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In the teaching and learning of mathematics, while it is important to focus on 

what happens at each stage of development, what matters even more is the 

cumulative effect of learning over the long-term. As mathematics grows in 

sophistication, new contexts require new ways of thinking that can act as barriers 

to progress. Passing through such a barrier may be called a transgression. This 

presentation focuses on aspects of mathematics that remain consistent over 

several changes in context and contrasts them with others that cause conflict at 

any given stage. For instance, how we speak, and write mathematics reveal new 

insights into making long-term sense of increasingly sophisticated mathematical 

symbolism in arithmetic and algebra. How the eye tracks a moving object affects 

how we interpret the notion of variable in the calculus both visually on a number 

line and symbolically as a variable quantity. 

Studying successive changes in mathematics and the positive and negative 

emotional affects leads to an overall framework for long-term development that 

applies both to historical evolution and to the individual development of different 

learners. It offers a practical approach in the classroom and a theoretical 

framework that brings together widely differing interpretations held by 

mathematicians, educators, curriculum designers, philosophers, psychologists, 

neuro-physiologists, and even politicians who currently specify the curriculum.  

1. Introduction: the notion of transgression 

This paper has been prepared for a plenary at the 4th Interdisciplinary Scientific Conference on 

Mathematical Transgressions where the term ‘transgress’ has the broad meaning of ‘crossing 

over’ a limiting boundary to a new, previously untenable context. Here I focus on mathematical 

transgressions in the long-term growth of the individual as more sophisticated mathematics is 

encountered that requires a reconstruction of earlier knowledge. I will use an analysis of how 

we humans construct mathematical ideas formulated in my book How Humans Learn to Think 

Mathematically (Tall, 2013) from birth to the full range of adult thinking which has 

corresponding links to the historical evolution of mathematical thinking. 

This will be enhanced by new ideas that have been developed since that book was 

published, to give a more comprehensive framework for teaching and learning mathematics 

meaningfully over the long term. It does not see difficulties that students encounter as 

‘misconceptions’ that need to be corrected. Instead it seeks fundamental ideas in mathematics 

that link to the natural operation of the biological brain, to focus on thought processes that are 

supportive over the longer term and to contrast these explicitly with problematic aspects that 

require new ways of thinking in new contexts. Supportive connections produce electrochemical 

changes in the brain that enhance mental activity while problematic links cause conflict that 

inhibits thinking. The theory has practical implications that seek to make sense for a wide range 

of classroom teachers and learners. 
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2. Transgression, enlightenment and multi-contextual overview 

The notion of ‘transgression’ depends on the individual or community that takes a particular 

viewpoint. If community A disagrees with community B about some fundamental principle or 

belief, and an individual or subgroup S in community A switches to principles supported by B, 

then this will be regarded as a transgression by those remaining in community A, but as an act 

of enlightenment by those in community B. 

Instead of setting up a dispute between different communities, the proposal is that we 

seek to raise the perspective to a higher level that blends and contrasts ideas, placing the views 

of different communities within a broader framework. This will require an open mind on the 

part of the reader to seek to see beyond the boundaries of their accepted practices and to realise 

that other communities have differing ways of interpreting their own personal and social needs. 

Some communities or individuals may only require a practical competency in the subject, 

some may develop a more theoretical level involving deductive relationships between ideas: a 

few may move on to the more formal mathematics that evolved at the end of the nineteenth 

century. In our own life time, phenomenal changes in information technology are offering 

previously inconceivable ways of thinking mathematically for the wider population. The 

framework developed here is designed to be sensitive to the full range of possibilities. 

This includes the possibility of moving to a higher level where both contexts A and B can 

coexist and each can be seen to be coherent in its own context. For example, in a religious 

context it is possible to have multi-faith communities in which each faith respects the beliefs of 

other faiths while remaining true to its own. In mathematics, changes in context, such as 

broadening the number systems from counting numbers to fractions, signed numbers, real 

numbers, complex numbers, introduce new properties which may not hold in other contexts. 

For example, the context of whole numbers includes the notion of multiples and factors together 

with related topics of prime numbers and unique factorisation of a whole number into primes. 

These hold in the context of fractions and signed numbers, provided that the powers involved 

can be positive or negative, but there are number contexts larger than the whole numbers, such 

as numbers of the form a + b√15 for whole numbers a, b, where factorisation is still possible, 

but is no longer unique. For example 

10 = 2 × 5 = (5 + √15)(5 – √15) 

where 2, 5, 5 + √15, 5 – √15, are all factors of 10, but none can be factorised further to give a 

unique factorisation. This led to a new theoretical framework of algebraic number theory, 

including the search for the proof of Fermat’s last theorem (that there are no solutions of the 

equation an + bn = cn where a, b, c, n are whole numbers and n ≥ 3). It took over three centuries 

before Andrew Wiles made the transgression into a new theoretical framework where the 

theorem could be proved (Stewart & Tall, 2013). 

At a higher conceptual level, the long-term development of mathematical thinking 

requires an awareness of the changes in meaning in new contexts, both from the viewpoint of 

individual experts, and also from the viewpoint of the individual learner. 

2.1 Transgressions studied in this presentation 

In this presentation I only have space and time to cover a selection of transgressions in the 

development of mathematical thinking. I will focus on the development of written and spoken 

symbolism in arithmetic and algebra and visual interpretation of constant and variable 

quantities. These build on earlier publications (e.g. Tall 2013, Stewart & Tall 2014, 2015, 2018) 

which will benefit from being extended in the light of the framework presented here. 
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3. The Biological Brain 

Mathematical thinking takes place in the human brain and depends on how information is  

• input through the senses, 

• internally processed (making internal representations and links between them), 

• output through human action (including gestures, speaking, writing and drawing), and 

• communicated between individuals. 

These need to be considered in terms of: 

• cognitive aspects of how individuals think about mathematical structures. 

It is also essential to consider: 

• affective aspects that enhance and suppress the making of mental connections. 

In particular I propose that general supportive principles can act as a stable foundation for long-

term learning and give insight into transgressions caused by problematic changes in meaning. 

 

The operation of the brain is exceedingly complex. Modern technology to study the brain ranges 

from simple electrodes attached to the scalp to record electrical surface activity to more 

sophisticated MRI (magnetic resonance image scans) that distinguish the static structure of 

brain and fMRI (functional MRI) that record electrochemical activity in terms of flow of blood 

over a period of several seconds. None of these are adequate to study thinking at the neuronal 

level where connections operate in milliseconds. At best they currently build a broad picture of 

what parts of the brain perform specific functions. 

Even so, by using what we do know about the operation of the brain, it is possible to see 

and hear essential features in everyday mathematical activity that offer insight into the changes 

required to deal with increasingly sophisticated ideas in long-term mathematical development. 

These include how we see arrangements of objects in different ways, how we read text and 

interpret mathematical expressions, and how we interpret dynamic movement of objects. We 

begin by considering some specific examples. 

3. 1 Early experience with number 

A child’s early experience of number begins with a variety of activities, including nursery 

rhymes, ‘one, two, three four five, once I caught a fish alive…’, which involve rhythmic 

repetitions of number names in sequence and early experiences with counting. Even before this, 

the child has a rudimentary sense of numerosity, recognising the difference between the number 

of objects in a small set of up to three or four items. 

The concept of number develops with experience over time until a child may realise that, 

when a collection of objects is counted in different ways, the total is always the same. The 

complexity of this notion, which Piaget described as ‘conservation of number’, can be seen 

when counting a collection of six objects (figure 1). (I choose six because it is the smallest 

whole number that reveals properties of addition and multiplication.) 

 

Figure 1: conservation of the number 6 
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Various ways of proceeding are possible, including: 

• count and point once and once only at each object in turn, to ‘count-all’ (1, 2, 3, 4, 5, 6),

• move the objects around, and count in any order,

• see a subset of 4 and ‘count on’ 2 after 4 (saying 5, 6),

• see a subset of 2 and ‘count on’ 4 after 2 (saying 3, 4, 5, 6),

• re-arranging as 2 lots of 3,

• re-arranging as 3 lots of 2.

