real number c is called the standard part of x, c = st(x). 

Infinitesimal detail for a quantity t near x can then be visualised using the linear map 

m(t) = (t – c)/ε 

called the ε-microscope pointed at c. The subset V of quantities where (t – c)/ε is finite is the 

field of view of the microscope. 

In Tall (1992), I defined the optical ε-microscope pointed at c as μ: V → ℝ, given by 

μ(t) = st(m(t)) = st(t – c)/ε). 

For a real number k, μ(c – kε) = k, so the optical microscope maps the field of view onto the 

whole real line. More detailed information can be found in Stewart and Tall (2014). 

This can be generalised to multiple dimensions by using an optical microscope on each 

coordinate, for instance in two dimensions the (ε, δ)-microscope pointed at (c, d) is 

μ(s, t)  = (st((s – c)/ε, st(t – d)/δ). 

For example, if infinitesimals ε, δ are taken to be equal, this gives an infinite magnification of 

a differentiable function y = f(x). Using the convention that the images of points on a map are 

denoted by the same name as the original point in K2, we can name the image as (x, y) and its 

change as the vector (dx, dy) where f ' (x) = dy/dx. 

Figure 2: Infinite magnification of a locally straight graph to see finite detail as a real picture 

This insight belongs in the formal world of analysis, not in the practical and theoretical worlds 

of the calculus. It is introduced to show that an ‘infinitesimal’ arises as a structural extension 

of formal analysis and should not be disparaged as mathematically unsound. Different cultures 

have differing modes of operation appropriate for their needs. Legitimate approaches to the 

calculus can be based on the real numbers with or without infinitesimals.  
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6. Relationships between Mathematical Cultures

The relevance of different cultural approaches for different cultural communities was 

formulated by the mathematician Raymond Wilder (1968, 1981). He described the 

anthropological term ‘culture’ as: 

A collection of customs rituals, beliefs, tools, mores, and so on, called cultural 

elements, possessed by a group of people who are related by some associative factor 

(or factors) such as common membership in a primitive tribe, geographical 

contiguity, or common occupation. (Wilder, 1968, p. 18.) 

He speaks of cultural stress that occurs when there is a need in the culture to be satisfied, such 

as making sense of a new mathematical context. Cultures benefit from shared elements that are 

stable and useful. These may diffuse from one culture to another, but this is likely to take time 

to do so, called cultural lag, and may even involve cultural resistance if the new element 

challenges current elements that are considered to operate successfully. To balance elements 

that resist change, I add the notion of cultural stability that seeks to maintain familiar elements 

that allow the culture to continue to operate in a shared coherent manner. This is essential to 

my argument as I wish to engage with individuals and cultures that interpret mathematics in 

different ways. Instead of using the negative idea that some viewpoints are culturally resistant 

to change, I note that they may be seeking the positive virtue of maintaining cultural stability. 

Different cultures evolve different ways of working that are highly relevant to their own 

needs. That same approach may be inappropriate for others. Data collected in major studies 

may be usefully interpreted from different viewpoints to offer insight into how implicit beliefs 

in different communities may cause difficulties in teaching and learning. 

An example that has proved helpful for me is the major MAA report on College Calculus 

(Bressoud, Mesa, Rasmussen, 2015). This gathers comprehensive data on the teaching of 

calculus in the USA at all types of institution from two-year colleges to PhD-granting 

universities. It begins with the following statement: 

Calculus occupies a unique position as gatekeeper to the disciplines in science, 

technology, engineering, and mathematics (STEM). At least one term of calculus is 

required for almost all STEM majors. For too many students, this requirement is 

either an insurmountable obstacle or—more subtly—a great discourager from the 

pursuit of fields that build upon the insights of mathematics.  

It goes on to discuss the Calculus Reform movement that sought to remedy the problem and 

comes to the conclusion, “Many decades later, we seem to have made little progress.” It also 

reports that AP calculus has grown substantially, so that around three-quarters of all calculus 

students take their first calculus course in high school. Given that the College Board AP 

calculus syllabus (2019) has assessment only using multiple-choice tests and does not mention 

any use of meaningful embodiment or local straightness, it is no wonder that there is little 

progress in improving calculus teaching and that difficulties continue in university 

mathematical analysis. 

