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This chapter is written to encourage elementary teachers to make sense of mathematical ideas 
for themselves and for their learners. Mathematics grows more sophisticated as it develops in 
history and in the learning of the individual. In the individual, it begins with practical activities 
—recognising shapes, describing their properties, learning to count, performing simple 
arithmetic, recognising general relationships— and evolves into more theoretical ideas based 
on definition and deduction. Broadly speaking, this may be seen as a steady growth from the 
coherence of practical mathematics, where ideas fit together in a meaningful way, to the 
consequence of theoretical mathematics, where mathematical ideas are formulated as 
definitions and properties are proven from those definitions. 

As new contexts are encountered, sometimes the individual has the necessary 
experience to make sense of the new situations and sometimes ideas that worked before become 
an impediment to future learning. For example, young children may perform calculations with 
small numbers using their fingers, but this will not work with larger numbers and will need 
rethinking to deal with fractions or signed numbers. Powers of numbers such as 22, 23, … may 
be introduced as repeated multiplication 2×2×2, … but this will no longer work for fractional 
or negative powers. 

Measuring various quantities, such as time, distance, speed, area, volume, require new 
ways of thinking. If we start with a length of 4 metres and take away 1 metre, we are left with 
3 metres, but we cannot start with 4 metres and take away 5 metres, because we can’t have a 
length less than zero. Or can we? If we measure 4 metres in one direction then move back 5 
metres, the net result is simply 1 metre in the reverse direction. Here it is possible to rethink 
the mathematics and see new possibilities working with signed numbers to extend the system 
of counting numbers. 

In other contexts, as we generalise operations, the meanings may require us to think 
beyond our practical experience. For instance, if we measure a length of 2 metres, its square, 
22 is an area and its cube 23 is a volume, but what kind of figure is represented by 24? Does it 
involve a fourth dimension when we only live in three?  

Different individuals meet these challenges in different ways and this applies to 
teachers as well as learners. Each of us has a personal history and we have learnt to cope with 
mathematics in our own way. It is essential for us to understand how we make sense of 
mathematics so that we can seek to become aware of our own strengths and weaknesses and 
how these may help us mentor new generations to make sense of mathematical ideas. 

Changes in meaning in the long-term development of mathematical thinking 

In this chapter, we consider the long-term development of arithmetic and algebra from the point 
of view of the learner, to gain insight into the changes of meaning that are encountered. Some 
of these lead to new ways of thinking that offer power and insight while others cause difficulties 
that impede progress.  

The way in which we speak a mathematical expression can affect its meaning. For 
instance, if we say ‘2+2×2’ as ‘two plus (pause) two times two’ then this means something 
quite different from ‘two plus two (pause) times two’. (Say it to yourself and think about it.) 
By taking account of how we speak mathematical expressions, we can begin to make sense of 
new meanings introduced in new contexts. 

While some meanings change, other properties remain stable throughout school 
mathematics, particularly those of the foundational operations of addition and multiplication. 
For example, if we add a collection of numbers such as 2 + 5 + 3 +1, then it does not matter in 
what order we work out the result. On the other hand, a mixture of operations such as 9–5+3 is 
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affected by the way in which we group the terms, so that (9–5)+3 is 7 while 9–(5+3) is 1. 
However, adding together mixed types of numbers such as 9+(–5)+3 is independent of the 
order of operation, whether the terms are added in the given order or as 9+3+(–5), or in some 
other sequence. This continues to work with sums involving mixtures of whole numbers, 
decimals, fractions, and negative numbers, such as 2+5+(-7)+1.4+¾. The same is true for the 
product of numbers: the order of multiplication does not affect the result. 

These general principles also apply in algebra, though here we use various conventions 
for writing expressions in more compact ways. A product of numbers and variables, say ‘x 
times 2 times b times 3’, can be written in a standard way by working out the product of the 
numbers first and then following it with the letters, usually in alphabetical order, as ‘6ax’. 
Using the index notation x2 to represent x×x allows us to write expressions such as the quadratic 
ax2+bx+c and mentally manipulate them in a more flexible way. We may ‘factorise 3x2–5x–2’ 
to get (3x+1)(x–2) or ‘multiply out brackets’ in (3x+1)(x–2) to get 3x2–5x–2 or (x–2)(3x+1). 
The various expressions 3x2–5x–2, (3x+1)(x–2) and (x–2)(3x+1) look different and involve 
different sequences of calculation, but fundamentally, they are just different ways of writing 
the same underlying expression. 

Mathematicians and mathematics educators interpret what is going on in various 
different ways. Mathematicians develop sophisticated meanings that can be written in subtle, 
flexible ways, but educators study what is happening in the classroom and report the observed 
development of learners. Each of us, with our own particular history of personal development, 
will be sympathetic to some aspects while being less sympathetic to others. It is important to 
keep an open mind and attempt to grasp the relevance of various viewpoints. 

In earlier times the mathematics curriculum in arithmetic and algebra was often seen as 
an accumulation of techniques for making calculations in increasingly complicated situations, 
including conventions relating to the use of brackets and the order of precedence of operations. 
This can lead to arithmetic and algebra being seen as increasingly difficult so that some 
children, and also some teachers, believe that mathematics is too complicated for them to be 
able to make sense of what is going on. This is a belief that needs to be challenged. 