Notice how the operation of addition involves conceptualising an operation such as 4 + 2 in 

different ways. Sometimes the symbol 4 may be seen as a process of counting, sometimes as a 

concept of number. Over the longer term, new ways of interpreting expressions arise as mental 

connections form which allows operations, such as addition, to become compressed as mental 

objects in the form of known facts: 4 + 2 is 6 and 4 + 2 is the same as 2 + 4. 

More generally, an expression combining operations on mathematical concepts is 

described as a ‘procept’ in Gray & Tall (1994). This paper has the title ‘Duality, ambiguity and 

flexibility in mathematical thinking’. I can now reveal that the title has far deeper implications 

in how mathematical expressions can be interpreted to make sense in different ways. This 

involves scanning the whole expression to see how sub-expressions can be interpreted flexibly 

as ‘process’ or ‘concept’, which I will describe in this paper using the terms ‘operation’ or 

‘object’. (The term ‘operation’ will be used to represent a sequence of mental actions performed 

for a specific purpose, considered as a whole. Different operations, such as those represented 

in figure 1, can represent the same underlying mental object, in this case the number 6 together 

with all its internal structure and external relationships with other numbers.) 

In practice, operations of addition on whole numbers are interspersed with operations of 

‘take away’ and limitations arise such as ‘you can’t take a bigger number from a smaller 

number.’ Such limitations may form a boundary in the context of whole number that will need 

to be transgressed to move to the context of signed numbers. Another possible difficulty arises 

with the multiplication of whole numbers, where (except when one of the numbers is 1) the 

product is bigger than either of them and certainly never less. This can cause an implicit 

boundary that requires a transgression in moving from whole numbers to fractions. 

More generally, subconscious conflict can cause the flooding of the brain 

with neurotransmitters1  that enhance or inhibit thinking processes, provoking resilience 

and determination for some and anxiety and rejection for others. (See also Kahneman, 2010.) 

3.2 Input, output, internal processing and communication of text and mathematics 

There are significant differences in how text and mathematical expressions are handled 

in different communities of practice. Speaking and hearing occurs in time, and so has a 

natural direction. Even so, internal processing may involve a change in direction to 

interpret the meaning. For instance, in German, the 3-digit number 123 is read as ‘ein 

hundert, drei und zwanzig’ which translates to ‘one hundred, three and twenty’, requiring it 

to be processed in the order 1, 3, 2: 

Figure 2: scanning a number in German 

1 See: https://en.wikipedia.org/wiki/Neurotransmitter 
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Hindu-Arabic numbers (originally read from right to left in Arabic) need first to be scanned 

when read in European languages to know that 123456 is ‘one hundred and twenty-three 

thousand, four hundred and fifty six’, whereas 1234567 is ‘one million, two hundred and thirty 

four thousand, five hundred and sixty seven’. 

Other conventions which may cause confusion include writing symbols next to each other 

where 2x means ‘2 times x’, 2½ is ‘2 plus ½’ and 24 is ‘2 tens and 4 units’. 

In Chinese, characters are written downwards in vertical columns, starting on the right of 

the page with columns moving successively to the left. Traditional Japanese script (tategaki 縦
書き) follows the Chinese convention, but Japanese in scientific and mathematical texts follows 

the European convention, in rows from left to right (Yokogaki 横書き). 

To simplify the discussion in this presentation I will focus on speaking and hearing text 

in time, reading and writing a symbol such as 123 + 123456 + 1234567 from left to right. Each 

individual term, such as 123 or 123456 may require scanning to determine how to say it. 

If we place each term in a box and regard each box as a single mental object, then 

 123  +  123456  +  1234567 

can be considered as a sum of three objects read successively from left to right, regardless of 

the subtleties of scanning the digits within each box. 

If the order of terms in such an expression is changed, then we find that 

 12  +  4  +  6  +  15  gives the same answer as   4  +  15  +  6  +  12 . 

The same is true for a sequence of additions and subtractions: 

 7  –  ¾  +  1.414 +  –5  gives the same answer as  1.414  +  7  + –5  –  ¾ . 

3.3 principles of addition, subtraction, multiplication and division 

This observation offers an insight that can be expressed as: 

The General Principle of Addition and Subtraction: A finite sequence of 

additions and subtractions of numbers is independent of the order of calculation. 

This principle holds good throughout whole numbers, signed numbers, fractions, decimal 

notation, infinite decimals, real numbers and even complex numbers. It is a supportive principle 

that works throughout school mathematics. 

For individuals who attain a more sophisticated level of mathematical thinking, it may 

lead to a more compact yet profound generalisation: 

The General Principle of Addition: The sum of a finite collection of constant 

or variable quantities is independent of the order of calculation. 

There is a corresponding principle for multiplication and division (by a non-zero quantity): 

The General Principle of Multiplication and Division: A finite sequence of 

multiplications and divisions is independent of the order of calculation. 

This also has a more sophisticated generalisation to constants and variables at a later stage. 

3.4 Giving meaning through spoken articulation 

In contrast to these two essentially simple general principles just given, combinations of 

operations involve problematic aspects with potential transgressions. These may be addressed 

meaningfully if we pay attention to how we articulate an expression when we say it. Consider 

the example: 

‘What is 2 + 3 × 4?’, spoken as ‘What is two plus three times four?’ 

If this is spoken in an even tone, without any particular emphasis, then it first states the 

operation ‘2 + 3’ which is ‘5’, then ‘×4’ which gives 20.  
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But children are taught in school to use the convention ‘multiplication takes precedence 

over addition’, so one must first perform the second operation ‘3 × 4’ first, to get ‘12’ and then 

calculate ‘2 × 12’ to get the ‘correct’ answer, 14. 

When children are given ‘rules without reason’, many find arithmetic, and later algebra, 

mystifying. I suggest that a simple approach is to help learners make sense of ideas in a way 

that appeals to them at the time. 

Initially, I propose that different meanings to expressions can be highlighted by different 

ways in which the expression is spoken by leaving tiny gaps between various words. 

I will use three dots (…) (an ellipsis) between symbols to indicate a gap. For example, 

‘2 + 3 … × 4’ may be spoken as ‘two plus three [gap] times four. This can be interpreted as 

‘2 + 3’ (which is 5) times 4, giving 20. Meanwhile, ‘2 + … 3 × 4’ gives ‘2 + 12’, which is 14. 

At this point it is helpful to speak the two expressions ‘2 + 3 … × 4’ and ‘2 + … 3 × 4’ 

out loud to yourself and, if possible, to someone else, to see how these two ways of speaking 

give two clearly different meanings. Do this now before proceeding. 

–––––––––––––––––––––––––– 

This can be formulated as: 

The articulation principle: The meaning of a sequence of operations can be 

expressed by the manner in which the sequence is articulated. 

This principle is not like a definition or an axiom in mathematics that can be used to deduce or 

prove a theorem. It counsels us to think very carefully about how we interpret and communicate 

mathematical expressions. 

I only realised its immense power throughout the whole of mathematics after I had fun 

talking to my then 11-year-old grandson, Simon, about a humorous video that asked whether 

2 + 2 × 2 is 8 or 6 (Tall, Tall & Tall, 2017). He was intrigued about saying expressions in 

different ways and surprised me the next day by calling me using Facetime on his iPad to ask, 

‘What is the square root of 9 times 9?’ 

spoken evenly without any implied articulation. I knew that he was familiar with squares of 

negative numbers, so I replied that the answer could be +9 or –9.’ ‘No,’ he replied, ‘it’s 27.’ I 

did not his understand his unexpected answer until he explained that he meant 

‘the square root of 9 … times 9’ 

 which gives 27. 