Intuitive ideas in analysis often prove false, so it is natural for mathematicians to 

culturally resist ideas based on intuitive embodiment. However, embodiment plays a major role 

in making sense of new ideas which is fundamentally more humanly meaningful than 

theoretical definitions and deductions. Consider, for example, the meaning of the operation of 

taking a fraction of a quantity. Operations such as 2/4, 
3/6 are considered to be 

‘equivalent’ fractions. But, when embodied as points marked on a line, they are the same 

point. Likewise, 2(x + 3) and 2x + 6 are different processes but, embodied as a graph, they are 

the same graph. 

https://www.maa.org/sites/default/files/pdf/cspcc/InsightsandRecommendations.pdf
https://apcentral.collegeboard.org/pdf/ap-calculus-ab-and-bc-course-and-exam-description.pdf
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Embodied representations allow an enormous compression to think about multiple processes as 

a single object, offering a far simpler way to contemplate more sophisticated ideas. 

The notion of ‘local straightness’ is an aspect of embodiment that acts as a meaningful 

foundation of the more sophisticated development of mathematical analysis, such as the theory 

of multi-dimensional manifolds that are ‘locally Euclidean’. In the long-term, local straightness 

generalises mathematically to more formal notions in real and complex analysis in 

differentiation, differential equations, partial derivatives and multi-dimensional vector analysis. 

The current curriculum is constructed from the formal limit definition of the derivative 

re-formulated as an informal process getting as close as is desired to the derivative, without 

being related to a practical embodied meaning. Culturally, the AP calculus curriculum is a 

massive document, created by a committee, listing all kinds of detail required from different 

perspectives. Where is the simple insight to make sense from the viewpoint of the learner? As 

Hilbert said in his plenary presentation to the International Congress of Mathematicians in 1900 

when he presented his famous list of problems for the twentieth century: 

An old French mathematician said: “A mathematical theory is not to be considered 

complete until you have made it so clear that you can explain it to the first man 

whom you meet on the street.” This clearness and ease of comprehension, here 

insisted on for a mathematical theory, I should still more demand for a mathematical 

problem if it is to be perfect; for what is clear and easily comprehended attracts, the 

complicated repels us. (Hilbert, 1900, p. 407) 

Surely it is simpler to encourage students to begin their study of the calculus by looking closely 

at a graph that is locally straight to see its changing slope function, rather than offer them and 

their teachers the daunting compendium of ideas listed in the AP calculus curriculum. 

7. The Meanings of Concepts in the Calculus

The calculus is encountered by learners who have studied mathematics for a decade or so. The 

example of differentiation through local straightness is only part of the story. 

Traditionally, the concept of continuity, in terms of drawing a curve dynamically on a 

piece of paper without lifting the pencil may be used as an intuitive introduction to formal idea. 

However, in a traditional approach the two meanings are not coherently linked. This is a 

particular problem for communities that may wish to make some sense of integration and the 

fundamental theorem without the technicalities of formal analysis. 

I offered a solution back in the 1980s by using a different magnification factor on the 

horizontal and vertical axes (Figure 3). 

Figure 3: stretching a graph horizontally while maintaining the vertical scale (Tall, 1986). 

https://www.ams.org/journals/bull/2000-37-04/S0273-0979-00-00881-8/S0273-0979-00-00881-8.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1986a-integration-ft-mt.pdf


9 Printed Thursday, 26 September 2019, 10:25 AM 

On the left is a screen dump from my Graphic Calculus software and on the right is a dynamic 

embodied interpretation of its meaning. The horizontal line is a line of pixels over a point x on 

the x-axis in the centre of the box window where the pixel line is centred vertically on f(x) and 

lies in the vertical range f(x) ± ε. To ‘pull the graph flat’, requires us to satisfy the following: 

Given ε > 0, we need to find a δ > 0, so that when the graph is pulled horizontally 

between x – δ and x + δ, then it lies within the pixel height f(x) ± ε. 

This links directly to the formal definition of continuity: 

Given any ε > 0, there is a δ > 0, such that 

if t satisfies x – δ < t < x + δ then f(x) – ε < f(t) < f(x) + ε. 

The embodied idea of ‘pulling flat’ now leads naturally to the formal definition of continuity. 