Progress can be made to improve both the learning experience of children and the 
conceptions of teachers by reflecting on how learners make sense of mathematics at a given 
time and how these ideas evolve in sophistication over the long term. As a by-product, this not 
only helps us to teach more sensitively, it may also help us understand the sources of our own 
beliefs and attitudes to help us to make sense of mathematics for ourselves. 

Individuals think very differently. Some children have special educational needs related 
to physical, social and psychological difficulties. Others may be categorised as gifted or 
talented in a wide array of areas. This will lead to a broad range of success in making initial 
sense of ideas and drastically affect how individuals cope with successive levels of 
sophistication in the longer term. In this chapter, we seek underlying principles to give us 
greater insight into those ideas that are supportive in long term learning and the changes in 
context and meaning that may impede progress. 

We begin by studying the broad sequence of development from the child’s earliest 
experiences with number, considering the practical activities that lay the foundation of the later 
development of more theoretical aspects of arithmetic and algebra. 

In today’s complex world, it is common for an individual teacher to concentrate on the 
detail of what they teach at a particular stage of development to become an expert in early 
learning, or in a particular stage in the primary, secondary or advanced school curriculum, or 
in various topics at undergraduate, graduate or research mathematics. Here we emphasise the 
need for teachers at any given stage to be aware of the supportive and problematic aspects that 
learners may bring from their previous experience and also be aware of how learning at a 
particular stage plays its part in longer-term development.  
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Early experiences with numbers 
A child’s early experiences with number starts with practical activities, such as singing songs 
that incorporate numbers in sequence, or counting the stairs going up or down a staircase. This 
is in itself part of the process of associating words with people, objects and actions, ‘mummy’, 
‘daddy’, ‘dog’, ‘cat’, ‘come here’. Pointing at a person or an object and saying a word, is 
intended to associate the word with the person or object. Counting is somewhat different. 
Pointing at the objects in a collection, saying the words ‘one’, ‘two’, ‘three’, … is intended to 
count the collection, rather than associating the last word said with the last object. To count the 
number of objects in a collection requires more than being able to perform the complex act of 
counting, it requires grasping the principle that whatever order the objects are counted, when 
it is done correctly, the resulting number is always the same. 

Practical activities soon include the operations of adding and take away. Not only does 
this include developing specific knowledge of number facts such as 2+2 is 4 or 5+3 is 8, it also 
builds an implicit sense that adding gives a larger result, that ‘take away’ gives a smaller result, 
and that it is not possible to take a larger number from a smaller one. Such subtle subconscious 
ideas become part of the child’s mental imagery for whole number arithmetic. They may then 
act as barriers to learning operations with new kinds of numbers. How can multiplication make 
less when multiplying fractions? How can ‘take away’ give more? What does it mean to 
multiply negative numbers? How can the product of two negatives be positive? 

The curriculum is organised to build mathematical ideas from simple addition of two 
single digit numbers, then numbers up to 100, introducing place value, learning multiplication 
of whole numbers as repeated addition, using multiplication tables to remember products, then 
applying these ideas in various contexts such as measuring length, time, speed, weight, volume, 
and other mathematical and scientific concepts. Now the product of two lengths gives an area, 
of three lengths gives a volume, but how can we visualise the product of four lengths? 

The fact is that, with numbers, powers are not a problem. We can calculate powers of 
a number simply by repeated multiplication, so that 22 = 4, 23 = 8, 24 = 16, and so on. This 
suggests that a good way forward is to begin with meaningful experiences of simple counting 
and then to focus on the properties of operations with numbers. 

Flexible properties of addition and multiplication 

Making sense of mathematics in the long term is likely to be enhanced by starting with 
experiences that are designed to make sense to the learner at the time, with the teacher, as 
mentor, being aware of those aspects that remain stable in the long term and those that involve 
subtle changes in meaning. 

Two fundamental properties of addition and multiplication remain stable throughout 
school mathematics. One is that when we add a finite collection of numbers together, such as 
5+3+26+44, then it does not matter in what order the operations are carried out. We can add 
them together in sequence, 5+3 is 8, then 8+26 is 34, then 34+44 gives the total 78. Or we 
could add 26+44 to get 70, add 5+3 to get 8, then add 70 and 8 to again get 78. With experience, 
we can begin to build up a belief in what we might term the General Principle of Addition: 

(GPA) The sum of a finite collection of numbers is independent of the order of 
calculation. 