At a stroke, this young child had opened up the door to a whole new way of making sense 

of the order of operations in arithmetic and algebra. Instead of learning arbitrary rules of 

precedence, he offered a new way of making meaningful sense by focusing on how to speak 

mathematical expressions and to communicate the ideas in ways that other people could hear. 

3.5 From articulation to the use of brackets and other conventions 

 Once a learner becomes aware of the role of articulation in giving different meanings to an 

expression, it becomes possible to use brackets in a meaningful way to distinguish between the 

meanings. For instance, 

‘2 + 3 … × 4’ can be written as (2 + 3) × 4, 

‘2 + … 3 × 4’ can be written as 2 + (3 × 4). 

 The standard curriculum uses brackets to group together sub-expressions that are to be 

calculated first and then deals with the operations of addition, subtraction, multiplication and 

division by giving precedence for brackets over multiplication and division (read from left to 

right) and then assigning lower precedence to addition and subtraction. This gives the 

convention for precedence as: 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2017a-long-term-problem-posing.pdf
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Brackets – multiplication and division – addition and subtraction. 

Other operations, such as a power (or index), are represented symbolically using positional 

layout. For example, we write 23 to represent 

To include power (or index) in the hierarchy of precedence, they are placed at a lower level 

than brackets and a higher level than other operations, giving the precedence: 

Brackets – Index – Multiplication and Division – Addition and Subtraction. 

Reversing M and D, as their order does not matter, gives the mnemonic 

B – I – DM – AS. 

which is used in the UK to denote order of precedence. (In the USA, the word ‘parenthesis’ is 

used for ‘bracket’ and ‘exponent’ for ‘index’, to give P – E – MD – AS, remembered using 

the phrase, ‘Please Excuse My Dear Aunt Sally’.) 

The general principles for addition/subtraction and multiplication/division allow sub-

sequences of equal precedence to be written and read in any order. 

The notion of ‘procept’ allows us to interpret an expression such as 2 × 3 in two ways, 

either as a process (operation) ‘two times three’ or as a concept (mental object) (the product 

2 × 3). By placing an object within a box, these distinctions can be written as: 

the operation  2  ×  3  or the object  2 × 3 . 

Given a succession of operations in an expression, such as 9 – 2 × 3 + 5, reading the sub-

expression with the highest precedence as an object gives the whole expression as 

 9  –  2 × 3  +  5 . 

The general principle of addition and subtraction allow the terms to be moved around in any 

order, such as 

 5  +  9  –  3 × 2 . 

This extends the conservation of number in figure 1 to a more general principle of ‘flexible 

conservation’. How it is interpreted by each individual learner will depend on many factors, 

including genetic inheritance and the previous social and personal experience of each 

individual. There are young children with learning difficulties categorised in various ways, 

including dyslexia, dyscalculia and dyspraxia, with various levels of performance depending 

on long-term, short-term and working memory capacity. There are also gifted children who 

may be nurtured in an environment that encourages them to think in more sophisticated ways. 

Each individual will have a personal concept image of a mathematical idea that changes over 

time. 

If the learner is to make longer-term progress making sense of mathematical symbolism, 

it is likely that they can make more sense if they realise how the symbolism can be interpreted 

in different ways depending on how it is spoken and heard, and how they are encouraged to use 

symbolism flexibly to simplify the manipulation of more sophisticated expressions. 

4. Longer-term evolution of ideas

At this point it becomes necessary to shift attention from subtle detail to a higher-level overview 

of the development of the full range of learners and teachers. 

Different approaches to the learning and teaching of mathematics involve many 

transgressions that act as barriers for some and enlightenment for others. For instance, the shift 

from arithmetic to algebra may pose a transgression for many because an expression such as 

2 + 4 in arithmetic can be calculated to give an answer (6) while an algebraic expression such 

23 = 2 2 2
3 times
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as 2 + 4x cannot be calculated unless x is known. This is known as ‘the lack of closure obstacle’ 

(Collis, 1974). It may cause a child to perform the addition 2+4 to get 6, then leave x alone 

(because it is not known) to give the erroneous answer 6x. On the other hand, some children 

may sense the statement 2 + 4 = 6 only as an operation in which 2 + 4 makes 6, whereas 

6 = 2 + 4 has no meaning because 6 does not ‘make’ 2 + 4. An equation such as 2x + 1 = 7 may 

be seen as an operation that can be solved by ‘undoing’ the operation but an equation with 

expressions on both sides cannot. This phenomenon is termed ‘the didactic cut’ (Filloy & 

Rojano, 1989) that causes a transgression in the transition from arithmetic to algebra. 

Over the longer term, different individuals will be faced with changes in context involving 

problematic boundaries that some are unable to transgress, while others may see the change in 

context to shift to a new level of enlightenment. 

In How Humans Learn to Think Mathematically, I highlighted a sequence of three broad 

levels of development which I term ‘Practical’, ‘Theoretical’ and ‘Formal’ that involve 

transgressions to more sophisticated contexts. Most individuals concentrate mainly on practical 

mathematics involving input through the senses, internal processing making internal mental 

links and output through gesture, speech, writing and drawing, to communicate to others. 

Practical mathematics refers to human perception and action where ideas fit 

together in coherent ways. For instance, adding two and three gives five, taking 

three from five gives two. In geometry a triangle with two equal sides has two 

equal angles. Properties occur coherently at the same time. 

Some individuals develop a more enlightened theoretical form of mathematics introduced in 

school, based on definitions and deductions, later enriched in applications of mathematics: 

Theoretical mathematics relates ideas together so that if one property holds, 

then another follows. It involves consequence, based on definitions and 

deductions rooted in natural human perception and action, but increasingly 

enhanced in human imagination, including non-Euclidean geometries in which 

the parallel postulate does not hold, or complex numbers where a square number 

can be negative when visualised as points in the plane. 

A third form of mathematics occurs in pure mathematical set-theory and logic, based on formal 

definition and proof: 

Formal mathematics is based on specified axioms and definitions from which 

formal properties may be deduced that must hold in any context that satisfies the 

particular axioms and definitions.  

These three broad levels of mathematical thinking are sequential and have boundaries involving 

transgressions that need to be traversed. For example, in practical mathematics, an isosceles 

triangle has two equal sides and two equal angles, and it is not initially self-evident that either 

property implies the other. Initially the power 2n means 2 × 2 × …× 2 with n lots of 2 multiplied 

together, which has no meaning if n is not a whole number. A transition to theoretical 

mathematics allows the properties for fractional and negative powers to be deduced from the 

definition of the power law, xmxn = xm+n. 

The transition from theoretical to formal mathematics involves an even greater possible 

transgression in an individual’s relationship between mental imagery (concept image) and 

properties deduced from the formal definition (concept definition) (Tall & Vinner, 1981). Some 

extend the theoretical level based on the concept image, by giving meaning to the concept 

definition, others extract the meaning formally from the concept definition, often involving 

formal manipulation of complicated multi-quantified set-theoretic definitions (Pinto & Tall, 

1999). There are at least two different ways of transitioning to formal proof. ‘Giving meaning’ 

is a natural transition to build from one’s theoretical mental image to formal proof, while 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1981a-concept-image.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2000a-objec-encap-jmb.pdf
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‘extracting meaning’ involves a formal transgression to construct meaning based only on 

quantified axioms and set-theoretic definitions using formal proof. 

Even though these three levels develop sequentially, the next level may not be reached at 

the same time in different situations. At any given time, two or more levels may (and often do) 

continue to coexist depending on the individual.  

Most individuals reach, at best, practical or theoretical ways of thinking mathematically. 

Those who reach the formal level in a natural or formal way encounter a continuing spiral of 

sophistication in which some formal theorems, termed structure theorems, prove properties that 

offer more sophisticated forms of visual and symbolic mental representations (Tall, 2013). 

If we consider this long-term spiral of sophistication in long-term mathematical thinking, 

then we will find fundamental differences in the ways that mathematicians, educators, 

curriculum designers, philosophers, psychologists, neurophysiologists, politicians and others 

emphasise different aspects. The whole enterprise is too vast for any one community to grasp 

the total picture. This is why we should strive to raise our sights to a multi-contextual overview 

rather than limit ourselves to arguing between the views of differing communities of practice. 

