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This paper is dedicated to our friend András Ambrus who has shared ideas in 
mathematical problem solving with the first author for several decades. In his 
papers on teaching problem solving, András (Ambrus 2014, Ambrus & Barczi-
Veres, 2016) considers the issues encountered in attempting to teach average-
ability students using techniques that are successful with gifted children. In this 
paper, we consider the situation from the reverse angle, focusing on the 
development of a single gifted learner who is encouraged to ask questions about 
ideas that intrigue him. As a result, he is not only a problem solver, but a problem 
poser, seeking insights to make sense of mathematical concepts. The learner is 
the third author, Simon, now eleven years old, who speaks about mathematical 
ideas with his father, the second author, Nic. The paper is written by the first 
author, Simon’s grandfather (known to Simon as ‘Grampa’). 

As first author, it has been my privilege to talk with Simon and listen 
carefully to what he says. This has shed a different light on accepted theoretical 
frameworks formulated by mathematicians and educators about the learning and 
teaching of mathematics. It has caused me to rethink the fundamental ideas of 
mathematics and how they develop in increasing sophistication in the long term. 
 The way in which my son Nic developed over the long term had a profound 
effect on the theoretical framework that I developed in my book How Humans 
Learn to Think Mathematically (Tall, 2013). At the age of four and a half, he heard 
the weather forecast on the television mention the temperature would drop to 
‘minus two degrees’ that night and asked what ‘minus two’ meant. This led to us 
looking at a thermometer as a vertical number line with higher temperatures being 
warmer, ice forming at zero degrees and negative temperatures being colder. The 
simple question ‘If the temperature is two degrees centigrade and it goes down 
three degrees, what is the new temperature?’ not only elicited the response ‘minus 
one’, it led to a long fascination with numbers of various kinds, including 
philosophising about the concept of infinity (Tall, 2001). Nic eventually went to 
university to read mathematics but soon found pure mathematics was not to his 
taste and changed to a degree in psychology, later taking a first-class external 
degree at Oxford in Theology. 

He gave several reasons for his disillusion with university mathematics, but 
one was the introduction of the set-theoretic definition of a vector space which 
made no sense to him. This incident led to my work on advanced mathematical 
thinking focusing on the problematic change from ‘natural’ mathematics based 



 

 

on intuition to ‘formal’ mathematics based on set-theoretic definition and 
mathematical proof. 

After leaving university, his wife had a responsible job as a County 
Archivist and, when his children were born, he chose to be the home maker during 
the day, caring for his daughter Emily and son Simon. They live 200 km away, so 
we meet in person only a few times each year, while speaking often using 
FaceTime on iPads, with occasional e-mails to interchange written materials. 

Simon 
Simon’s interest in mathematics started at an early age. At two years old, he 
watched a TV programme called ‘Mr Maker’ with characters dressed as shapes, 
dancing and singing “I am a square,” “I am a rectangle,” “I am a triangle,” “I am 
a circle.” When he was on holiday with us, he played with some square table mats 
and began making shapes. These included a 2×2 square, a 2×3 rectangle and two 
symmetric shapes that he called triangles. (Figure 1.) 

 
Figure 1: Simon’s shapes 

As a mathematics educator, I saw that this fitted neatly with van Hiele’s theory 
that a child’s first stage of learning about geometric shapes involves visual 
appearance. Simon linked shapes to the characters in his television programme, 
distinguishing between a square (with equal sides) and a rectangle (with different 
sides). With only square table mats available, he couldn’t make a triangle as a 
shape with three straight sides, instead he laid out the table mats as shapes that are 
wide at the bottom, narrow at the top, with a vertical axis of symmetry. 

As he grew older, I followed his progress at a distance as his father 
encouraged him to take an interest in a wide range of activities, with Simon fully 
in charge of what he wished to do. In mathematics, he focused on ideas that 
interested him and regularly asked questions to develop deeper insights. 

