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Abstract 
We focus on how we expect students in a wide variety of age groups to be learning mathematics 
in a technology-enhanced environment in the future. This viewpoint will be grounded in our 
present work and seek to offer a perspective on how teaching and learning in a technology-rich 
environment might look in the future in the early grades. This is an important age group given the 
unfulfilled role of technology in elementary schools, and lack of professional development to 
enable teachers to transform their practices with latest technologies. It is also a critical time for 
young learners to establish the foundations for their future mathematics learning and motivation 
to learn. 

We will describe how recent developments in multimodal learning environments that 
utilize haptic and multi-touch technologies create enhanced learning possibilities for more 
learners to access core mathematical ideas and think mathematically. We will use existing theory 
on how humans think mathematically (Tall, 2013), particularly the fundamental processes of 
perception, operation and reason over the longer term, to illustrate various categories of new 
mathematical activities and how students can learn in a multimodal environment. 

 
OVERVIEW 

We are entering a new stage of the digital era where certain technologies are becoming 
ever more ubiquitous in our lives. Such technologies offer immersive experiences for 
students and fluid forms of interactivity to enhance engagement. Technology is also 
capturing the affordances of connectivity to enable users to connect with each other, to 
share their work and favourite media, and to preserve access to such items as they freely 
roam around a hot-spotted planet through cloud computing. Yet, it is unclear how such 
ubiquitous and highly usable forms of technology can and will be used in classrooms in 
mathematically meaningful ways. The warning of Cuban (2001) about the unfulfilled 
promise of technology as an agent of transformation is still relevant today and recent 
national reports in the US describe the challenging student achievement gaps between 
ethnic groups in mathematics classrooms, especially in urban settings, with technology 
still not enhancing access for all. 

Ten years ago, much of the technology we are referring to was not actually available 
in mainstream classrooms but now research in various countries describe computers and 
networks as being widely available in even the poorest of schools (U.S. Department of 
Education, 2007)—even though these established technologies are seldom used for the 
purpose of meaningful work  (Bretscher, in press). Indeed, some researchers have 
demonstrated that the main issue now is access to quality professional development 
(Sinclair et al, 2009). This theme also arises in other countries. We situate our work here 
in recent research funded by the National Science Foundation that explores the potential 
benefits of using technologies that embrace multimodal interaction and connectivity in 
various learning contexts. We outline examples of such technology and use an analytical 
framework (Tall, 2013) to explain how students can reason and learn mathematically in 
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such environments and discuss the potential impact they can have on mathematics 
education in the future. 
 

LITERATURE REVIEW & BACKGROUND 
 

Multimodal technologies offer alternative input or combined input/output methods. 
Common forms of alternative inputs are speech inputs (e.g., voice recognition), touch 
(e.g., gesture-based interactions) and bodily motion. The latter has rapidly evolved in 
recent years with the development of multi-touch technologies (e.g., tablet PCs, 
Interactive Whiteboards, iPads). Combined input/output devices include haptic devices, 
which integrate visual modes with force feedback loops, offering the user the ability to 
feel objects or the results of their interactions with the environment. 

As a consequence of new modes of interaction, it becomes possible to integrate new 
ways of thinking mathematically, taking us beyond text books with static pictures and 
keyboard input as in the days when Logo was first introduced by specifying geometric 
pictures with typed commands. There is now a growing potential based on successful 
prior research and falling costs to use multimodal technologies in mathematics 
classrooms to offer students multiple ways to construct meaning using their natural 
modalities and bodily experiences.  

Multimodal interaction has evolved in various research areas and applications 
including computer vision/visualization, psychology and artificial intelligence with 
increasing use in education particularly in early learning and developmental psychology. 
Jaimes and Sebe (2007) offer a survey of many of these disciplines including face 
recognition, facial expression analysis, vocal emotion, gesture recognition, human motion 
analysis, speech recognition and eye tracking. They outline how a multimodal interaction 
can simply be an environment that responds to inputs in more than one modality or 
communication channel (e.g., speech, gesture, writing) through perceptual, attentive or 
enactive interfaces. Dautenhahn (2000) has developed multimodal interactive learning 
environments as teaching and learning tools for the rehabilitation of children with autism, 
which establishes a potential importance for their use in special needs education in 
general. 