Unlike the traditional approach to the calculus, for the first time, the embodied sense of drawing 

a continuous curve provides a foundation for the formal theory. 

Of course, there are subtleties that need to be addressed at some stage. The formal 

definition starts by fixing x and interpreting the definition as continuity at a point, then varies 

x over a domain D to speak of (pointwise) continuity over a domain. Then there are other 

possibilities. Is the domain connected? Is it compact (to lead to the notion of uniform 

continuity)? Is the number system complete (in one of several different formulations)? Is the 

number system a continuum (meaning that a moving point on the number line changes 

imperceptibly in some sense)? There are so many variants in subtlety of meaning that a pure 

mathematician can build a whole career out of proving various possible theories with subtle 

changes in the formal definition. A mind full of so many possibilities needs to reflect very 

carefully on how to present fundamental ideas of the calculus to a learner. 

Today’s interactive retinal displays offer new ways of looking at the notion of continuity 

and its relationship with integration by using a different magnification factor on the horizontal 

and vertical axes. In the design of the TI-92, at my suggestion, different scale factors were 

introduced with the intention of supporting the approach visualised in figure 3, but this did not 

lead to a significant change in the syllabus. 

Now that the display on a smart phone has been improved to ‘retinal’ level, I imagine a 

new app as represented in figure 4, which I unapologetically call a ‘Tall-scope’. A vertical strip 

can be selected in the left box and simultaneously stretched horizontally in the right box. As 

the value of x is moved to the left or right, the horizontal line will move up and down. 

Figure 4: Stretching a continuous graph horizontally to see in ‘pull flat’ (Tall, 2019a, p.19) 

Martin Flashman has produced a useful prototype using Geogebra (see Tall, 2019a, p.20). What 

would be useful is an app that offers equal magnification on both axes (to deal with local 

straightness and differentiation) or horizontal stretching (to deal with continuity, integration 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
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and the fundamental theorem).  To my current knowledge, such an app does not exist. It would 

provide a supportive embodied environment for local straightness. However, horizontal 

stretching changes the look of the area y dx, giving subtle problems of interpretation of the 

embodiment. The solution lies in noting that, while the visual area changes, the symbolic 

numerical calculation remains the same. Even so, this interpretation may cause subtle 

difficulties for some learners. 

Others may benefit from the approach offered in my approach in Graphic Calculus in the 

eighties which not only gave an embodied visual interpretation of differentiability and 

continuity, it also presented a visual example of a function that is continuous everywhere but 

differentiable nowhere. This is supported by an embodied explanation because the function is 

built up by sequentially by adding successive half-size saw-teeth: repeated magnification 

reveals smaller saw-teeth so it is nowhere locally straight (Tall, 1982). By the fundamental 

theorem, the integral of this continuous function is differentiable once but not twice and, by 

successive integration, it is theoretically possible to construct a function that is differentiable n 

times where its nth derivative is continuous everywhere and differentiable nowhere. 

This proved interesting for teachers in England, especially at a time when there was 

excitement generated by drawing beautiful fractal pictures generated using simple iteration. It 

fell out of use because the syllabus was designed to give students practice using calculus 

techniques where such strange functions were irrelevant. Instead, even in university analysis, 

‘non-differentiable functions’ were usually limited to examples such as x sin(1/x) and x2 sin(1/x) 

which are given by a formula with just an isolated problematic point. 

The mental imagery generated by these limited experiences suggest a culturally shared 

notion of discontinuity that only occurs at isolated points. Cultural stability maintains such 

examples from historical development while impeding more sophisticated meanings. 

Future evolution of ideas depends on considering different possible meanings. My 

doctoral supervisor, Michael Atiyah, jointly received the Fields Medal and the Abel Prize by 

proving the Atiyah-Singer Index Theorem relating analytic and topological characterisations of 

solutions of certain differential equations, saying: 

Any good theorem should have several proofs, the more the better. For two reasons: 

usually, different proofs have different strengths and weaknesses, and they generalize 

in different directions— they are not just repetitions of each other. And that is 

certainly the case with the proofs that we came up with. There are different reasons 

for the proofs, they have different histories and backgrounds. Some of them are good 

for this application, some are good for that application. They all shed light on the 

area. If you cannot look at a problem from different directions, it is probably not very 

interesting; the more perspectives, the better! 