As the mathematics became more sophisticated, Simon began to contact 
me using Facetime on his iPad to talk about ideas he had discovered and to ask 
me questions too. This offered me the possibility of participating in his long-term 
growth and to consider how his development fitted with various theoretical 
frameworks in mathematics education. What I learnt from him through his 
problem posing dramatically changed the ways in which I viewed long-term 
learning and the role of problem solving. 



 

 

Developing a long-term theoretical framework 
When I first met Andras Ambrus in the late 1980s, we shared interests in a 
problem-solving approach to learning. I had used the book Thinking 
Mathematically (Mason et al, 1982) as a basis for an undergraduate course, which 
is itself a rethinking of Polya’s famous problem-solving book on How to Solve It 
(Polya, 1945). Fundamentally I found that the vast majority of students took 
delight in the course and learnt to reflect positively on their thinking processes, 
but this did not always relate directly to the demands of their regular mathematics 
courses where they had a large amount of content to learn. 

Distilling the essence from many theoretical frameworks including Piaget, 
Dienes, Bruner, van Hiele, Skemp, etc., I saw the long-term growth for most 
individuals in terms of: 

Practical mathematics involving calculations and recognition of properties 
of mathematical concepts and operations, including a focus on coherence, 

and 
Theoretical mathematics, based on mathematical definitions and 
deduction with a focus on consequence. 

The first of these is appropriate for the wider population, the second is necessary 
for more advance forms of mathematical thinking in Euclidean geometry and in 
applications requiring more sophisticated theory. A third form of mathematics, 
spear-headed by Hilbert at the turn of the twentieth century, has become 
foundational among pure mathematicians: 

Formal mathematics (based on set-theoretic and logical definitions with 
formal properties deduced by mathematical proof). 

For most people, problem solving relates to theoretical mathematics – thinking 
about problems that need to be formulated and solved, perhaps by specialising to 
specific cases, then later generalising to other contexts. This involves a level of 
creativity that is different from the demands of regular mathematics courses 
following a specified curriculum. The essential conundrum is how to balance the 
learning of specific mathematical concepts with the more creative aspects of 
open-ended problem solving. 
 Working with Simon opened up new possibilities. He uses problem solving 
to pose his own problems to help him make sense of ideas and to develop 
relationships between concepts. In particular, his approach caused me to radically 
re-think basic ideas in arithmetic and algebra that are widely understood but may 
not be an explicit focus in the design of the mathematics curriculum. These will 
arise in greater detail as we follow his development. 

Simon’s long-term development 
As Simon grew older, his interest in mathematics and science expanded. He loves 
new ideas that are unusual in some way, and working out how they fit together. 



 

 

He reads books that combine ideas with humour, with titles like Murderous Maths 
or Horrible Science. When he walked to and from school, his father talked with 
him and his sister about a wide variety of topics, telling stories, speaking about 
current events and anything else that interested them. When his sister moved to 
another school, Simon’s interests turned more and more to mathematics. These 
involved a wide range of puzzles and problems. Here we focus on his 
development in arithmetic and algebra. As Nic explained, 

When Simon was in Year 3 or 4 [aged 8 or 9] I would occasionally talk 
maths but by year 5 [when he was 10], we would talk algebra and I would 
ask him something like “if 2x+3 = 7, what is x?”. Because we were walking 
to school, he didn’t have a piece of paper, so he would work them out in 
his head. Sometimes he would challenge me and I would say, “Do you want 
something really tricky?” and he’d say, “Yes.” So I would invent something 
like “If 2x squared + x + 1 = …” and make a problem up on the spot. So he 
went through a period doing mental arithmetic using algebra. 