Multi-touch environments are also evolving and Thompson, Avant and Heller (2011) 
examined the effectiveness of using TouchMath—a multisensory program that uses key 
signature points on mathematical objects—with students with physical learning 
disabilities. Using a multiprobe, multiple baseline design, they discovered all students 
were successful in reaching the criterion in terms of percentages of correct responses to 
addition problems. 

Recent work in mathematics education explores the mathematical affordances of 
multi-touch technologies in that it can help develop number sense in part by virtue of the 
important role that fingers play in counting, but also because of the multimodal feedback 
that it offers children (Ladel & Kortenkamp, 2011; Jackiw, 2013; Sinclair & 
SedaghatJou, 2013).  

It is of no surprise to us that a lot of work is focused in Special Education and with 
children with special needs and physical disabilities. A multi-modal approach engages 
other senses with which to investigate and learn. We believe this approach is relevant to 
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all learners though especially if the technology can increase access to complex 
mathematical ideas through various forms of interaction.  

Over 10 years ago Chris Dede (2000) also foresaw the profound potential of 
multimodal technologies but found their cost and affordability for education to be the 
main impediment for full integration into mainstream schools. This is less problematic 
today as increasingly affordable multi-modal devices flood the market and are being 
adopted by schools, in particular multi-touch devices that incorporate visual and auditory 
senses with tactile use. A major challenge lies in the dramatic pace of change in 
technology, which has been so much faster than the changes that can be incorporated into 
the curriculum in a reasonable time or through the effective professional development of 
teachers to rethink their pedagogy with respect to the mathematical affordances and 
opportunities of such technologies. 

In addition to using our senses utilizing our whole body through motion is also 
another form of mathematizing the world around us and specific studies in mathematics 
education have found the use of motion detectors and interactive technologies to be 
important tools as mediators between students’ bodily enactments and more complex 
mathematical representations such as graphs and functions (Brady, 2013; Nemirovsky et 
al, 2013; Nemirovsky & Borba, 2003; Radford et al, 2003; Radford, Edwards & 
Arzarello, 2009; Radford, Miranda, & Guzman, 2008; Rasmussen et al, 2004). 

 These studies reveal how enactive embodiments can offer a foundation for more 
subtle mathematical ideas, as indicated by Bruner (1966) in terms of his three successive 
modes of enactive, iconic and symbolic operation. More recent studies (e.g. Tomasello, 
1991) have shown how humans extend the ability of other primates by not only imitating 
what others do, but also to be able to sense and share the intentions of others and to use 
tools, artefacts and language to build successively more sophisticated levels of thinking. 
An application of Tomasello’s work to mathematics education (Hegedus & Moreno-
Armella, 2011) allows us to think about the movement to dynamic, interactive 
technologies as an illustration of a representational redescription of mathematics in the 
21st Century. Such re-descriptions potentially allow more students access to fundamental 
ways of mathematical thinking although we also appreciate that this may also require 
new ways of thinking in later contexts that the learner may encounter.  

A major question is how these enactive embodiments relate to the more subtle 
mathematical ideas that develop in more sophisticated contexts. Do they provide an 
embodied form of meaning that supports later developments or are there aspects that can 
impede later learning? This requires a theoretical framework that studies the detailed 
development of mathematical thinking in different individuals as they pass through 
successive stages of sophistication in mathematics. 

Other major and related technological advances in mathematics education include the 
use of dynamic, interactive representations primarily in the form of software and 
connectivity through exploiting the use of classroom wireless networks. We offer a brief 
overview of advances in these domains. 

 
Dynamic interactive mathematics 
Dynamic interactive mathematics environments such as The Geometer’s Sketchpad® and 
Cabri-Geometre offer tools to construct and interact with mathematical objects and 
configuration. Interaction is via the executable representations of these mathematical 
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objects and through this interaction one can touch the underlying mathematical structure 
(Hegedus & Moreno-Armella, 2011). Objects can be selected and dragged by mouse 
movements in which all user-defined mathematical relationships are preserved. In such 
environments, students are supported in efforts to formulate conjectures and 
generalizations by clicking and dragging hotspots on an object, which dynamically re-
draw and update information on the screen as the user drags the mouse (Drijvers, Kieran, 
& Mariotti, 2009).  In doing so, the user can explore and efficiently test an entire 
parameter space of equivalent mathematical constructions. 