There is a corresponding General Principle of Multiplication: 
(GPM) The product of a finite collection of numbers is independent of the order of 
calculation. 
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Both of these principles arise in practical mathematics of experience and coherence. They may 
be seen to always work. However, in theoretical mathematics, it is more usual to formulate the 
more fundamental commutative rules (C) and associative rules (A): 

(C) a+b = b+a, ab = ba, 

(A) (a+b)+c = a + (b+c), (ab)c = a(bc). 
It is, of course, possible to prove (GPA) and (GPM) from the rules (C) and (A), but this requires 
a huge conceptual leap which, if done fully, requires the use of proof by induction. The general 
principles (GPA) and (GPM) are more useful in practical mathematics than the effort required 
in theoretical mathematics. In particular they are very helpful in the longer term because 
precisely the same properties hold as we move from whole numbers to fractions, signed 
numbers, decimals, real numbers and even complex numbers. A sum such as 8+(–5)+12 has 
the same result whatever order the calculation is performed: it can be calculated as 8+(–5) is 3, 
then 3+12 is 15, or as (–5)+12 is 7, then 8+7 is 15, or in any other order. These underlying 
principles also work in algebra and provide foundational principles for long-term learning in 
arithmetic and algebra. 

Long-term success in mathematics is enhanced by realising the flexible relationships 
that occur naturally in simple arithmetic and also realising subtle differences in meaning that 
occur when expressions involve different operations or when arithmetic and algebra are used 
in different contexts. 

We begin with a simple example that can be used to illustrate flexibility of whole 
number arithmetic. It can be used at a stage when a child has experience in counting to ten 
(perhaps by singing nursery rhymes involving counting) and has the distinction that it shows 
the flexibility of addition and multiplication while laying the foundations for later evolution of 
meaning in more sophisticated number systems. 

The flexible number 6 
The number 6 is chosen because it is the smallest number that is the product of two different 
whole numbers (not including 1). 

A set of six objects can be moved around and counted in many different ways, each 
time getting the same total ‘6’. It is possible to count all the objects in a set of six objects, which 
can be broken down into subsets, say of 4 and 2, to see that counting four objects, adding a 
second set of two objects allows us to ‘count all’ to see that 4+2 is 6. It can be ‘counted on’, 
starting with a set of four objects and counting on two to get ‘five, six’ giving 4+2 is 6. The 
same two subsets can be left in the same place, but counted in a different order to get 2+4, or 
they can be moved around and recounted in any order, again getting the same number. By 
placing them in 2 rows of 3 or 3 rows of 2, we get 2 lots of 3 or 3 lots of 2 is 6. 

 
Figure 1: The flexible number 6 

The essential foundational idea is that, for a given collection of objects, it does not matter in 
what order they are counted, or how the set is subdivided, the number of objects is always the 
same. This underlying flexibility of addition and multiplication of whole numbers proves to 
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lay a sound long-term basis for learning arithmetic. However, as soon as an expression involves 
more than one operation, the situation becomes far more complicated. 

Combining two operations 
When an expression combines addition and multiplication, as in 2+2×2, then the result depends 
on how the expression is interpreted. Is it ‘2+2 (which is 4) times 2’, which gives 8? Or is it ‘2 
plus 2×2’, which is ‘2 plus 4’, giving 6? It turns out that the meaning can be made clearer by 
the way the expression is spoken. If we say ‘2 plus 2’ (pause) ‘times 2’, then this evidently 
means 2+2 is 4, then ‘times 2’ gives 8. But if we say ‘2 plus (pause) 2 times 2’ then this means 
2+4 which is 6. 

This difference is part of an amusing video in which a student stands in front of a wall 
moving towards her, with a swimming pool behind. On the wall is the problem ‘2+2×2’ and 
two doors, one marked ‘6’, the other ‘8’. If the student makes the ‘correct’ choice ‘6’, then the 
door opens and she is safe. Otherwise, the ‘incorrect’ choice ‘8’, does not open the door and 
she is pushed into the pool. 

 
Figure 2: What is 2+2×2? 

To be able to answer correctly, the student only needs to remember the rule that ‘multiplication 
takes precedence over addition’. But many students fail: reading the expression from left to 
right gives ‘2 plus 2’ (which is 4), then 2+2×2 is 4×2, which is 8. The experience of reading 
symbols sequentially from left to right makes it natural to first perform 2+2, then multiply the 
result 4 by 2. The rule that multiplication is performed before addition involves calculating the 
expression in a less natural sequence, first performing the calculation at the end (2×2) and then 
adding the first part (2+) to get the final ‘correct’ result. 

Mathematics educators over the years have analysed the ways in which children count 
to add numbers, for instance, calculating 8+2 by counting a set of 8 objects, then a set of 2, 
then putting the objects together to count them all. A more efficient method is to start with the 
8 in the first set, and simply ‘count on’ two more numbers to get ‘nine, ten’.  This leads to a 
difference in meaning between 8+2 and 2+8. The first of these, 8+2, only requires starting at 8 
and counting on two numbers while 2+8 starts at 2 and counts on eight numbers as ‘three, four, 
five, six, seven, eight, nine, ten’. 

 In the UK in the seventies and eighties, the common practice was to regard 8+2 
in terms of ‘count-on’ starting with an initial number ‘8’ followed by the operation ‘+2’ to give 
the final answer ‘10’. Essentially this focuses on addition as ‘count on’. It developed into a 
theory called ‘state-operator-state’, beginning with the first state ‘8’, applying the operator ‘+2’ 
to count on two to get the final state ‘10’. 