This interest in mental arithmetic included talking about negative numbers, square 
numbers, square roots of positive numbers, properties of powers and other topics. 
On one occasion when he and I met in person, I wrote down the product 22×23 
and asked him to say what the answer might be. His immediate guess was to 
multiply the powers to get 26. He later reflected on his experience and told me that 
his method would not work because it would suggest that 21×21 would give 21×1 
which is 2 but 2×2 is 4, not 2. He now agreed that multiplying powers of the same 
number is calculated by adding the powers. Using this new rule, he found it 
fascinating to develop meanings for negative and fractional powers such as 3-1, 
21/2, x0. 
 This proved to be a general strategy that he used when faced with a new 
situation. He attempted to use his previous knowledge to predict how to make 
sense of the new context and if it didn’t work, he wanted to know what changes 
were necessary to get a working solution.  

Support from his father Nic often happened without forward planning. For 
example, when the two of them were walking around a country park, Nic began a 
conversation asking Simon what different sorts of numbers he knew about. Simon 
replied, “Whole numbers, decimals, fractions. I know about negative numbers.” 
As they talked, Nic asked, “Did you know there are things called imaginary 
numbers?” As soon as Simon realises there is something interesting that he 
doesn’t know about, he wants to know more. “What’s an imaginary number?”, he 
asked. Nic responded to this question with a question: “What is the square root of 
1?”. Simon replied, “I know 1 times itself makes 1” and Nic followed this up with 
“Are there any other numbers?”. They both agreed that minus one was also a 
square root of 1. Then Nic asked the $64,000 question: “Right, so what’s the 
square root of minus one?” When Simon realised that he could not think of such 
a number, Nic said, “In that case let’s say we’ll call it something called ‘i’ and ‘i’ 



 

 

is an imaginary number because it is not a real number.” Simon says “OK.” Nic 
asks, “Now what is i times i?” Simon thinks about it and says, “Ah well, if i is the 
square root of minus 1, i times i is minus 1.” 

The conversation continued, with Simon enjoying adding and multiplying 
simple expressions involving i while replacing i2 by –1, including questions like 
“What is the square root of –9?”. All this conversation took place verbally. It was 
only when they returned home that Nic took a piece of paper and drew the Argand 
diagram for Simon, with real numbers on the horizontal axis and i on the vertical 
axis, one unit above the origin. 

Nic enjoyed broadening Simon’s horizons, but his main objective was 
always to respond to Simon’s interests. After his own experience enjoying maths 
as a child, but giving it up at university to turn to other interests, he encouraged 
Simon to follow his own path with maths and science as part of a range of 
activities including mixed martial arts, playing the clarinet, taking part in live 
action role play and ‘chilling out’, reading, and playing ‘Angry Birds’ on his iPad. 
Over the years, Simon continued to take an interest in anything he found 
intriguing. 
 
What is 2+2×2? 
 
In November 2015, a week before his tenth birthday, Simon saw a Japanese video 
on Facebook that tickled his sense of humour. A student lay on the ground with a 
wall moving towards her. On the wall was the statement ‘2+2×2’ and there were 
two doors, one labelled ‘6’, the other ‘8’. The student had to decide which door 
to choose before being pushed into a swimming pool. The door marked ‘6’ would 
open and let the student through, but she chose the door marked ‘8’ and was 
pushed into the pool. (Figure 2.) 

 
Figure 2: What is 2+2×2? 

Simon found it very funny and called me using his iPad to talk about it. As a 
mathematician, I was naturally familiar with the convention, ‘multiplication takes 
precedence over addition’. However, for a child, and evidently for the Japanese 
student in the video, seeing the symbols in sequence can lead to‘2+2×2’ being 
evaluated sequentially, first ‘2+2 is 4’, then ‘×2’ gives ‘8’. As we spoke about 
this, we realised that the two different interpretations of the meaning of the 
sentence could be communicated by the way it is spoken. Saying ‘two plus two 



 

 