5 Human sense making 

To be able to raise our views to a higher level, as individuals we should be aware of the affective 

role played by the central limbic region of the brain that may enhance connections based on 

supportive input and suppress connections that arise from problematic inner conflict. This 

involves seeking an understanding of how the brain makes sense of increasingly sophisticated 

ideas in long-term mathematical development. 

Earlier we considered the flexible conservation of number in how we see arrangements 

of objects in different ways. Now we consider how humans read text and how this affects how 

we interpret mathematical expressions. Then we will consider how we interpret dynamic 

movement of objects and its effect on our ideas in the calculus, particularly in terms of the 

practical, theoretical and formal interpretations of calculus and analysis. 

5.1 How humans read text 

When we read text on a page, such as the text on the left of figure 3, then we do not scan the 

lines smoothly, because the retina in our eye has a small area called the macula which focuses 

in high detail and the eye jumps along the line of text in successive steps (called ‘saccades’). 

The view on the right is edited to mimic those parts in high definition and those not in focus. 

Figure 3: reading text 

Read the clear text on the left of figure 3 and sense how your eye jumps along the text taking 

in successive parts of the text. 

Do this now … 

The brain makes sense of successive parts and puts them together to build meaning of the text. 
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5.2 Interpreting more sophisticated mathematical expressions 

If a mathematical expression is written linearly, such as a quadratic equation 

3x2 + x – 2 = 0 

then, treated in the same way as text, it would be read left to right in a sequence of saccades. 

Longer expressions increase the number of saccades making it more difficult to grasp the 

structure of the expression. 

New techniques are introduced, such as representing the operations spatially. The first 

example of this is the writing of powers as superscripts. Possibilities proliferate with symbolism 

for limits, summation, integrals, matrix layouts and so on, which can be written by hand or built 

up using software templates such as MathType (Figure 4) or specified symbolically using 

languages such as TeX. 

Figure 4: spatial layout of expressions 

Reading these expressions involves scanning the spatial layout and attempting to make sense 

of them. It is possible to extend the procept analysis to distinguish between objects and 

operations, but now we are not dealing just with binary operations, but with n-ary operations in 

general, such as the unary limit operation above as x tends to zero. Figure 5 shows various ways 

in which parts of the expression may be seen as a process operating on an object or as an object 

output by that process. 

Figure 5: sub-expressions as operation or object 

Please understand that I am not advocating this intellectual analysis as a general method to 

teach all students. My purpose is to show that a rote-learnt mnemonic such as BIDMAS or 

PEMDAS is not an adequate foundation for long-term learning without giving flexible meaning 

to the symbols. This involves having a sense of Duality (seeing an expression dually as process 

and concept), Ambiguity (realising that the same expression can represent either process or 

concept to different individuals and even to the same individual at different times) and 

Flexibility (making sense of the symbolism in flexible ways). 
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As each learner builds up a personal concept image of such expressions over the years, 

there will be a wide range of interpretations between different individuals. Some may not be 

able to make sense of the equation at all, some may see it only as an operation that cannot be 

calculated because x is not known, some may see it as a regular algebraic equation to be solved 

and may know how to solve it by one of several methods. Over the years many research studies 

have shown a range of ‘misconceptions’ in manipulating symbols. Now this data should be 

reconsidered in terms of transgressions involving supporting and problematic aspects in 

different contexts. 

5.3 How we interpret dynamic movements of objects 

When we follow the dynamic movement of a moving object, the eye operates in a completely 

different way from dynamically reading lines of text. You can sense this with a simple 

experiment. Hold a finger in front of your eye at a comfortable distance and move your finger 

sideways, keeping your gaze on the moving finger. You will find that there is an initial saccade 

as your gaze jumps to focus on your finger, but then, as your finger moves smoothly, your gaze 

also moves smoothly keeping your finger in focus against a moving background. Now imagine 

a point moving along a number line. The moving point is conceived as being a variable quantity 

by the natural operation of the human eye (Figure 6). 

Figure 6: constant and variable points on a line 

This reveals the simple fact that the human eye operates in such a way that it is natural for the 

human brain to imagine the difference between a fixed point that is constant and a moving point 

that is variable. This has profound implications for the historical and individual development 

of thinking about variable quantities, including quantities that can become arbitrarily small 

giving rise to ideas of indivisible and infinitesimal quantities, either as potential never-ending 

processes or as actual mental objects. 

5.4 The limbic system and enhancement and inhibition of mathematical thinking 

So far, this presentation has focused on 

• cognitive aspects of how individuals think about mathematical structures.

To consider the role of transitions and transgressions more fully, it is essential to consider: 

• affective aspects that enhance and suppress the making of mental connections.

These have profound effects on different individuals in a broad spectrum from a positive 

willingness and resilience to attack mathematical problems, to anxiety and inability to even 

think about them. 

The limbic system2 in the centre of the brain is a collection of structures that support a 

variety of functions, including emotion, behaviour, motivation and links to long-term memory. 

In particular, it responds to challenge or danger with an immediate ‘fight or flight’ reaction that 

suffuses the whole brain with neurotransmitters that excite or inhibit mental connections. 

Confident students who rise to the challenge are placed on alert ready to tackle the situation. 

Those who find the mathematics difficult or even impossible are likely to have their mental 

connections suppressed, causing them to freeze mentally and be unable to respond. 

2 Wikipedia https://en.wikipedia.org/wiki/Limbic_system 

fixed
point

(constant)

moving
point

(variable)

https://en.wikipedia.org/wiki/Limbic_system
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6. A strategy to enhance long-term learning by being explicitly aware of transgressions

This conference will feature many different transgressions that exist in various aspects of 

mathematical thinking, arising in different contexts, in different communities of practice and 

affecting individuals in different ways at different times in their development. No single 

approach is likely to solve all difficulties. In this presentation I advocate the need for long-term 

development based on supportive ideas that make sense at the time yet continue to form a stable 

basis over several changes in context. For example, in early development of arithmetic and 

algebra, I suggest the general principle of addition and subtraction and the later general 

principle of multiplication and division that build from the general notion of conservation of 

number. This is then explicitly contrasted with problematic aspects that arise with combinations 

of operations whose different meaning can be clarified by the articulation principle.  

Over the longer term, the three broad levels of practical, theoretical and formal 

mathematics that have been identified involve transgressions to move successively from one 

level to the next. These transgressions involve changes in meaning that enhance or suppress 

mental connections between neurons through the activity of the limbic system. 

The biological human brain develops from a single cell by successive subdivision to 

produce symmetric left and right parts where the left side in most people includes Broca’s area 

for hearing speech close to the left ear and Wernicke’s area for outputting speech (Figure 7). 

Figure 7: Two sides of the brain 

The left brain carries out sequential operations such as counting while the right brain deals with 

global operations, such as visually estimating size. However, while the literature contains many 

facts based on research findings, many beliefs do not stand up to scrutiny (Corballis, 2014). For 

instance, it is true that there is a cross-over in which the left side of the human body is sensed 

and controlled by the right side of the brain and vice versa. Because most individuals are right-

handed, this was taken to imply that the left side of the brain is dominant over the right. 

In the 1950s and 60s, Sperry performed experiments on animals and humans in which he 

split the connections between left and right brains. His research suggested that in most 

individuals the left brain was responsible for language and the right for emotional and non-

verbal functions (Gazzaniga et al. 1965; Sperry, 1982). This led not only to Sperry being 

awarded the Nobel Prize in 1982 but also to widespread speculation about the radical 

differences between scientific thought on the left and creativity on the right. 