The same theory was then used for multiplication in which ‘3×2’ starts with the first 
‘state’, ‘3’, performing the operator ‘×2’ giving the final state ‘6’. This led to the interpretation 
of 3×2 as ‘two threes’ or 3+3. On the other hand, tables were learnt by saying 3×2 as ‘three 
twos’ so that the ‘two times table’ was said as 

One times two is two, two twos are four, three twos are six, … 
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and written as 
1×2=2, 2×2 = 4, 3×2 = 6, … 

Here 3×2 interpreted as ‘three twos’, which is 2+2+2. 
For a time, while teaching simple arithmetic, a distinction has been made between 3×2 

and 2×3. This happened not only in England, but in Japan and other East Asian Communities, 
such as Hong Kong. My Hong Kong colleague Chun Chor (Litwin) Cheng explained this to 
me by suggesting that it was possible to have three ducks each with two legs but not two ducks 
with three legs. 

 
Figure 3: Two ducks each with three legs 

Although in the real world, one cannot have two ducks with three legs, in the world of 
imagination, it is possible to count the number of legs in one’s mind’s eye to see that two lots 
of three is again six. In arithmetic, what matters is the relationship between the numbers, where 
3×2 and 2×3 are simply different ways of calculating the same result. 

Relationships between numbers in whole number arithmetic may be visualised using 
counters. For example, by looking at the array of counters in Figure 4, it is possible to see that 
the calculation of 2 times 3+4 gives the same result as 2×3 plus 2×4. 

 
Figure 4: Two times 3+4 gives the same result as 2×3 plus 2×4 

Using algebraic notation, this later generalises to the distributive law that multiplication is 
distributive over addition 

a×(b+c) = a×b + a×c 
where a, b, c stand for any numbers. We may even compress the symbolism a little by using 
the convention that the multiplication sign × may be omitted in products such as a×b where 
there is no ambiguity to represent the distributive law as 

a(b+c) = ab + ac. 
Such conventions need to be handled with care. We can omit the multiplication sign in products 
such as a×b, 2×x or 3×a×b to write ab, 2x or 3ab, but not in 2×1 or 3×½ where 21 and 3½ 
represent different conventions. Where we have a mixed product of numbers and variables 
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such as 2×a×3×b we also organise the terms in a standard way by multiplying the numbers and 
placing the product in front of the letters as 6ab. 

The way in which we interpret these conventions is extremely important. If a learner 
imagines the symbol 3+2 as an instruction to perform some counting operation (e.g. count-all 
or count-on), then the symbol a+b can have no meaning, because, if you don’t know the actual 
values of a and b, then you can’t perform the actual counting process. It is therefore essential 
to be aware of how learners build up meaning for mathematical expressions over the long term. 

Speaking mathematically 

Focusing on how we speak mathematical expressions allows us to clarify the different ways in 
which expressions may be interpreted. This happens not only with expressions involving a 
mixture of addition and multiplication, but whenever an expression involves other operations, 
such as ‘7–3+2’ which can be ‘seven take away three (pause) plus two’ which is 4+2 = 6 or 
‘seven take away (pause) three plus two’ which is 7–5 = 2. Likewise, ‘the square root of nine 
times nine’ can be ‘the square root (pause) of 9×9’ which is 9, or ‘the square root of nine 
(pause) times nine’ which is 27. 

Even expressions involving a single operation other than addition or multiplication 
depend on the way that they are spoken. For instance, ‘Five take away three take away one’ 
would normally be interpreted in sequence as it is spoken to start with 5, take away 3 to get 2 
and then take away 1, to get 1. But ‘Five take away (pause) three take away one’ could also 
mean ‘5 take away 1’ to get 4. 

In general, interpreting expressions in the sequence in which they are spoken is more 
natural, so when writing from left to right, as in English, it is natural to interpret 5–3–1 as 5 
take away 3, then take away 1, to get 1. This is why 2+2×2 causes problems, because the 
accepted meaning (with multiplication taking precedence over addition) requires working out 
the second operation 2×2 first, which contradicts the natural order reading left to right. 

There are, of course, differences in the direction of writing various languages. Most 
European languages read from left to right down the page while Arabic and Hebrew read from 
right to left. Meanwhile Chinese script is written down vertical columns starting on the right 
of the page with columns moving successively to the left. Traditional Japanese script 
(tategaki 縦書き) follows the Chinese convention, while more modern technical Japanese in 
scientific and mathematical texts is written following the European convention in rows from 
left to right (Yokogaki 横書き). 

However, when an expression is spoken, the terms follow one another in time, so they 
offer a natural sequence of operation, which can be further clarified by the way in which the 
words are grouped together when they are spoken or written. In all languages, it is useful to 
think carefully about how expressions are spoken and how this is translated into written 
symbolism. 

Giving meaning to spoken and written expressions 

Once the learner is aware that the way in which an expression is spoken can affect its meaning, 
it becomes more appropriate to introduce brackets to distinguish between meanings. The 
convention is that operations inside brackets are performed first. So 2+(2×2) means 2+4 which 
is 6 while (2+2)×2 is 4×2, which is 8. Using the same idea, (7–3)+2 is 4+2 = 6, while 7–(3+2) 
is 7–5 = 2. Earlier, we spoke of the meaning of ‘the square root of 9×9’ which now has two 
distinct meanings as (√9)×9 = 3×9 = 27 and √(9×9) = √27 = 9. 