(pause) times two’ gives ‘four times two’, which is eight. Saying ‘two plus (pause) 
two times two’, gives ‘two plus four’, which is six. Using language flexibly makes 
it possible to give different meanings to expressions which can then be addressed 
in writing by using brackets. 
 Simon called me on several occasions to develop the meanings of similar 
expressions in other contexts. A few days later he asked, “What is the square root 
of nine times nine?”. As he knew about negative numbers, I thought he was trying 
to test me and I replied, “plus or minus nine.” “No,” he commented, “it’s 27 … 
because ‘the square root of nine (pause) times nine’ is ‘3×9’ which is 27.” 
 Another question was, “What is 7 take away 9?”. I said “–2” but he gave 
the answer as 11. He reasoned that if it was 7 o’clock in the evening, 9 hours 
earlier it would be 11 o’clock in the morning. This opened up the possibility of 
talking about clock arithmetic and arithmetic modulo a whole number, which has 
very interesting consequences when the number is prime, but there was too much 
going on at the time to follow this line of reasoning. 
 These interactions led me to a period of deep reflection on the fundamental 
properties of whole number arithmetic. Expressions involving more than one 
operation depend on how the expression is said, not only with ‘2+2×2’ but also 
with ‘√9×9’, ‘4–3+2’ and so on. For instance, in the last case, the expression could 
mean ‘four minus three … plus two’ or ‘four minus … three plus two.’ 
 I also saw that the pure mathematician’s way of defining binary operations 
using brackets and separate associative, commutative and distributive laws 
obscured a much simpler general property that is satisfied by the two fundamental 
operations of addition and multiplication. If we add any (finite) set of numbers, 
say ‘3+2+5+4’, then the result is always the same, no matter in what order the 
operations are performed. This is also true multiplying any finite set of numbers, 
say ‘3×4×2×5’. What is not immediately obvious is that this general property is 
also true for other forms of numbers that learners meet in school, including whole 
numbers, negative numbers, fractions, decimals, real numbers, and even complex 
numbers. This offers a major principle that would be helpful in the long term for 
a broad range of learners: to keep in mind the flexible general properties of 
addition and multiplication and to contrast these meaningfully with the different 
ways that related operations behave. 

Late night maths moments 
Simon had quiet times when he was alone and could think deeply about his ideas. 
He regularly went to bed at 9.00 every evening and fell asleep in his own time. 
Sometimes he had a ‘late night maths moment’. As Nic explains, “When this 
happens, he has been thinking about maths and he can’t sleep; he calls excitedly 
down to me because he wants to explain something before he is able to rest. … 
He gets excited with his theories. If he has an idea that he has worked out some 
big overarching theory that means he can do all one mathematical branch, and 
he’s unified it all with his insight, that’s what excites him.” 



 

 

Dividing a whole number by a fraction 
In January 2016, after 10 o’clock at night Simon called down to his father. Nic 
went up to find Simon with bits of scrap paper he’d been scribbling on. Simon 
announced, “I’ve got a theory so that I can do all fractions.” As Nic explained, 
“He had been lying in bed, working out that if you divide a number by half it 
doubles in size, and then if you divide it by a third it triples in size.” Simon then 
declared 

“To calculate n divided by x/y you work out n times y over x.” 
In school, he had followed the National Curriculum introducing simple fractions 
such as a half and a quarter and this had not progressed beyond adding fractions 
with the same denominator. At home, he had developed a flexible approach to 
whole number arithmetic with a simple insight into equivalence of fractions and 
his father had introduced him to operations such as ‘5 times two thirds’ being the 
same as ‘5 times 2 divided by 3’, written as 

5×
2
3 =

5×2
3  

Simon used his knowledge to work out how to divide a whole number by a 
fraction before he ever met the general rules for adding and multiplying fractions. 