Such environments aim to develop spatial sense and mathematical reasoning by 
allowing conjectures to be tested, offering “intelligent” tools that constrain users to select, 
construct or manipulate objects that obey mathematical rules (Mariotti, 2003) alongside 
well-developed curriculum activities. The core features are construction and manipulation 
allowing constructs to be dynamically reconfigured. Empirical work states how these 
features can lead to improvement in student achievement (Battista, 1997; Hollebrands, 
2002), student engagement through aesthetic motivation (Sinclair 2001, 2002a, 2002b), 
student ability to generalize mathematical conjectures (Mariotti, 2000) and students’ 
development of theoretical arguments (Laborde, 2000, 2001; Noss & Hoyles, 1996). 
Actions of pointing, clicking, grabbing and dragging parts of geometric constructions 
allows a form of mediation (Falcade, Laborde & Mariotti, 2007) between the object and 
the user who is attempting to make sense of, or discover some particular attribute of the 
figure or prove some theorem. This is referred to as semiotic mediation, which 
corresponds to mediation through the use of sign systems and artifacts whose meanings 
are generated by social construction (Hasan, 1992; Vygotsky, 1980). 

Such environments have also been applied to a variety of topics to enable a modeling 
practices (Jackiw & Sinclair, 2007) ranging from applications in the primary grades 
(Battista, 1997; Sinclair & Crespo, 2006; Sinclair & Moss, 2012) to applications 
including analysis (Cuoco & Goldenberg, 1997), trigonometry (Shaffer, 1995), calculus 
(Gorini, 1997), physics (Olive, 1997), complex analysis (Jackiw, 2003), non-Euclidean 
geometry (Dwyer & Pfiefer, 1999; Hegedus & Moreno-Armella 2011), data analysis 
(Flowers, 2002), and Linear Algebra (Gol Tabaghi & Sinclair, 2013).  

Dynamic, interactive environments often are representationally rich creating multiple 
perspectives on mathematical ideas. Simulations are used to explore functional 
relationships (Falcade, Laborde, & Mariotti, 2007; Yerulshalmy & Naftaliev, 2011), 
complex systems (Stroup, 2005) and rate and variation (Hegedus & Roschelle, 2013) to 
name just a few. The affordances of such environment establish a representational 
infrastructure that provides new ways for students to express, visualize, compute and 
interact with mathematical objects (Kaput, Hegedus, & Lesh, 2007). Indeed, many of 
these topics are currently introduced in the secondary or tertiary grades of mathematics 
education but that does not undermine the potential for using multimodal technologies to 
maximize the use of dynamic representations, in the early grades as well. The key idea 
here is that such technologies offer a representational redescription of the core 
mathematical structures through executable representations. Such representations can link 
mathematical attributes to modalities such as touch or force feedback. For us it is less 
about the curriculum that is stated should be introduced at various levels, whether 
discrete or continuous, but rather the modification of the representational system that 
such technologies can potentially establish. A graph of a function can be thought of as a 
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static figure and operated on discretely through ordered pairs or represented in tabular 
format, or it can be re-described as a continuous object that can be smoothly and fluidly 
examined dynamically and touched; for example, consider the difference between feeling 
a linear and a quadratic function, how do we sense linear-ness or quadratic-ness? More 
profoundly, manipulating a graph with the fingers on a tablet can zoom in to see how a 
curved graph (such as a quadratic curve or a circle) magnifies to look  ‘locally straight’. 
Tracing the changing slope of the graph offers an embodied meaning linking to the 
symbolic processes of differentiation, integration, differential equations, the wider 
aspects of multi-dimensional vector calculus and on to the formal structures of 
mathematical analysis. Our chapter posits that multi-modal technologies have a role in all 
grades and their use with young children plays an essential role in the full range of 
development from elementary to undergraduate classrooms. 