In practice, the two sides of the brain co-operate in subtle ways. FMRI scans can indicate 

where activities occur over a period of seconds. A different view of how mathematical thinking 

develops over the longer term can be sought by considering the developmental theories of 

Piaget, Bruner, Van Hiele, Dienes, Lakoff & Nunez and other pioneers, to seek common themes 

in long-term development of mathematical sophistication. 

SEQUENTIAL
(e.g. calculation)

GLOBAL
(e.g. estimation)

Hearing
(Broca’s area)

Speech
(Wernicke’s area)

LEFT BRAIN RIGHT BRAIN

https://doi.org/10.1371/journal.pbio.1001767
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Van Hiele theorised that school geometry proceeded through a sequence of levels that 

have been described and analysed in various ways in the literature. Research has shown that, 

though these levels are statistically sequential, individuals vary on the level of response on 

different items (Gutiérrez, et al. 1991). This evidence is consistent with a looser description in 

terms of broad levels of practical and theoretical geometry in school as a study of the properties 

of objects. It begins with practical aspects of visual and physical exploration of shape and space 

(involving a level of recognition and one of description) and grows in sophistication to 

theoretical definition and deduction). I termed this development conceptual embodiment. 

School arithmetic and algebra is much more complicated as learners encounter successive 

number contexts involving problematic transitions which give rise to transgressions. It also 

involves successive compression of knowledge from long counting procedures to flexible use 

of symbolism as process and concept. Initially I referred to the long-term development as 

‘proceptual symbolism’ to distinguish it from other uses of symbolism (Tall, 2004) but then 

acknowledged the wide differences between procedural and flexible learning by renaming it as 

operational symbolism to include both possibilities (Tall, 2013). This builds from practical 

mathematics and grows in sophistication to theoretical mathematics. 

I envisaged these two forms of development as one based on objects and their properties, 

the other based on actions on objects, and thought of them as qualitatively different ‘worlds’ of 

mathematics. 

The term ‘world’ arose the first time that I heard my doctoral student Anna Poynter 

explain the way in which vectors can be manipulated as embodied arrows and also as algebraic 

vectors. Her students had moved a triangle on a table in a given direction by a specific distance 

to represent a ‘free vector’ as an operation and one of them said that ‘the sum of two free vectors 

is the single vector that has the same effect.’ This revealed the parallel between the embodied 

change in focus from operation to effect corresponded to the symbolic compression from 

process to concept. I already knew that these two approaches were different again from the 

formal theory of vector spaces that arises in university mathematics. In a split second I had the 

inspiration for ‘three different worlds of mathematics’. At the time I had not read van Hiele’s 

1986 book on Structure and Insight in which he refers to Popper’s philosophical idea of ‘three 

worlds’ which has a related, but different, meaning.3 

The third world of mathematical knowledge arises in the axiomatic formal approach to 

pure mathematics at university level, based on set-theoretic definition and mathematical proof. 

As explained earlier, this may be interpreted in at least two different ways, one as a natural 

extension of theoretical mathematics by giving meaning to the definition from the concept 

image, one by extracting meaning from the formal concept definition to give full axiomatic 

proof based solely on the formal definition.  

This classifies three fundamentally different worlds of mathematical thinking, one based 

on objects and their properties, one on symbolizing operations on objects, the third based on 

specified properties from which all other properties are deduced by mathematical proof. 

Long-term growth blends together various aspects of these three worlds, and by 

shortening their names to embodied, symbolic and formal, the full framework may be 

represented in a two-dimensional picture (figure 8, adapted from Tall, 2013). 

[I have added the term ‘axiomatic’ to the term ‘formal mathematics’ to distinguish this 

from the formal world which includes both theoretical and axiomatic formal definitions and 

proof.] 

3 See  https://en.wikipedia.org/wiki/Popper%27s_three_worlds 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2000a-objec-encap-jmb.pdf
https://en.wikipedia.org/wiki/Popper%27s_three_worlds
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Figure 8: The three worlds of mathematics 

This diagram will inevitably be interpreted by different individuals in different ways. A two-

dimensional picture cannot represent the whole theory. Not only does it omit the role of the 

affective aspect of mathematical thinking, it depends on how each individual interprets the 

diagram in terms of their own personal ways of thinking.  My own view is built as the result of 

a personal journey in which I studied for a doctorate in pure mathematics with Michael Atiyah, 

who was awarded a Fields medal at the time, and later for a doctorate in the psychology of 

mathematics education with Richard Skemp, who was a world leader in mathematics education. 

This allows me to endow the diagram with a rich array of meanings. However, a reader, with 

completely different experiences and development, may read the diagram in many other ways. 

I have been fortunate over a long lifetime to cooperate internationally with other 

researchers and to supervise PhDs students from many different countries with very different 

cultures at different levels of education. This gives me the possibility of seeking a multi-

contextual overview, although whatever I suggest will be subject to my own personal biases. 

7 International comparisons 

Current international comparisons between different countries include TIMSS and PISA studies 

which, in their different ways, seek to collect data on the progress of students using techniques 

that are intended to be fair to different cultural backgrounds, although their results are often 

used by politicians to justify educational policies. In PISA 2012, the first seven entries are all 

East Asian with Shanghai-China a clear leader and Japan seventh (Figure 9). 

The Netherlands (10th), Germany (16th) are slightly above average, France (25th) and the 

UK are average, the USA (36th) scores lower, with a long tail, including Brazil (58th out of 65). 

In the UK, politicians have taken successive actions to ‘raise standards’ by studying 

‘successful’ participants such as Shanghai, Singapore and Finland, but this has not led to 

significant improvements. Indeed, as I write this (August 2018), the front page of the Times 

newspaper has an article stating that the government intends to legislate against ‘exam factory’ 

schools who train their students to learn to pass the exam rather than give them a broad 

education. 
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Figure 9: Selected PISA scores 2012 

It has been my privilege over many years not just to read the literature but to co-operate with 

researchers in different countries to gain invaluable insights into their cultural approaches. This 

includes supervising doctoral theses with many students from the UK, three university faculty 

from Brazil, three USA college mathematics professors, five university faculty from Malaysia, 

and other doctoral students from Taiwan, South Korea, Turkey, Greece and Columbia. 

I have also been fortunate to be a visiting consultant in many other countries including 

the Netherlands, Finland, Germany, New Zealand, Australia, Israel and a long-term project on 

Lesson Study based in Japan, including 20 communities around the Pacific Rim. This offers the 

possibility of developing a personal multi-cultural overview of the approaches of different 

communities in terms of transgression and enlightenment. 

At the top end of the PISA scale, Shanghai uses specialist teachers to teach mathematics 

in the first lesson of each school day and the teachers mark the work immediately to give extra 

lessons after school to those in difficulty. The Shanghai sample excludes a significant 

percentage of migrant workers of lower social status which can bias the results. It does, 

however, seek to focus on relationships in arithmetic that enhance the flexible conservation of 

number, with an underlying concern that it may prioritise efficiency over problem solving. 

Singapore was an active participant in the Lesson Study project in which I was a 

consultant. Their problem-solving approach follows a similar plan to Lesson Study in which 

the children are faced with a sequence of lessons in which they are given problems to solve. 

Early lessons introduce them to ideas that provide alternative ways for the children to solve 

more sophisticated problems that arise later in the sequence, so the children participate in a 

well-focused communal lesson to build their own way within an organised curriculum. 

My role as a consultant in the Lesson Study project was to introduce the participants to 

the theoretical development of embodiment and symbolism, with particular attention to the 

supportive and problematic changes in symbolism caused by changing number contexts and the 

flexibility of symbolism as process and concept.4 

4 Presentations given at various conferences can be found on my downloads page: 

http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html 

http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html
http://homepages.warwick.ac.uk/staff/David.Tall/downloads.html


16 

As part of this activity I edited (but did not write) the English version of the first three 

volumes of the Japanese Junior High School mathematics (Isoda & Tall, 2018). These splendid 

books are designed for large class teaching and build up mathematical ideas by suggesting how 

different students might interpret them and inviting the class to express their own opinions for 

individuals to make sense for themselves. The objective is for both teacher and learner to be: 

• conversant with the desired sequence of sophistication in mathematics,

• aware of the current thinking of the learners,

• aware of what is necessary to help them make the desired transition.