What is Calculus? 
In June 2016, when Simon was aged 10, his family visited Bletchley Park where 
the British decoded German signals during the war. His father Nic explained: 

When we went to Bletchley Park, Simon was very interested in how codes 
are cracked. Back home the family watched The Imitation Game DVD 
about Bletchley and Alan Turing, which involved a mention of the term 
‘calculus’. Simon asked what it was. I replied, “It’s a mathematical 
technique”. Simon was not satisfied. He wanted to know what ‘calculus’ is 
and how to do it. 

Nic hadn’t thought about it since he studied maths some twenty years earlier, so 
he called me to refresh his ideas. Simon had already experienced drawing graphs 
for simple algebraic expressions such as x2 and x3 using signed numbers. Nic 
explained:  

I sat down with Simon at bedtime that evening and just went through the 
basics of differentiation, drawing a graph of x squared and then taking two 
points on the graph and showing how you can work out the slope and then 
moving the two points together and then having a dx which gets infinitely 
small. We did one or two graphs including x squared and x cubed and the 
corresponding algebraic calculations and also looked at the different signs 
that occurred when the graph is increasing or decreasing. 



 

 

Simon became very absorbed with the ideas and wanted to know more about 
dealing with higher powers. Together with his father he explored simple cases of 
the Binomial Theorem and Pascal’s Triangle, which included talk about factorials. 
Two weeks later Simon had his most amazing late night maths moment. 

Finite Differences 
On June 19th, 2016, an insight occurred which Nic described in the following 
terms: 

This was a complete bolt out of the blue. I put him to bed. Clearly, he must 
have been lying in bed thinking about square numbers, 1, 4, 9, 16 and so 
forth and, because he likes patterns, he saw that the difference between the 
square numbers increased by two each time to get 3, 7, 9, and so on. He 
then did the same for x cubed and noticed that the difference between the 
cubes was increasing each time but then the difference between the 
difference of the cubes increased by six every time. Then he thought, “I 
wonder what would happens for x to the power of 4?”. Working out 
successive differences led to the difference between the difference between 
the differences giving the constant number 24. Now he had 2, 6 and 24. 
Knowing about factorials, he suddenly realises these are factorial numbers 
and says to himself, “Well, if I did the numbers for x to the fifth, eventually 
the increase in the difference will settle down at 5 factorial, which is 120.” 
At this point, half past ten at night, he calls down, “Daddy, I need to talk to 
you.” He says, “I’ve got a maths theory,” and I knew that he wouldn’t be 
able to sleep until he has had enough time to talk about it and explain it to 
let his mind reach a point of satisfaction. He’s got school next day, it’s half 
past ten at night, I need to let him explain what he is doing. I am just blown 
away with what he has come up with. I go downstairs, get a calculator and 
explain to my wife that it could be a late one. I work out the sequence of 
powers of x to the fifth and look at the difference between those numbers, 
following it through until I find it is indeed 120. Simon’s face is just 
delighted. We talk to Grampa on FaceTime and explain it all. Simon is 
happy and can now go to sleep. Next day we get him to write it all up so 
that he can show it to his teacher who is very impressed but finds it difficult 
to understand. (Figure 3.) 



 

 

 
Figure 3: Simon’s finite differences 

The page shows him working out the differences between sequences of squares, 
cubes and fourth powers on the left with some of his calculations on the right. 
Lower down he chooses to denote the power by P and the last number by LN to 
get the recurrence relation 
 N = P×LN 
which he writes as 
 N = P! 
In the lower right corner he writes 
 &	

(
 ! = 

as he wonders what might be the value of “half factorial”. Having earlier 
generalised whole number powers to fractions and negative numbers, it is only 
reasonable to attempt to do the same thing for factorials. His grandfather knows 
that this is related to the theory of analytic continuation in complex analysis and 
even has an answer (√π/2) but this is a step too far. 
 Fortunately, Simon turns to what seems to be a simpler question: zero 
factorial. Given his recent interest in the binomial theorem with coefficients using 
factorials, it is natural to define 0! = 1, so this does not seem to be too big a 
problem. But for Simon, his ideas are genuinely more complex. 
 He returns to his ideas for nth powers where n ≥ 2 and attempts to work 
back with n = 1, then n = 0.  
For n = 1, he finds the sequence of powers is 
 11, 21, 31, 41, … 