It is important to begin with simple examples so that when a learner reads an expression 
this is performed with an understanding of its meaning. For instance, if a child does not make 
sense of the conventions, an expression like 2+3x might cause bewilderment. What does it 
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mean? Reading it from left to right, it first says ‘2+3’, which has a meaning in itself as ‘5’, but 
the ‘x’ is, literally, ‘unknown’, so the child may simplify 2+3x to carry out the part of the 
expression that can be calculated and leave the rest as it is to write down the ‘answer’ as 5x. 

There is a vast literature documenting children’s ‘misconceptions’ in arithmetic and 
algebra. This is useful data. However, the problem lies in how this data is used to attempt to 
help children make sense of the mathematics. It is not sufficient simply to say that these 
interpretations are wrong and to attempt to teach the children the right conventions. Long-term 
difficulties in arithmetic and algebra remain throughout the world. To seek a better 
understanding of the situation, we focus on the underlying development of mathematical 
thinking as the child encounters new ideas. 

Long-term compression of symbols from operations to mental objects 
As mathematics becomes more sophisticated, expressions which stand for operations to be 
carried out can be interpreted in different ways. For instance, we have already seen that the 
expressions 8+2 and 2+8 are calculated in very different ways using ‘count-on’. So, as 
operations carried out in time they are quite different, yet they give the same numerical result, 
so that 8+2 is the same number as 2+8. As calculations they are different, but as numbers they 
are the same. 

In multiplication 2×3 involves a different calculation from 3×2: one is 3+3, the other is 
2+2+2, but the result is the same. Again 2×3 and 3×2 are different as calculations but represent 
the same number. 

In fractions, 2/4 and 3/6 are different as operations, one involves dividing a unit into 4 
equal pieces and selecting 2, the other divides the unit into 6 equal pieces and selects 3. They 
lead to a different number of pieces of different sizes, but the quantity in both cases is a half. 
Our use of language even emphasises this: we speak of equivalent fractions, 2/4 and 3/6. By 
saying they are ‘equivalent’, we are implicitly suggesting that they are not ‘the same’. Yet, 
when we mark them on the number line, they are marked at the same point and are seen as two 
different ways of representing the single ‘rational number’, ½. 

In dealing with negative numbers, ‘taking away +2’ and ‘adding –2’ are different 
operations, but they have the same effect. The result of the two operations 5 – (+2) and 5+(–2) 
is the same as 5–2, giving 3 in each case. 

Throughout the long-term development of the curriculum we learn new operations 
where different sequences of calculation lead to the same underlying concept. This allows a 
greater flexibility in the use of spoken and written symbolism. A spoken symbol such as ‘three 
plus two’ written as ‘3+2’ can refer to a process, ‘add three and two’, or to a concept, ‘the sum 
of three and two’. Not only can the same symbol refer to different processes, but different 
symbols, such as ‘3+2’ or ‘2+3’ can be interpreted flexibly as different processes or as the same 
concept. This flexible use of symbolism as process and/or concept is named a procept (Gray & 
Tall, 1994, Tall, 2013). As arithmetic and algebra develop in sophistication, it is the flexible 
use of symbolism that allows more complicated ideas to be imagined in ways that are both 
simpler to speak and write, yet also more powerful in use. 

This becomes more apparent as we move from arithmetic to algebra. If x represents a 
number, then we write twice the number as 2×x, and often shorten this by missing out the 
multiplication sign between a number and a letter to write it more compactly as 2x. The 
expression 2x + 1, then means ‘twice x plus one’. The question to ask is ‘is 2x+1 a process of 
calculation, or is it a concept that can be imagined as something that can be manipulated 
mentally?” The answer is that it can be either or both. We not only need to think of 2x+1 as a 
process of calculation for a given number x, or as a more general formula to calculate the value 
for any particular value of x, but also as an entity in itself that can be manipulated. For example, 
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we may wish to multiply it by x+3, writing the expressions 2x+1 and x+3 in brackets to show 
how the operations are performed as 

(2x+1)(x+3). 
It is helpful to think of 2x+1 as a single entity and use the distributive law to get 

(2x+1)×(x+3) = (2x+1)×x + (2x+1)×3 
then use the distributive law again for each of the brackets on the right-hand side to get 

(2x+1)×x + (2x+1)×3 = 2x×x + 1×x + 2x×3 + 1×3 
then rearranging terms, multiplying numbers together, writing x×x as x2 and combining terms 
where possible gives 

(2x+1)(x+3) = 2x2 + 7x + 3. 

Once again, we have the same phenomenon. The expressions on each side of the equation can 
be seen as different processes of calculation yet represent the same algebraic concept. Such an 
equation is called an identity. It works for any value of x. 