(Atiyah, quoted from Raussen & Skau, 2004, p. 24) 

8. Towards a more comprehensive framework for meaningful mathematical thinking

The idea of seeking many perspectives is implicit in developing a theoretical framework for 

mathematical thinking. 

Mathematics evolves over time to develop more sophisticated ideas that simultaneously 

make the theory simpler, as explained by Atiyah: 

If we have to start from the axioms of mathematics, then every proof will be very 

long. The common framework at any given time is constantly advancing; we are 

already at a high platform. If we are allowed to start within that framework, then at 

every stage there are short proofs. 

One example from my own life is this famous problem about vector fields on spheres 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1982a-blancmange.pdf
http://www.emis.de/newsletter/current/current12.pdf
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solved by Frank Adams, for which the proof took many hundreds of pages. One day 

I discovered how to write a proof on a postcard. I sent it over to Frank Adams and 

we wrote a little paper which then would fit on a bigger postcard. But of course that 

used some K-theory; not that complicated in itself. You are always building on a 

higher platform; you have always got more tools at your disposal that are part of the 

lingua franca which you can use. In the old days you had a smaller base: if you make 

a simple proof nowadays, then you are allowed to assume that people know what 

group theory is, you are allowed to talk about Hilbert space. Hilbert space took a long 

time to develop, so we have got a much bigger vocabulary, and with that we can write 

more poetry. (Atiyah, quoted from Raussen & Skau, 2004, p. 29) 

The same evolution is necessary for the development of a theoretical framework for long-term 

mathematical thinking using information from different areas of expertise. It will take time and 

deep reflection to develop a ‘lingua franca’ that expresses the theory in a way that the essence 

of these disparate ideas can be made available to others: 

The passing of mathematics on to subsequent generations is essential for the future, 

and this is only possible if every generation of mathematicians understands what they 

are doing and distills it out in such a form that it is easily understood by the next 

generation. Many complicated things get simple when you have the right point of 

view. The first  proof of something may be very complicated, but when you 

understand it well, you readdress it, and  eventually you can present it in a way that 

makes it  look much more understandable—and that’s the  way you pass it on to the 

next generation! Without that, we could never make progress.  

(Atiyah, quoted from Raussen & Skau, 2004, p.28) 

To make progress in the teaching and learning of university mathematics using a range of 

different forms of expertise, we need to distill the essential ideas in a form that is meaningful 

for the evolving university mathematics community. In the next section I will summarise the 

aspects that have been discussed so far and outline others with the potential to offer insight into 

the evolution of ideas. 

9. Essential elements of the framework in progress

So far, I have outlined a number of aspects of the long-term meaningful development of 

mathematical thinking, based on the increasing sophistication of mathematical ideas, including 

• Practical, theoretical and formal evolution of sophistication,

• Conceptual embodiment, operation symbolism, axiomatic formalism,

• Structure theorems to build from formal theory to more sophisticated embodiment

and symbolism,

• Cultural evolution, diffusion, lag, resistance and stability.

In recent times I have moved on to consider a range of other aspects that have much to offer in 

the improvement of long-term meaningful mathematical thinking. Some involve subtle aspects 

of brain structure and operation that have a substantial effect on the way different individuals 

think mathematically. Others involve new ways in which we can make sense of mathematical 

expressions that we can manipulate flexibly in our minds. Some of these ideas are simple to 

observe and explain for teachers and learners and, even more importantly, can be introduced 

into current practices in teaching and learning to improve long-term flexible thinking at all 

levels, in school, and in undergraduate, graduate and research mathematics. These will be 

outlined briefly in the following sub-sections prior to summing up the implications for the 

evolution of future teaching and learning of mathematics at university level. 

http://www.emis.de/newsletter/current/current12.pdf
http://www.emis.de/newsletter/current/current12.pdf
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9.1 Embodied foundations 

An essential part of the earlier discussion in this chapter is the importance of embodiment in 

the long-term. While symbolic mathematics offers procedures for calculation and manipulation 

and formal mathematics codifies mathematics into a structured framework, embodied 

mathematics gives human meaning to fundamental ideas. At university level, intuitive ideas 

often prove to have subtle exceptions. There is a clear need for a refined interpretation of 

intuition that offers forms of justification and proof appropriate for each particular community. 