It was interesting for me to edit these English texts by working carefully through them. They 

are written by mathematicians, eager to encourage students to think for themselves, informed 

by research in mathematics education. Sometimes the two views have different priorities. For 

example, education research shows that students distinguish between ‘three twos’ and ‘two 

threes’, so this is made a feature of the development with the distinction being maintained for 

some time. This clearly contradicts the principle of seeking proceptual flexibility advocated in 

this presentation in which the two operations give the same result. Perhaps this will be modified 

in the next edition. The writing of a curriculum is an ongoing process and Lesson Study 

continues to refine its approach to help students make sense of new ideas in meaningful ways. 

The Netherlands (in 10th place) scores highly in PISA and is the home of ‘realistic 

mathematics’ designed to improve mathematical thinking by encouraging learners to be active 

participants, solving meaningful problems in imaginative ways (Van den Heuvel-Panhuizen & 

Drijvers, 2014). This approach spread internationally with widely acclaimed success. Yet in its 

home country, opinions were divided as some students going to university were less well 

prepared. Members of the team designing the realistic approach responded: 

… a reflection on the findings of three PhD studies, in the domains of, 

respectively, subtraction under 100, fractions, and algebra, which independently 

of each other showed that Dutch students' proficiency fell short of what might 

be expected of reform in mathematics education aiming at conceptual 

understanding. In all three cases, the disappointing results appeared to be caused 

by a deviation from the original intentions of the reform, resulting from the 

textbooks' focus on individual tasks. It is suggested that this “task propensity”, 

together with a lack of attention for more advanced conceptual mathematical 

goals, constitutes a general barrier for mathematics education reform. 

(Gravemeijer et al., 2016, p. 25.) 

This ‘general barrier’ for mathematics education reform suggests a deep transgression in our 

mathematical culture: the focus on ‘advanced conceptual goals’ may be meaningful to an 

expert, but it may not make sense to students who are attempting to make sense of ideas based 

on their current development and prefer to focus on the immediate goal of ‘passing the test.’ 

The focus on ‘teaching to the test’ features not only in one of the most successful Western 

countries, it also occurs in Brazil which has one of the lowest PISA scores. A Brazilian study 

of teenagers solving linear and quadratic equations (Tall, Lima & Healy, 2014) did not exhibit 

the symbolic ‘didactic cut’ transgression mentioned earlier, nor did students use an embodied 

solution treating an equation as a balance, instead they were taught to solve equations using 

rules like ‘change sides change signs’. When they moved on to solve quadratics, they were 

taught to use the standard formula, because it works in all cases, but most students lacked the 

algebraic fluency to rearrange equations into the form ax2 + bx + c = 0. 

At both ends of the PISA scale outside East Asia, the desire to ‘teach to the test’ may give 

some immediate success, but in the longer term, it may lead to rote-learning a range of 

disconnected methods that act as a barrier to the development of more sophisticated learning.  
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7.1 Can different cultural approaches transgress boundaries? 

Given the apparent higher success of East Asian countries, is there any way that their more 

successful approaches can transgress international boundaries? A project in the Netherlands 

sought to introduce Lesson Study methods into the more advanced study of calculus. The 

teachers had initial difficulties in implementing the approach because they were impeded by 

the Dutch culture of ‘following the textbook closely, the strict school guidelines and the 

pressure for high exam results’ (Verhoef & Tall, 2011). It was only in the second year of the 

study that they began to grasp the students’ personal ways of thinking and made sense of using 

dynamic software to embody practical concepts of differentiation (Verhoef et al., 2014). 

This exemplifies Stigler and Hiebert’s (1999) large-scale research on mathematics 

teaching approaches between the USA, Germany and Japan that concluded that differences in 

teachers’ competences were dwarfed by the differences in teaching methods that varied greatly 

across cultures and varied little within cultures. 

Attempting to make sense of the long-term development of mathematical thinking in 

different cultures, with different overall objectives and different variations in individuals is a 

seemingly impossible task. However, this presentation has suggested unifying features relating 

human thought and mathematical structure that offer a possible multi-contextual overview. 

To encourage confidence in long-term sense-making, I propose that we seek supportive 

principles that operate through a succession of contexts and contrast them with problematic 

changes in meaning that can lead to enlightenment rather than transgression. This can be 

formulated in a three-world context of embodiment, symbolism and formalism that develops 

through practical, theoretical and formal modes of thinking based on the natural operation of 

the human brain. It also takes account of the central limbic system that reacts subconsciously 

and emotionally to inhibit or enhance thinking. It is this latter function that is active in both 

mathematical transgressions and mathematical enlightenment. 

8. A major example: the role of transgressions in the evolution of calculus and analysis

I close this presentation with a brief outline of the evolution of ideas in calculus and analysis, 

both in terms of the historical development and also of the personal development that is now 

possible in our new digital age. When I was a teenager, I learned, and loved, calculus from a 

book with beautiful static pictures (Durell & Robson, 1934) but then found the transition to 

university analysis more challenging. Now, at the age of 77, I have passed through the most 

astonishing lifetime transformation of knowledge through the development of digital 

computing that enables me to control dynamic imagery with my finger on a tablet, supported 

by the growing power of symbolic manipulation and new forms of artificial intelligence. 

8.1 Practical and theoretical embodiment of differentiation 

In the mid 1980s, I designed ‘Graphic Calculus’ software to visualise the changing slope of a 

graph y = f(x) to represent the slope function (f(x+h) – f(x))/h for variable x and fixed h. This 

transgressed the norms in which x is first taken to be fixed, h is allowed to tend to zero, and the 

slope tended to the limit f’(x). I theorised that the notion of limit was a logical foundation of 

formal analysis but not what I termed a cognitive root, which I defined as “an anchoring concept 

which the learner finds easy to comprehend, yet forms a basis on which a theory may be built” 

(Tall, 1989).5 I rejected the notion of limit as a foundation of school calculus and proposed the 

cognitive root of “local straightness”, which simply involves magnifying a portion of a graph 

on a visual display to see if the graph “looks straight” at high magnification, and so one could 

see the changing slope (figure 10) and plot it as a new graph (figure 11).  

5 See http://homepages.warwick.ac.uk/staff/David.Tall/themes/cognitive-roots.html 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2011b-pme-verhoef.pdf
https://www.researchgate.net/profile/Nellie_Verhoef/publication/258163087_THE_COMPLEXITIES_OF_A_LESSON_STUDY_IN_A_DUTCH_SITUATION_MATHEMATICS_TEACHER_LEARNING/links/0deec53ce146fbd3bf000000.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/themes/cognitive-roots.html
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Figure 10: Magnifying the graph of y = x2 to see its changing slope 

Figure 11: Plotting the value of the slope as points 

The corresponding symbolism for calculating the slope of f(x) = x2 involves calculating the 

slope of the practical tangent as 

(f(x+h) – f(x)) / h  =  ((x + h)2 – x2) / h  =  (x2 + 2xh + h2 – x2) / h  =  2x + h. 

As h gets small (but not zero), the graph of the practical tangent stabilises so that it looks 

visually like the theoretical tangent f’(x) = 2x. 

The interesting difference here is that the symbolic version involves a process in which h 

gets small, but is never actually equal to zero, but the visual version of the practical slope graph 

looks to the human eye as if it stabilises on the theoretical derivative. 

This is such a powerful idea that one can look at the changing slope along a graph and see 

the shape of the slope function. In figure 12, the slope function of sinx (for x in radians) looks 

like cosx and the slope function of cosx looks like the graph of sinx upside down, which gives 

meaning to the idea that the derivative of cosx is minus sinx. 