Other equations such as 

3x+2 = 11 
only work for certain values of x and we are invited to ‘solve’ the equation to find specific 
values of x that make it true. In this particular case, we can think of the left hand-side as a 
process, starting with x, multiplying by 3 to get 3x then adding 2 to get 11. We can then reverse 
these steps to solve the equation. If 3x+2 is 11, then 3x must be 11–2, which is 9 and so x must 
be 3. 

This technique only works if we have a number on the right-hand side. If we are faced 
with an equation such as 

3x+2 = x+8 
then we cannot treat the two sides as operations ‘to be undone’ as we can’t simultaneously take 
2 from the left-hand side and 8 from the right-hand side. Now we need to think of each side as 
a number that is written in two different ways. We can then take 2 from both sides to get 

3x+2–2 = x+8–2 
which can be simplified to get 

3x = 6, 
so, in this case, x is 2. 

Anyone who has qualified to teach mathematics will have met these ideas and yet the 
mathematics education literature is full of the recorded difficulties that so many learners 
experience. The step from solving an equation of the form 3x+2 = 11 with a number on the 
right-hand side to solving an equation such as 3x+2–2 = x+8–2 has been shown to be of 
significant difficulty for over thirty years (see, for example, Filloy & Rojano, 1989). This 
relates to the fact that the first equation looks like a calculation that gives a number as an 
answer, which can be undone by simple arithmetic. The second equation involves operations 
on the unknown value x which cannot be performed purely using arithmetic when x is not a 
known number. 

Although it is possible to teach children to manipulate equations by learning rules by 
rote, this causes problems, beautifully expressed by Pierre Van Hiele, who wrote; 

When I wanted to learn algebra myself for the first time – I was ten years old and I had 
found a textbook on that subject – I was overwhelmed by the vast number of rules you 
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had to apply. You were told that 3a+4a = 7a, but 3a×4a = 12a2. To make it more 
difficult a3×a4 = a7. In secondary school, I got another textbook of algebra but it was 
not much better. However, I had no more difficulties with algebra because I had 
overcome them when I was ten. Van Hiele (2000) p.27	

This comment expresses two sides of the phenomenon: the bewilderment of the young child 
presented with too many rules that do not make sense and the eventual success of a child who 
later became a leading thinker in mathematics education. However, many children do not make 
sense of this way of thinking. Some find the algebraic manipulation too complicated and others 
may be able to carry out the operations while feeling uncomfortable about what they are doing, 
as typified in the following student comment: 

I was always good at math. But, I didn't really like it. [….] Why? I don’t know. I guess 
I always felt like I was getting away with something, you know, like I was cheating. I 
could do the problems and I did well on the tests, but I didn’t really know what was 
going on. Wilensky (1998) p.184 

Different individuals develop in different ways. Children with learning difficulties may not be 
able to remember simple arithmetic facts, some may find procedures involving several steps to 
be too complicated to carry out in full and, even if a child can carry out a particular procedure 
to get a specific answer, this activity may be seen in terms of procedures to be carried out in 
time without seeing an expression as a single entity that can be manipulated as a mental object. 

Finding mathematics difficult is not something that occurs only in children. It occurs in 
virtually all of us at some stage or other. (It happened to me personally in my second year as 
an undergraduate at Oxford. In the first year, I had some difficulties with some of the courses, 
but when I revised them for examinations, I believed I understood all of the material. However, 
even though I was awarded a prize given to the top three students out of 150 in the final year, 
I found that I could only cope with enough questions to gain a high mark overall and could not 
answer others. If this happened to a prize-winning student, what happens to the rest?) 
 
In recent years, research in neurophysiology has begun to uncover reasons for these emotional 
reactions. 

Mathematical Thinking and the Brain 

The human brain is an immensely complex organ. Yet the whole individual begins as a single 
cell uniting the ovum of the mother and the sperm of the father, which goes through a 
successive sequence of cell subdivision guided by the individual’s DNA to develop into the 
new-born child. These successive subdivisions produce a human brain with two symmetric 
halves which evolve to perform specific tasks in ways that enable the whole brain to operate 
as a single unit (Figure 5). 

One half— usually the left for almost all right-handers and for the majority of left-
handers—handles most of the linear input and output of speech and sequential operations such 
as counting. The corresponding parts of the brain on the other side usually operate in a more 
general way, noticing aspects of global imagery, such as estimating number by visual 
appearance. In some individuals, the division of activity between the two halves may be shared 
in various ways, for example if the left side of a young child’s brain is injured, speech may be 
reconstructed on the right. 

Evolution has constructed connections in the brain that are idiosyncratic, even bizarre, 
for example, the left side deals with sensory input and action of the right-hand side of the body 
and vice-versa. Meanwhile, input from the senses is passed to the back of the brain for 
perceptual interpretation and then to the front of the brain for physical action and mental reason. 



 
11 

 
Figure 5: The human brain from above 

In the centre of the brain, straddling both sides, is the limbic system. (Figure 6.) This includes 
a range of functions including links to long-term memory and also a primitive ‘fight or flight’ 
system that heightens or suppresses neuronal links. Perceptual data that has been passed to the 
back of the brain for processing, passes through the limbic system before being processed 
logically by the prefrontal cortex at the front of the brain. 