However, there are two essential reasons why embodiment should be seen as an essential 

foundation. First, the embodied pictures of successive number systems enable them to be seen 

as successive points on a number line and even in the complex plane, including real and 

complex infinitesimals as processes or as objects. Second, the notion of structure theorem takes 

formal mathematical theory on to more sophisticated forms of symbolism and embodiment. 

9.2 Reading, speaking and hearing expressions: the principle of articulation 

When we read text or mathematical expressions (left to right in most Western languages), the 

eye does not do so smoothly. Only a small part of the retina, called the fovea, has sufficiently 

accurate vision to take in detail and this is only around two hundred photoreceptors in diameter 

The eye focuses momentarily on a piece of detail to take in information, then jumps rapidly to 

the next position to focus on the next piece. You can sense this for yourself by reading this 

paragraph and become aware of the jumps (called saccades). 

The meaning of an expression such as 2 + 2 × 2 can be changed by the manner in which 

it is spoken or heard, depending on the articulation. Leaving a small gap after 2 + 2, denoted by 

an ellipsis ‘…’, the expression 

2 + 2… × 2 can be interpreted as 4 × 2, which is 8, 

while 

2 + … 2 × 2 can be interpreted as 2 + 4, which is 6. 

This distinction can be understood by almost anyone, yet, the standard convention, that 

‘multiplication takes precedence over addition’, given as a ‘rule’ that makes 2 + 2 × 2 equal to 

6, is highly confusing because it contravenes how we naturally interpret the operations in 

sequence, performing the operation ‘2 + 2’ before the operation ‘× 2’. 

This may be formulated as: 

The Articulation Principle: The meaning of a sequence of operations can be 

expressed by the manner in which the sequence is articulated.  (Tall, 2019a, p.14) 

This is not a mathematical definition, nor does it explicitly say how the sequence of operations 

should be performed in a mathematical expression. However, it unlocks a principle that enables 

the learner to articulate expressions in different ways to give meaning to the use of brackets to 

reveal the sequence in which operations should be performed. More significantly, it can be 

shown to generalise the meaning of operational symbolism throughout the whole of 

mathematics as outlined in several recent papers on my website (see, for example, Tall, 2019a, 

2019b, 2020a, 2020b). 

Early practical experience can be used to recognize the principle that the sum of a 

collection of numbers is independent of how it is calculated, and a similar principle applies to 

the result of multiplying a collection of numbers. This can be extended to more complicated 

symbolic expressions taking into account the order of precedence of operations. The more 

general situation can be given meaning by a flexible interpretation of sub-expressions as 

processes (operations) or concepts (objects). 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019c-long-term-framework.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020b-aha-uhu.pdf
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9.3 Symbols as operations and objects: parsing mathematical expressions 

My original approach to the calculus in terms of local straightness had the advantage of giving 

embodied meaning to the changing slope of the graph of a function. However, it did not extend 

to giving meaning to the interpretation and manipulation of the symbolism. Recent 

developments offer new ways of parsing mathematical expressions by seeing sub-expressions 

as mental operations or mental objects. This can be seen by introducing a simple notation using 

the duality of symbolism as process (or operation) and concept (mental object) based on the 

procept theory of Gray & Tall (1994). An expression such as 3 + 2 can be considered either as 

an operation (addition) to be performed in various ways in time, or as a mental object (the sum). 

This can be notated by placing an object in a box so that 

 3  +  2  is the process of addition of the numbers 3 and 2  

3 + 2  is the object, the sum 3 and 2. 

This idea extends to all operational expressions such as 23 which can be 

written as  2  3 or  23
  and more general expressions written spatially using TeX or MathType. 

Over the long term, it is important to build the meaning in simple stages, starting with 

simple addition, subtraction and multiplication of whole numbers. The articulation principle 

already alerts the learner to different meanings of expressions such as 6 – 3 – 2 and 2+2×2. 

It later applies to powers such as –32, which can be interpreted as (–3)2 or as –(32). 