 
Classroom Connectivity 
Classroom connectivity (to generally mean networked classroom activities and 
assessment) has roots in more than a decade of classroom response systems, most notably 
ClassTalk™ (Abrahamson, 1998, 2000), which enabled instructors to collect, aggregate 
and display (often as histograms) student responses to questions, and, in so doing, create 
new levels of interaction in large classes in various domains (Burnstein & Lederman, 
2001; Crouch & Mazur, 2001; Dufresne et al., 1996; Hake, 1998; Piazza, 2002) and 
levels (Hartline, 1997). Roschelle, Abrahamson, and Penuel (2003) show remarkably 
consistent positive impacts across multiple domains and levels.  Some of the new 
affordances beyond classroom response systems are: (1) Increased mobility of multiple 
representations of mathematical objects such as functions as reflected in the ability to 
pass these bi-directionally and flexibly between the teacher and students and among 
students, using multiple device-types, and (2) Teachers can arrange, organize and 
analyze, sets of whole-class contributions at once, and students can make sense of their 
work in a social context, reasoning and generalizing about their contribution with respect 
to their peers’ work. Such affordances transform the communication infrastructure of the 
classroom (Roschelle, Knudsen and Hegedus, 2010) that extends the normal affordances 
of social networks by increasing mathematically meaningful participation (Dalton & 
Hegedus, 2013), supporting a generative activity and investigation space (Stoup, Ares & 
Hurford, 2005) and the transaction and comparisons between private and public work 
(Vahey, Tatar and Roschelle, 2007). This can all lead to enhanced engagement and 
learning due to the collaborative nature of the classroom. Such research has primarily 
been conducted in secondary grade classrooms but we believe there is a lot of potential 
for such work in the primary grades that often structure classroom activities around small 
group work or learning stations. It is important to note that in each of these examples it is 
not just the technology that is the primary agent of change in these classrooms, but rather 
the integrated nature of the activity design and the technology that structures learning 
through enhanced discourse. We will return to this key point later. 

In summary, there have been many advances in digital technology in mathematics 
education, which are situated, or could be situated, in a wide variety of school 
classrooms. A technology-enhanced curriculum that combines interactive mathematics 
software, networked classroom connectivity and multimodal interaction has the potential 
to impact learning and enrich mathematical discourse in the future based on present work 
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and the growing ubiquity of multimodal technologies in society. But we acknowledge 
that such a claim should be modified by the lack of teacher professional development and 
preparation that leads to Cuban’s warning regarding the unfulfilled role of technology in 
schools. We return to this issue in our concluding remarks. 

We will now outline some applications of these ingredients combined in different 
ways but primarily multimodal experiences before providing an analytical framework for 
examining how such technologies can provide a platform for mathematical learning.  
 

NEW MATHEMATICAL ACTIVITIES 
IN A TECHNOLOGY-ENHANCED LEARNING ENVIRONMENT 

 
We should note that we have not tried to cover all advances in educational technology 
relevant to mathematics learning as we prefer to situate our position in aspects of 
development that we believe are most promising in taking a mathematical-activity 
centered approach vs. a technology-centered approach. Technology should not be just a 
pedagogical prop or a computational aid in instruction or learning (Moreno-Armella & 
Hegedus, 2009) but rather a transformative device to enhance the discipline of learning 
between students and teachers. For example we have chosen not to highlight the major 
relevance of Computer-Aided instruction or On-line Assessment tutors as a major 
development in Educational Technology and Computer Science in the past 10 years (see 
Hegedus & Roschelle, 2012 for further details on such) since our focus is primarily on 
multimodal technologies that allow students to access the beauty and complexity of 
mathematics in simple ways that engages many aspects of their biological and social self. 

Several examples we offer here have been developed at the Kaput Center with 
support from the National Science Foundationi and others are prototypes based on present 
technological affordances. We focus on several environments that we have explored 
utilizing various modalities, representationally-rich interactive software and classroom 
networks where possible. These include: 1. Force-Feedback in concert with 3D visual 
shapes and surfaces, and 2. Multi-touch technology exploring mathematical objects and 
attributes and concepts. The activities serve as exemplars of the types of learning 
opportunities possible and that we can tap into such technological affordances in 
mathematically meaningful ways that can be generative in the future. 
 