 
Figure 6: Cross-section of the brain seen from the left 

This passage from perception to logical reasoning through the limbic system may cause an 
immediate emotional reaction which puts the individual in ‘fight or flight’ mode to deal with 
what may be interpreted, in a primitive way, as a threat. A biochemical reaction occurs which 
floods the brain with chemicals that may excite or inhibit connections between neurons. A 
confident individual may go on high alert to respond positively to a challenging situation. 
Another may feel threatened and the inhibited brain may be unable to think about the problem 
at all.  

The brain acts as a whole as perceptual inputs and information retrieved from various 
parts of the brain are linked together. The electrochemical signals in the brain are far slower 
than in a computer, taking several milliseconds to react, so that initial reactions occur before 
the longer time it takes to make logical decisions (Kahneman, 2011). 

Given the emotional intervention of ‘fight or flight’ reactions, it may happen that those 
who are inhibited by a negative reaction may be unable to make sense of the situation. As a 
consequence, it is not that they are simply ‘lazy’ or unwilling to work. If they are unable to 
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make sense of the ideas, they may attempt to learn procedures by rote, which may give short-
term success but is less likely to support long-term sense making. 

These initial reactions depend on the subconscious links that have been formed over 
the years as we mature. To enhance mathematical thinking in the long-term it is important to 
enhance the positive connections and to address the difficulties that impede progress. 

These links may focus on the properties of objects, as happens in geometry and other 
contexts involving physical objects and mental imagery, or on the properties of the operations, 
that are symbolised in arithmetic and algebra. I use the term ‘conceptual embodiment’ to refer 
to the first of these and ‘operational symbolism’ for the latter, shortening them to ‘embodiment’ 
and ‘symbolism’ as appropriate. 

Coherence and Consequence 
In the opening paragraph of this chapter, I proposed that the long-term development of 
mathematical thinking evolves from the coherence of practical mathematics to the 
consequence of theoretical mathematics. The young child may begin interacting with physical 
objects illustrated in figure 7 by a collection of shapes. 

 
Figure 7: The child’s journey through coherence and consequence 

A distinction is made between a focus on the properties of the objects such as their shape, 
colour, size, and so on, and on the operations that are performed on the objects. Both of these 
involve both perception and action, but the former concentrates more on global aspects relating 
to physical perception and mental thought experiment while the latter concentrates more on the 
sequential properties of processes such as counting, leading to the operational symbolism of 
whole numbers, fractions, signed numbers, decimals, real numbers, developing a sense of the 
generalised properties of arithmetic that lead to algebra. 

Coherence involves noticing and describing relationships between properties and 
operations, including constructions in geometry and calculations in arithmetic and recognising 
general properties of arithmetic that later generalise to algebra. Consequence involves the 
formulation of specific definitions and the deduction of other properties from the definitions. 

Theoretical mathematics can operate in various ways. One involves working with 
practical ideas, such as drawing geometric figures, or noting the generalised properties of 
arithmetic and using them to guide operations in algebra. A more sophisticated version involves 
making step-by-by step proofs based only on the definitions as given. 

In arithmetic and algebra, the main definitions are specified as: 
(C) the commutative laws: a+b = b+a, ab = ba for specific numbers a, b 
(A) the associative laws: (a+b)+c = a+(b+c), (ab)c = a(bc) 

and (D) the distributive law: a(b+c) = ab + ac. 
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The usual approach in school mathematics is to take these rules in a practical sense and 
use their evident coherence to extend them to the more general properties of arithmetic (GPA) 
and (GPM) that the operations of addition and multiplication are each independent of the order 
of calculation, then introduce brackets to specify the order of operations, subject to general 
rules of precedence, such as PEMDAS (in the USA) and BIDMAS (in the UK). PEMDAS is 
remembered as ‘Please Excuse My Dear Aunt Sally’ and specifies the order of preference as 
‘Parentheses, Exponents, Multiplication, Division, Addition and Subtraction’, while BIDMAS 
puts the order as ‘Brackets, Index, Division, Multiplication, Addition, Subtraction’. These rules 
also involve additional subtleties. For instance, multiplication and division are regarded as of 
equal precedence and are read as they arise reading from left to right. The same is true for 
addition and subtraction. This suggests that the rules might be more clearly written as P-E-
MD-AS and B-I-DM-AS, which explains why the first has the order MD while the second has 
DM. With the arrival of the computer, the rules of precedence that are used in different software 
programs and computer languages increases the complexity. 

In the long-term development of mathematical thinking, educational research has 
shown the difficulties that are encountered by different students. Fundamentally the 
manipulation of symbols depends on how they are processed by the human brain with or 
without the assistance of computer technology. Logically, one may reason that this is 
performed using the rules of arithmetic, but mentally, much of the activity occurs 
subconsciously. 

While pure mathematicians affirm the need for formal proof from minimal definitions 
such as (C), (A), (D), the step-by-step proof of general principles of arithmetic from these 
axioms requires proof by induction, which greatly raises the level of difficulty from practical 
to theoretical. The majority of the population are content to leave the formal proof to the pure 
mathematicians and focus much more on using the general principles to model problems and 
solve them using agreed techniques.   