 

 

and the first finite difference is 
 1, 1, 1, … 
so 

1! = 1. 
However, he then finds that, for n = 0, the sequence is 
 10, 20, 30, 40, … 
which is 
 1, 1, 1, 1, … 
and, calculating the finite differences, he gets the sequence 
 0, 0, 0, … 
and so declares 

0! = 0. 
He explains it to me and I attempt to explain why most mathematicians define 0! 
to be 1. Simon is not convinced. His method assumes that it is necessary to 
perform at least one finite difference operation. For the power n, the nth final 
difference is n! and the (n+1)th is 0. For n = 0, the nth finite difference is actually 
the original sequence 1, 1, 1, … and the next finite difference is 0. So the 
mathematical definition allows the 0th difference to be the original sequence and 
0! = 1. Meanwhile Simon’s method gives a sensible, but different, answer. 
 Now Simon is in a quandary. He believes 0! is 0 and Grampa, the authority, 
says it is 1. He also finds that 0 behaves peculiarly compared with other numbers. 
For instance, 0×3 = 0 and if you cancel 0 from both sides, you get 3 = 0/0. The 
same happens with any other number, say 0×2 = 0, giving 2 = 0/0 and 2 is certainly 
not equal to 3. I explain that numbers other than zero have an inverse, but again, 
Simon wants to make sense for himself. 
 Speaking to me about 0! using his iPad, he explains his problem: 

If zero factorial equals one, it breaks some patterns but it keeps others. The 
definition of n factorial uses n minus one, all the way down to one. Zero 
can’t do that. So, like minus one, I don’t think you can actually have zero 
factorial, or you may not be able to do zero factorial. 

I intended to focus his attention on the need to get a more general definition, but 
replied first in terms of his reference to minus one, suggesting, “It’s like saying 
you can’t have a square root of minus one. You can’t have a real number that’s a 
square root of minus one, but you can have a complex number.” I seem to have 
touched a nerve. He retorted, “You can’t make a complex number out of zero 
because it’s neither imaginary or real.” “It’s both,” I replied, and he recognised 
this by gesturing with his arms to represent the horizontal and vertical axes, 
saying, “That means it is a complex number because it is on both lines.” (Figure 
4.) 



 

 

 
Figure 4: Simon gesturing to show that zero is a complex number 

This was to have longer-term repercussions for Simon. The complicated number 
zero is now complex, and real, and imaginary, and is also affected by Simon’s 
calculus experience calculating with very small numbers which are then set equal 
to zero. He now has an interpretation of zero as a complex number surrounded by 
nearby points to give what he says is “zero star, which is just zero plus the teeniest, 
weeniest, weeniest bit.” 

What is the square root of zero? 
Simon now thinks that zero is surrounded by tiny complex numbers and offers his 
own explanation of its square root by considering what happens on the two axes: 

You have ‘i zero star and minus i zero star’ and ‘zero star and minus zero 
star’ and you look at the way that minus numbers and normal numbers 
behave with square roots. The square root of an imaginary number makes 
a complex number, the square root of a negative number makes an 
imaginary number, the square root of a positive number equals a positive 
or negative number. Just to tell you why the square root of i and imaginary 
numbers have two answers, it’s just like normal numbers, it has a positive 
one and a negative one. 

I have a video tape of him as he puzzles with these ideas, speculating with 
possibilities that may or may not prove to be correct. In the end, he uses his 
common sense to say that 0 times 0 is 0, so 0 is its own square root. 

What is the square root of i? 
Simon now has an extended knowledge of complex numbers in Cartesian form, 
but little experience of trigonometry and polar coordinates, other than an 
understanding of Pythagoras based on a visual argument. He knows that the 



 

 

distance of the point (x,y) from the origin is 𝑥( + 𝑦( and that a point on the unit 
circle satisfies 𝑥(+𝑦( = 1. 