Figure 12: dynamically “seeing” the derivative of sinx and cosx 

When students used this approach, they found it pleasingly meaningful, but some teachers and 

‘experts’ were uneasy because it transgressed their experience of the formal definition of limit. 
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Over the years, I extended the notion of local straightness to cover visual representations 

of differentials, partial derivatives, tangent planes, parametric curves, composite functions, 

implicit functions, area and integral, numerical methods of solving equations, and so on, 

summarised in Tall (2013) chapter 11.6 

This approach still required the student to be able to cope with the algebraic manipulation 

required to calculate derivatives. Many teachers who had to follow a specified curriculum 

taught their students (often by rote) how to operate with the rules of calculus to pass tests. 

8.2 Addressing initial algebraic difficulties 

When I designed the graphic approach to differentiation, the School Mathematics Project Team 

in the 1980s decided that the algebra for differentiating a power xn was too difficult. Multiplying 

out two brackets (a + b)(c + d) already involves coordinating four products, multiplying a by 

c, a by d, then b by c, b by d and adding them together: 

(a + b)(c + d)  =  ac + ad + bc + bd. 

Students often made errors in multiplying three brackets or more, even in the case of calculating 

(x + h)3. So, in the first year of the SMP curriculum, only the derivative of x2 was calculated 

from first principles, with the principle for xn stated without proof to enable the students to 

differentiate polynomials symbolically. Now that we have the articulation principle, it offers 

the potential to deal meaningfully with the ambiguity of notation by using brackets to clarify 

the manipulation of algebraic symbols expressed verbally. 

8.3 Integration and the Fundamental Theorem 

In my software, Graphic Calculus, I pictured the fundamental theorem of calculus by stretching 

the graph of a continuous function horizontally while maintaining the vertical scale. A thin strip 

height y, width dx is ‘pulled flat’ to see a visual area dA = ydx that looks like a rectangle. Figure 

13 shows a possible picture of this idea where the graph of y = f(x) in the left box with a thin 

strip width dx is stretched horizontally to fill the right box. The numerical value of the area 

calculated by multiplying height y by width dx has a practical value dA = ydx and its error is 

contained in the horizontal line of pixels, which can be made as small as required. This allows 

the learner to visualise a practical interpretation that can be extended theoretically to give the 

formal fundamental theorem of calculus: y = dA/dx. 

Figure 13: Visual representation of the fundamental theorem 

As I write this presentation, my colleague Martin Flashman is programming this dynamically 

in Geogebra (Figure 14). 

6 For overall development, see also 

http://homepages.warwick.ac.uk/staff/David.Tall/themes/calculus.html. 

http://homepages.warwick.ac.uk/staff/David.Tall/themes/calculus.html
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Figure 14: ‘Tall-scope’ visualising horizontally stretched continuous graph 

8.4 The transgression from calculus to analysis 

The transition from theoretical calculus to formal analysis replaces a visual and symbolic 

approach by a formal approach using multi-quantified definitions of limits which are far more 

difficult to manipulate. This gives a major transgression from calculus to analysis. 

8.5 The transgression from standard to non-standard analysis 

The theory of non-standard analysis was introduced by Robinson in 1966. Even though it 

involves simpler definitions with fewer quantifiers than standard epsilon-delta analysis, it has 

a steep initial cost in terms of the definition and construction of an extension field *ℝ of the 

real numbers that also includes infinitesimals. 

The definition involves the distinction between first order logic where the statements only 

quantify elements of the set concerned, such as 

∀a,b ∈ ℝ: a + b = b + a 

∃0 ∈ ℝ: ∀a ∈ ℝ: a + 0 = a 

as opposed to statements such as the completeness axiom which quantify subsets: 

∀S ⊆ ℝ: If S is non-empty and bounded above, then it has a least upper bound. 

An ordered extension field *ℝ of the real numbers ℝ is said to be a hyperreal number system 

if it satisfies: 

The transfer principle: Every statement about the real numbers ℝ expressed in 

first order logic is true in the extension field *ℝ. 

The construction of a hyperreal number system involves more logical machinery and the shift 

from standard analysis to non-standard analysis operates as a transgression for many pure 

mathematicians who prefer to remain with their experience of standard analysis. 

8.6 A new formal approach with a structure theorem to embodiment and symbolism 

Recently I introduced a new formal method to build on standard analysis using the real numbers 

ℝ to work in any ordered extension field K of ℝ. Define an element x ∈ K to be finite if a < x < b 

for elements a, b ∈ ℝ and to be infinitesimal if – a < x < a for all positive elements a ∈ ℝ. It is 

a simple application of the completeness of ℝ to prove the structure theorem that any finite 

element x ∈ K is uniquely of the form x = c + ε where c is real and ε is infinitesimal. The details 
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are given in Tall (2013) and in Stewart & Tall (2014). For finite x ∈ K, the standard part of x 

(written as st(x)) can be defined as the unique real number st(x) = c where x = c + ε. 

For d, k ∈ K where k ≠ 0, we can now define a k-lens m pointed at d to be 

m(x) = (x – d)/k. 

If m(x) is finite, we can define the optical k-lens o pointed at d to be 

o(x) = st(m(x)) = st((x – d)/k) ∈ ℝ. 
By various choices of d and k, which can be finite, infinite or infinitesimal, this allows us to see 

detail in K as a real picture on the real line ℝ. The same idea extends to n-dimensional space, 

which may be real or complex (Stewart & Tall, 2018). 

The structure theorem allows us to visualise infinite or infinitesimal structure and 

manipulate the symbolism algebraically, raising us from the formal world to higher levels of 

embodiment and symbolism. (See Stewart & Tall, 2018, chapter 15.) In particular, the theory 

may be applied not only to the hyperreals in non-standard analysis, but also to simpler fields 

generated by power series in an infinitesimal related to the natural imagery of analytic functions 

of Leibniz and also of the complex analysis of Cauchy (Tall & Katz, 2014). 

9. Where do we go from here?

What does this all mean? First it vindicates the increasing sophistication of mathematical 

structure in the three worlds of embodiment, symbolism and formalism and the role of structure 

theorems to move from formalism to higher levels of embodiment and symbolism. Then it 

illustrates the growth of mathematics in school from practical mathematics to theoretical 

mathematics, and for the small minority going on into pure mathematics to build spirally 

upwards to more sophisticated levels of formalism, embodiment and symbolism. The historical 

development also reveals the human mind thinking naturally in terms of variable quantities that 

can be ‘arbitrarily small’ or ‘infinitesimal’, so that different stages in development arise from 

natural processes of the human brain. 

At every level in historical and personal development, we need to be aware of the 

supportive and problematic aspects that arise as we move into new contexts and, from a human 

point of view, we need to understand the emotional operation of the limbic system and its 

capacity to inhibit or enhance mathematical thinking. Moving to previously uncharted territory 

requires creativity and reflection by teachers, learners, and others involved in mathematical 

thinking, to be aware of the subtle boundaries that limit thinking in a given context, and to seek 

enlightenment by building on long-term supportive aspects and confronting problematic 

concerns. Transgressions to new contexts require an understanding of how the human brain 

makes sense of mathematical ideas, socially, cognitively and emotionally. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2014a-tall-katz-cauchy.pdf
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Reflections on the conference added afterwards 

The paper as presented here was written in advance of the conference to address the topic of 

‘transgressions’ in mathematics. Owing to ill-health I had not travelled abroad for some time 

and had mainly stayed at home on my own, reflecting on the framework I had begun in my 

book on How Humans Learn to Think Mathematically. The conference provided me with an 

opportunity to present new ideas that extend the framework in several new directions (including 

subsequent papers: Tall, 2019, 2020). 

For the actual presentation, it was necessary to produce overheads that were appropriate 

for a one-hour plenary (with time for questions) focusing on aspects that were essential for the 

conference. In particular, the plenary extended the notion of transgression by introducing the 

complementary idea of insight, together with an overview that related contrasting views of 

different communities of practice (figure 15) and of individual development within a specific 

community of practice (figure 16). These are potentially relevant to most of the papers 

presented in the conference. 