The manipulation of symbols depends on the way in which they are processed mentally 
by the human brain. Logically, one may reason that this is performed using the rules of 
arithmetic, but mentally much of the activity occurs subconsciously. What we actually ‘see’ in 
our mind may be different from what is written. For example, a symbol such as 

!
"
 

may be seen by many as ‘two over four’ or ‘two fourths’, yet others see it automatically as ‘#$’ 
or ‘a half’. When I see ‘2(a+b)’, I also see it in my mind’s eye as ‘2a+2b’. In the same way, an 
expression such as 2x2 + 7x + 3 may be imagined mentally as a sum of three parts, 2x2, 7x and 
3, that can be moved around, decomposed and recomposed in the mind at will. The symbol ‘x’ 
and the power ‘2’ in the term x2 may be mentally bound together so strongly that they can be 
manipulated mentally as a single unit so that 2x2 is two of these units, while 7x is ‘seven lots 
of x’ (whatever x is) and the three terms 2x2, 7x, and 3 are added together in any order. At the 
same time, the term x2 may be seen as the product of x times x, as required). Even though it is 
an effort to factorise it to get (2x+1)(x+3), the factorisation leads to a different way of writing 
the same underlying concept as the product of two mental objects (each in brackets). 

Long-term sense making may be assisted in a number of ways. Procedures of 
calculation can be made more efficient by evolving new ways of working using fewer steps, 
but the ability to see an expression not just as a procedure to carry out, but as a mental object 
that can be manipulated makes a major step forward. By taking into account the articulation of 
spoken symbols it is natural to introduce brackets to give meaning to the sequence of operations 
and, by using convention to write expressions in more compact notation, it becomes possible 
to articulate subtle meanings in simpler ways. 
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Looking to the Future 
The approach advocated here involves making sense of ideas in a way that is appropriate for 
the learner at the time, but also realises what aspects may be stable in the longer term and what 
aspects may later cause impediments that will need to be addressed at a later stage to make 
sense of a new situation. 

As society evolves, developments in information technology are changing the nature of 
mathematics as it offers new ways to make calculations and to provide dynamic visual ways 
of representing ideas. There are also many other factors that affect the long-term development 
of mathematical thinking. These include the different genetic inheritance of individuals, from 
those in special needs to those who may be gifted and talented. Individual development is also 
affected by the social environment in the home and at school. The curriculum is affected by all 
kinds of input from politicians, parents, teachers, mathematicians, educators, and so on. 

The broad approach here focuses on making sense of mathematical ideas. Individuals 
vary in the way that they attempt to make sense. A child with special educational needs finding 
it difficult to recall simple number facts or to process multi-step tasks will be faced with very 
different challenges from those with a more coherent grasp of relationships. 

Nevertheless, although the degree of success will vary, in arithmetic, most children are 
likely to benefit from exploring the relationship arising from playing with physical objects and 
investigating the properties of arithmetic, starting with whole number relationships. In the 
longer term, successful development of ideas benefits from the immediate recall of simple 
addition facts and the flexible relationships between them. 

In addition to ‘making sense’ in a given context, such as learning simple arithmetic 
with whole numbers, it will also be necessary at a later stage to realise that what makes sense 
in one context may cause subconscious emotional reactions that become an impediment at a 
later stage. For instance, ‘multiplication makes bigger’ and ‘take away gives less’ both work 
for whole numbers but impede learning of fractions and signed numbers. At such a time, it is 
important for the teacher as mentor to be aware of changes in meaning and to guide the learner 
to make sense of the new meaning. Conventions such as PEMDAS or BIDMAS may be of help 
to codify the conventions of precedence for the flexible learner, but they may be totally 
meaningless to those who only learn by rote. 

There are many pressures in mathematics education today, from politicians who wish 
to educate their population to compete in the global economy, parents who want their children 
to have every possible advantage, teachers who wish their students to be successful in 
examinations, mathematicians who see proof as the essential foundation of their theory, 
businessmen who require future employees to have certain prescribed skills, and so on. 

International comparisons such as TIMMS and PISA suggest that, in the longer term, 
East Asian countries outperform many western nations. One factor that may contribute is the 
concentration in countries such as China on fundamental fluency with simple arithmetic. This 
has longer-term consequences, for example, fluency with whole number arithmetic is a helpful 
foundation for equivalence of fractions and for more general arithmetical proficiency leading 
on to flexible relationships in arithmetic and algebra. 

In Japan, Lesson Study has been developed to encourage children to work together in 
carefully designed sequences of lessons to make sense of mathematical ideas. Outside school, 
many attend juku lessons to develop fluency in mathematical calculations. 

This dual focus on flexible understanding of arithmetic and fluency in calculation has 
a powerful effect on long-term learning. It can be enhanced further by focusing on the spoken 
and written meaning of expressions, leading to the meaningful use of brackets and conventions 
that simplify mental manipulation of symbols. It is essential to distinguish between those 
aspects of addition and multiplication that remain stable in the long term and also to recognise 
the emotional reactions to changes in meaning that enhance or impede long-term learning. 
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