He is fascinated by the pattern followed by the powers i, i2, i3 as they move 
round the unit circle to i4 = 1. His next question is to ask 
 “What is the square root of i?” 
Given his focus on algebraic manipulation of complex numbers, in an iPad 
conversation, I suggest that he might try to square a complex number x+iy to see 
if he could get it to equal 1. This gives 
 (x+iy)2 = x2+2ixy+i2y2 = (x2–y2) + i(2xy). 
Simon can see that x = y = √2/2 is a solution. Using Pythagoras, he can see that 
this point lies on the unit circle making a 45° right-angled triangle with the 
horizontal axis. 

Simon, Nic and I share a conversation about polar coordinates and how 
multiplying by i and then by i again turns the angle each time through 90°, and in 
general, multiplication in polar coordinates adds the angles, so squaring doubles 
the angle. Simon attempts to calculate the square of the number on the unit circle 
with angle 30°. He squares 30 to get 900, but on reflection, self-corrects to get 
60°. As Kahneman (2011) has observed, an initial reaction often responds with 
immediate intuitions before thinking more deeply and logically deducing the 
correct answer. 
Simon’s journey continues into the future as he builds on his previous experience 
and finds it necessary to change his method in a new context. He continues to be 
stimulated by new ideas in mathematics and science, always seeking 
comprehensive new frameworks while being stimulated by new information. This 
may relate to the comparative height of the mountains on Mars and on the earth, 
the theory of space-time formulated by Einstein, or the distribution of prime 
numbers that he observes to be ‘thinning out’ and seeks to calculate huge prime 
numbers for himself. Mathematics for him is a journey of exploration. 

Reflections 
How can the progress of a single gifted child inform the long-term mathematical 
development of others? Individuals are so very different in their interests and 
abilities and what Simon does is clearly very different from others. Yet this study 
tells a story relating the continuing development of a child and the continuing 
evolution of the coherence and consequence of mathematics. While mathematics 
educators research the growth of ideas in the classroom and plan the curriculum 
to take account of the wide array of data collected in the field, this has led to 
sequences of learning that work for some but not for all. On the other hand, 
professional mathematicians, with their expertise in formal mathematics, are able 
to build up mathematical theories where properties are deduced exclusively from 
carefully chosen axiomatic definitions. 



 

 

 This study reveals the interplay between the growing knowledge structures 
of the child and the evolving meaning of mathematics as it becomes more 
sophisticated. There is a need to integrate both aspects. It is not just a matter of 
learning techniques or of developing flexible problem-solving strategies, the 
study reveals the value of problem posing to encourage the development of 
mathematics in a more meaningful way. 
 Even for the broader spectrum of children in school, there is a need to attend 
to the sophistication of the evolution of mathematical ideas. We can now see the 
value of being aware of the fundamental general properties of the operations of 
addition and multiplication and how the spoken inflection of mathematical 
expressions can give subtle insight into the fundamental meanings. This offers an 
overall framework for the development of the general properties of addition and 
multiplication that continue to work in the same way in successive number 
systems, from whole numbers through fractions, signed numbers, finite decimals, 
infinite decimals, real and complex numbers. Meanwhile the properties of other 
operations, such as subtraction, division, powers, roots and so on can be seen to 
relate their meanings in the spoken inflections of mathematical expressions. 
 While many children may benefit from a focus on practical mathematics of 
value in their daily lives, it is essential that others study technical mathematics to 
support modern society, and of vital importance for some to move on to formal 
mathematics with its deeper frameworks of mathematical ideas. 
Problem posing – as a means for asking questions to make sense of mathematics 
as it becomes more sophisticated and changes in meaning – plays an essential role 
in understanding the long-term evolution of mathematical thinking. 
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