Over the longer term, the principle of long-term meaningful learning can use 

the supportive ideas that the sum and the product of collections of numbers are both 

independent of the order of calculation from whole numbers, through fractions, signed 

numbers, real and complex numbers and also generalised to expressions in algebra. These 

supportive ideas have the potential to offer a sense of stability and security, allowing 

problematic changes in meaning to be considered explicitly to address new meanings required 

in new contexts. 

These ideas, including handling operations with different orders of precedence, 

are considered in more detail in previously mentioned papers (Tall, 2019a, 2019b, 2020a, 

2020b). They are still under development and require further distillation to handle 

situations encountered in different cultural settings. In particular, I do not advocate teaching 

the use of boxes in a procedural way because the technique soon becomes over-complicated. 

The focus should always be on simplifying the meaning of the mathematics to be able to 

imagine the parsing of sub-expressions as process or object. 

9.4 How the eye follows a moving object and concepts of constants and variables 

When the eye follows a moving object, it jumps in a single saccade to focus on the object, 

then moves smoothly with the object as it moves. You can test this for yourself by placing a 

finger a short distance away from your eye and moving it from side to side. It doesn’t 

make any difference if you hold your head still and turn your eye or if you turn your head to 

follow the movement, you can still keep your moving finger in focus while the background is 

blurred. 

Now imagine a moving point marked as a blob on a line on a retinal display. Your eye 

sees a point moving smoothly and you can imagine the distinction between a constant point 

and a variable point. The notions of ‘constant’ and ‘variable’, including the idea of a variable 

that can get arbitrarily close to a constant, are built into your working brain. By mentally 

‘zooming in’, you can imagine a variable getting as close to a given constant as desired. 

The structure of the human brain has had little time in evolutionary terms to 

change substantially in the time that mathematical thinking has developed over the last few 

thousand years. This offers an alternative way of analysing the historical development of 

mathematical thinking in terms of the effects of the structure and operation of the human 

brain. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1994a-gray-jrme.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019c-long-term-framework.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020b-aha-uhu.pdf
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9.5 Language and mental links with space and number 

Language is essential for the development of more sophisticated theoretical ideas. It enables us 

to name ideas, to formulate its properties and to talk about relationships with other ideas. 

Without language there would be no sophisticated mathematics. Yet Dehaene and his 

colleagues assert that mathematical thinking does not build substantial links with the areas of 

the brain that deal with language: 

By scanning professional mathematicians, we show that high-level mathematical 

reasoning rests on a set of brain areas that do not overlap with the classical left-

hemisphere regions involved in language processing or verbal semantics. Instead, all 

domains of mathematics we tested (algebra, analysis, geometry, and topology) recruit 

a bilateral network, of prefrontal, parietal, and inferior temporal regions, which is 

also activated when mathematicians or nonmathematicians recognize and manipulate 

numbers mentally. Our results suggest that high-level mathematical thinking makes 

minimal use of language areas and instead recruits circuits initially involved in space 

and number. (Amalric & Dehaene, 2016) 

The methodology for this research uses an fMRI scanner to measure the flow of magnetised 

blood that only registers changes of at least two seconds or so. While this conclusion questions 

the links between a mnemonic such as PEMDAS (‘Please Excuse My Dear Aunt Sally’) and 

the order of operational precedence 

Parentheses, Exponents, Multiplication/Division, Addition/Subtraction, 

it does not have the resolution to distinguish essential changes in mathematical thinking where 

links are made in around 40 milliseconds. 

It is not necessary to have expensive equipment to be aware of subtle changes in meaning 

that give rise to emotional changes. These can be observed by teachers and learners in their 

everyday mathematical activity. They arise as a result of the structure and operation of the 

human brain through linking cognitive activity to emotional response. 

9.6 Mathematics and emotion 

In the centre of the brain is a collection of structures called ‘the limbic system’ (from the term 

‘limbus’, meaning ‘border’), bridging diverse connections between brain activity and bodily 

function. The limbic system reacts subconsciously to incoming data before the conscious 

forebrain has time to receive information that passes to the hindbrain to be interpreted and 

forward to the forebrain to take decisions. This gives rise to the ‘thinking fast, thinking slow’ 

phenomenon (Kahneman, 2011) where an initial intuitive reflex reaction occurs before a more 

reflective decision process. Under stress, this causes to a ‘fight or flight’ reaction affecting the 

whole human system, flooding the brain with neurotransmitters and the body with hormones 

that either heighten or suppress activity. Neurotransmitters may set the mind on alert to enhance 

thinking processes, or suppress connections, causing mathematical anxiety that interferes with 

mathematical thinking. Meanwhile, hormones affect autonomic functions such as maintaining 

body temperature, blood pressure, heart rate and so on, and the resulting physical sensations 

may be felt by those affected and seen by sensitive observers. 