Figure 14: Transition between communities across a boundary 

Figure 15: Transition by an individual across a boundary 

In the case of differences between one community and another, the possibilities are: 

Transgression: crossing out of a previous community over a boundary 

Enlightenment: crossing into a new community over a boundary 

Overview: encouraging communication between communities. 

Examples include differences between communities of pure and applied mathematicians, 

between mathematicians and mathematics educators, between different levels of teaching in 

early learning, primary, secondary, university, different forms of expertise in mathematics. 

In the case of an individual seeking to make a change in context within a single 

community, there are three possibilities: 

Transgression: inability to change context 

Enlightenment: ability to change context 

Overview: ability to switch between contexts. 

Examples include generalising number systems from counting numbers to fractions, to signed 

numbers, to rationals, reals, complex numbers, from arithmetic to algebra, from practical 

drawing to Euclidean proof, through various van Hiele levels, from school mathematics to 

university, and so on. 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2019a-transgressions-krakow.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf
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The keynote of Rina Zaskis ‘On interplay between research, mathematics and pedagogy’ 

offers valuable evidence of the reality she has encountered in student teachers’ difficulties with 

mathematics, revealing the genuine practicalities that face teacher educators, complementing 

the broad brush-strokes of my own presentation. 

Anna Sfard’s keynote, on ‘discursive gaps in mathematics in mathematics classroom: the 

invisible pitfalls of routines’, uses the metaphor ‘mind the gap’ to refer to a picture of the gap 

between a stationary train and the platform. This has a structure similar to figures 14 and 15, 

highlighting the many instances where the language of expert and learner may cause significant 

difficulties with one well-chosen example. The difference between the Sfard (1991) dualist-

framework between operation and structure and the Tall (2013) three-world framework goes 

back to Autumn 1990 when we worked together for six weeks at Warwick University and we 

found a significant difference between the Sfard notion of ‘structure’ and Bourbaki’s set-

theoretic definition of mathematical structure. This caused me to see distinct categories of 

embodied structure of objects (physical or imagined) and structure of axiomatic formal theories, 

much later extending the two categories to three (Tall et al., 2000). 

There is neurophysiological evidence (Amalric & Dehaene, 2016) that ‘high level 

mathematical thinking makes minimal use of language areas and instead recruits circuits 

initially involved in space and number.’ Language is clearly essential for the formulation and 

communication of sophisticated theoretical ideas but it is also important to be able to make 

coherent links with spatial and operational meanings. In a teaching experiment in linear algebra, 

Hannah, Stewart & Thomas (2016) encouraged students to explain the links between geometric, 

symbolic and formal ideas in everyday language. The students highly rated the course and, 

though they found verbal explanation difficult to achieve, it gave them an opportunity to give 

meaning to symbolic calculations and formal relationships that was reflected in improved 

performances in examinations. 

The question about the balance between the role of language and other aspects of 

mathematical thinking remains open. What matters even more is to provide practical and 

theoretical ways of helping teachers and students to operate in ways appropriate for their 

personal needs and for their role in society. 

The fourth keynote by Gerald Goldin on ‘Beauty, Power, and Connection: The Conative 

Dimension of Mathematical Engagement’ enriches the connections between cognition and 

affect by highlighting the aesthetic role of mathematics. This can be related to brain activity 

mentioned in a paper (Tall, 2020) extending the opening keynote where affective aspects of 

brain activity arise in the central limbic system that flood the whole brain with neurotransmitters 

that enhance or suppress mental activity in an immediate unconscious activity before conscious 

decision-making occurs (Figure 16). 

Figure 16: The brain and the limbic system 

http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2000a-objec-encap-jmb.pdf
https://www.pnas.org/content/pnas/113/18/4909.full.pdf
http://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot2020a-3worlds-extension.pdf
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The interrelationship between the different parts of the limbic system is still not fully 

understood.7 However, we already know that different neuro-transmitters are gender-related 

and are generated by experiences of pleasure and fear in which beauty, power and connection 

play a vital affective role. These are related to the three-world cognitive framework of 

embodiment, symbolism and formalism and the social frameworks of different communities. 

Many other presentations had links to my opening keynote. I mention only those from 

academics from the host institution. 

Miroslawa Sajka showed videos of her eye-tracking research using the latest portable 

equipment with spectacular demonstrations of the changing focus of attention as an individual 

looks at pictures, reads information and makes decisions. This offers me new personal insight 

into the thinking of mathematicians and students, enhancing the framework I proposed.  

Piotr Blaszczyk presented a link between the historical work of Euler and modern 

standard and non-standard analysis that resolved a problematic aspect that had remained 

unsolved for over thirty years since it arose in the Foundations book I wrote with Ian Stewart. 

This concerned whether the epsilon in the definition of a Cauchy sequence should be real or 

rational. Knowing what we do know about real numbers, this hardly seems to matter as there 

are always real and rational numbers between two distinct reals. But what if the ‘real numbers’ 

we are talking about are not related to our embodied imagination of a number line? What if 

they were only given formally in terms of the axioms of an ordered field? What if the field were 

non-Archimedean? 

The resolution given by Błaszczyk (2016) solved this problem by considering the limit 

of (1/n) as n tends to infinity using a definition that distinguishes between properties in 

Archimedean and non-Archimedean fields. Making sense of this result requires a knowledge 

structure that can grasp its meaning. It now makes sense to me, but it may be problematic for 

you, the reader. This possibility emphasizes the main point of my presentation: that we must be 

willing to question our own understandings to pass through an impenetrable boundary to find 

insight. 

My final comment is to thank Basia Pieronkiewicz for inviting me to the conference and 

sharing her publications on transgressions and the origins of the theory (Pieronkiewicz, 2015, 

Kozielecki, 1987, 1997). Not only did she make all the complicated arrangements for my 

attendance, she also thoughtfully presented me with a copy of Tomasello’s Cultural Origins of 

Human Cognition. This has turned another corner in my journey to understand the evolution of 

mathematical thinking, not only in the millenia of evolutionary time, but also in historical time 

within the life of an individual. 

In the last half century or so, we have passed through a remarkable period of conceptual 

change with the invention and development of digital technology. Not only does this offer us 

new tools to carry out numerical and symbolic calculations and draw dynamic pictures 

controlled by the movement of a finger, it also gives us new ways of imagining the amazing 

shift in meaning from practical drawing to mathematical imagination. The drawing of a line 

with a pencil does not allow us to see the difference between a rational number and an irrational. 

It only allows us to draw a continuum in which the mark made by the pencil leaves a trace that 

does not reveal fine detail. Using a smart phone, it is possible to zoom in on a graph and 

continually redraw it without changing its thickness. This enables us to zoom in to see the 

notion of local straightness that gives rise to differentiability and also to use a ‘Tall-scope’ (as 

in figure 14) to stretch a graph horizontally to ‘pull it flat’ and give meaning to the fundamental 

theorem of calculus. 

7 https://en.wikipedia.org/wiki/Limbic_system 

https://www.researchgate.net/publication/281452699_Affective_transgression_as_the_core_objective_of_mathematics_education
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Half a life-time ago, I gave a dynamic visual proof a function (‘the blancmange’) that is 

continuous everywhere, but differentiable nowhere, (Tall, 1982). Using the fundamental 

theorem, its integral is differentiable once and is everywhere continuous. Repeat this integration 

several times gives a Cn function that is differentiable n times with a continuous nth derivative. 

The theory of embodied meaning is not just a naïve beginning for apprentices encountering 

mathematics at an early stage. It has a profound meaning that takes us higher and higher in 

aspiration that extends to ever greater mathematical sophistication. For the very first time in 

history, we are at a threshold that takes us to a new level of sense-making in mathematics in 

general and in calculus in particular. We are very privileged to live in this amazing period of 

intellectual advancement. 

I end this reflection with the first slide I presented in the plenary (figure 17). 

Figure 17 
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