This is particularly important when there is a change in context, both in the change in 

topic for a learner and in the cultural difference between two mathematical communities. 

9.7 A meaningful overview of change in context 

The whole ethos of this chapter is that long-term mathematical learning depends on 

compressing ideas to sophisticated concepts that can be easily manipulated in the human mind. 

https://doi.org/10.1073/pnas.1603205113
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It is an advantage to be able to carry out increasingly sophisticated procedures as the 

mathematics becomes more complex, but this is not sufficient. The principle of long-term 

meaningful learning emphasises the importance of identifying ideas that are supportive through 

several changes of context, to give the learner confidence to address problematic aspects that 

need to be modified to be meaningful in a new context. 

The transition of an individual to a new context and the cultural transition between 

communities follow a common pattern (Tall, 2019b). When a new context is encountered with 

problematic aspects that do not make sense, this gives rise to an impediment that can be 

interpreted as a boundary that cannot be crossed. In the case of differing communities, such as 

different religions, the possibility of crossing the boundary from community A to community 

B may be seen as a transgression by those in A, but those in B may consider it as an 

enlightenment. This may occur in the transition between school mathematics and formal 

mathematics at university where university mathematicians seek to enlighten students to the 

formal viewpoint that many students see as a boundary that they are unable to make 

meaningfully, and so resort to rote-learning. To seek an appropriate resolution requires a 

reflective overview to appreciate both viewpoints (Figure 5). 

 

Figure 5: Transition between contexts for individuals and communities (Tall 2019b) 

In the case of two communities, the possibilities may be characterised as: 

• Impediment: inability to leave the current community to cross over a boundary 

• Transgression: crossing out of the current community over a boundary 

• Enlightenment: crossing into a new community over a boundary 

• Overview: encouraging communication between communities. 

Such differences may exist between  pure and applied mathematics, between mathematicians 

and educators, between politicians who prescribe the curriculum, curriculum designers, 

teachers and assessors, or between different levels of teaching in early learning, primary, 

secondary, university and different theoretical areas in mathematics.  

For an individual seeking to make a change in context, the possibilities are: 

• Impediment: inability to change context 

• Transgression: unwillingness to change context 

• Enlightenment: ability to change context 

• Overview: ability to switch between contexts. 

Examples include generalising number systems from counting numbers to fractions, to signed 

numbers, to rational numbers, reals, complex numbers, from arithmetic to algebra, from 

practical drawing to Euclidean proof, from school mathematics to university, and so on. 

Of particular importance is the ability to switch between contexts. For example, to switch 

between whole number contexts with prime numbers and uniqueness of factorization to 

algebraic numbers where factorization has a different definition and different properties. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019c-long-term-framework.pdf
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9.8 Making sense of mathematical proof in undergraduate mathematics. 

Different contexts have different properties and different communities in a complex society 

have differing needs. The question arises as to what kind of proof is appropriate for each 

community. 

One method that has widespread implications in encouraging students to make sense of 

proof is the notion of ‘self-explanation’. Using eye-tracking techniques, Hodds, Alcock & 

Inglis (2014) confirmed that undergraduates devoted more of their attention to parts of proofs 

involving algebraic manipulation and less to logical statements than expert mathematicians. 

They developed materials to encourage ‘self-explanation’ by reading a proof line by line, to 

identify the main ideas, get into the habit of explaining to themselves why the definitions are 

phrased as they are and how each line of a proof follows from previous lines. Students were 

counselled not to simply paraphrase the lines of the proof by saying the same thing in different 

words, but to focus on making connections to grasp the main argument and explain how the 

given assumptions and definitions in previous lines led to the current line and contribute to the 

following lines. This led to a significant improvement in subsequent reading of proofs. 

‘Self-explanation’ is relevant to different cultural approaches, not only in different 

specialisms such as pure mathematics and engineering, but also between differing preferences 

within a specialism. The framework of three worlds of embodiment, symbolism and (axiomatic) 

formalism suggested a distinction between natural mathematics (based on theoretic origins in 

embodiment or symbolism) and formal mathematics; an individual may have preferences that 

use any combination of these. This leads to a variety of different approaches, depending on the 

individual and the specialism. For instance, the theory of whole numbers and of real numbers 

both study a system which is unique up to isomorphism, whereas the theory of groups has many 

different systems satisfying the group theoretic axioms, some of which may be embodied as 

groups of transformations or symmetries of a set or classified in terms of generators and 

relations. 

The long-term framework of meaningful mathematical development proposed here 

values the use of embodiment to give an initial human meaning to mathematical theories which 

later develop into formal axioms, definitions and proofs. Our fundamental embodied experience 

arises from our lives in three-dimensional space where time moves inexorably forward and not 

backwards. However, we now have tools such as videos which allow us to reverse time by 

playing the video in reverse, allowing us to see a vehicle moving backward reversed in time to 

see it moving forward, so the product of two negative quantities is positive. 

We also record our ideas on two dimensional paper which is static, or on a two 

dimensional visual display which can be programmed to change dynamically. A two-

dimensional static display such as figure 1 which represents the interaction of embodiment, 

symbolism and formalism with the increase in sophistication through practical, theoretical and 

formal mathematics  is limited because it does not include any explicit reference to emotional 

or cultural aspects. This is particularly relevant when these aspects suggest serious flaws in a 

particular  area of study, such as the teaching and learning of calculus. 

The proof of structure theorems moves formal mathematics on to cycles of more 

sophisticated embodiment and symbolism leading to even more sophisticated formal theory. 

This requires an awareness of forms of embodiment that can be used as a basis for more formal 

development and of those aspects of limited embodiment that need to be modified to support 

formal development. 
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10. Implications for Future Teaching and Learning of Mathematics at University Level 

At this point I return to the original request from the ICME-14 Survey Team concerning the 

significant advances, changes and or gaps in the field of university mathematics education in 

recent years. My concern is that the discussion will focus on specific aspects of teaching and 

learning rather than seeking a bigger picture. It will provide an opportunity for individuals to 

report their specific experiences and even to compare a range of different aspects. 

However, there are broader issues involved which require an overview to be able to 

recognize that different parts of a complex society require approaches that are appropriate for 

their own needs but which may seem to conflict with the needs of others. This chapter offers a 

broader analysis, revealing evidence that current approaches are affected by human thinking 

processes and cultural aspects that are not being taken into account. 

I have proposed an overall principle of long-term meaningful growth of mathematics that 

builds on the natural structure and operation of the human brain and the changes in meaning of 

concepts that occur as the mathematics grows more sophisticated and shifts to new contexts. I 

also offer new ways of making meaningful sense of long-term growth of mathematical thinking 

that can be implemented into today’s experiences of teaching and learning. These include the 

principle of articulation and the meaningful interpretation of mathematical expressions by 

seeing sub-expressions flexibly as processes or objects. 

At university level, I use structure theorems to reveal formal systems have more 

sophisticated forms of embodiment and symbolism to develop even more sophisticated formal 

structures. 

Mathematical research benefits by having different forms of mathematical thinking that 

opens up new ways of formulating and solving mathematical problems. Advances are made by 

encountering conflicts and looking at situations in different ways. 

New tools offer new ways of thinking, such as smart phones with the internet to 

communicate ideas around the world and new ways of performing and representing dynamic 

mathematical ideas. After billions of years of development of the universe, millions of years of 

evolution of life on earth and a few thousand years of human civilisation, in a single lifetime 

we have experienced epoch-making changes that occur so fast that society has insufficient time 

to grasp their implications. 

At such a time, it is essential to focus on those aspects that remain relatively stable to 

provide a foundation for building new ideas. In particular: 

Mathematics is an evolution from the human brain, which is responding to outside 

influences, creating the machinery with which it then attacks the outside world. It is 

our way of trying to reduce complexity into simplicity, beauty, and elegance.  

 (Atiyah, quoted from Raussen & Skau, 2004, p.26) 
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