Force Feedback Technology 

Sensable’s PHANTOM Omni® (http://www.sensable.com/haptic-phantom-
omni.htm)—hereon referred to as Omni—is a desktop haptic device with six degrees of 
freedom for input (x, y, z, pitch, roll, yaw), and three degrees of output (x, y, z). The 
Omni’s most typical operation is via a stylus-like attachment that includes two buttons 
(see Figure 24.1). The Omni provides up to 3 forces of feedback for x, y, and z. It is 
primarily used in research, with a significant presence in dentistry and medicine but 
growing in mathematics education (Hegedus & Moreno-Armella, 2011). In the 
environment, models of 2- and 3-dimensional objects and haptic simulations (e.g., 
magnetism, friction) are used to create a dynamic, visual-haptic scene (Figure 24.2). User 
interactions with the models within a scene are graphically displayed through the haptic 
pointer on the computer screen; and physically meditated by the haptic device, by moving 
the haptic stylus or pressing the buttons on the stylus. For example, one application 
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allows users to move and rotate a cube. In the application, when a user moves the haptic 
pointer onto the frictional surface of the cube and presses a haptic button, the position and 
rotation of the cube is synced to those values of the haptic stylus until the button is 
released. 

  
Figure	24.1. A student operates the 
PHANTOM Omni® haptic device 

Figure 24.2 Students’ view of the 
multi-modal environment 

 
Multi-touch Technology 

In collaboration with KCP Technologies, the Kaput Center developed a set of 
activities for use with Sketchpad®Explorer for the iPad (hereon referred to as Explorer), a 
viewer application of the widely popular The Geometer’s Sketchpad® software (hereon 
referred to as Sketchpad). This application is available in the Apple Store. Activities were 
constructed in Sketchpad and then transferred to the iPad through email or other forms of 
file exchange. All activities are pre-configured for students and teachers to use as no 
construction tools are presently available in this version for the iPad. Students directly 
interact with objects in the pre-configured activity including geometric objects (e.g., 
points), iterative counters through flicking, or buttons that had been configured to 
perform a set of operations (e.g., reflection of an image). 

In multi-touch/multi-input platforms such as the iPad, the learner can use multiple 
modes of input and outputs— their natural modes of seeing and feeling, to make sense of 
the task. The iPad offers a direct (almost zero-interface) mode to touch and directly 
manipulate mathematical objects (see figure 24.3), and offer multiple inputs to one 
mathematical object hitherto impossible on a single-input computer (mouse as pointer 
and selector) – see figure 24.4. In figure 24.3 you can touch both vertices of the mirror 
segment at once, which can change the way one thinks about a line of symmetry in a 
static world. In figure 24.4 both vertices have to be used simultaneously either with two 
fingers or by two people which can change the mathematical experience. 
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Figure 24.3 Translation as a composition 

of two reflections 
Figure 24.4 Etchasketch – Moving two 
points simultaneously to obtain a circle 

 
We now present a framework that will enable us to describe how students can use and 
experience such technologies as a new platform for mathematical learning through a 
multi-modal approach in the future.  
 

FRAMEWORK: HOW STUDENTS CAN LEARN MATHEMATICS 
To formulate a theoretical framework for the development of mathematical thinking and 
the use of multimodal technologies, we need to consider not only what individuals may 
or may not learn at a particular stage of development using various modes of perception 
and operation, but also to consider the increasingly sophisticated forms of reason that 
develops in each individual over the longer-term. Contrary to the view that mathematics 
is a fully coherent system of knowledge, successive mathematical structures involve new 
meanings that may be supportive in some contexts but problematic in others (Tall, 2013). 

For example, the initial stages of counting and number involve physical playing 
with objects, sorting them and learning the complex act of counting. Once the child 
realizes that the number does not change if the objects are placed in different ways, it is 
possible to focus on the idea that a set of six objects can be seen as four plus two or two 
plus four, or even three lots of two or two lots of three. This perception of the dynamic 
layout of the objects can lead to more general ideas, such as the observation that the order 
of addition or multiplication does not affect the final total. This, in turn, gives mental 
connections between physical and mental perceptions and operations that Tall (2013) 
refers to as embodied compression from the operation of counting to the concept of 
number. 

On the other hand, when focusing on counting without such an overall 
conception, it is not obvious that 7+2 (a short count-on of 2 that can be performed on one 
hand) is the same as 2+7 (a longer count-on of 7 that requires the fingers of both hands). 
Tall (2013) refers to the focus on counting procedures to build the properties of whole 
number arithmetic as symbolic compression. 

The term ‘embodiment’ is used with very different meanings in the literature.  For 
example, Dienes (1960) used the term to describe physical materials such as Dienes’ 
blocks to express the properties of arithmetic of whole numbers, whereas Lakoff & 
Nunez (2000) use the term more broadly to claim that all human thinking is based on 
sensori-motor operations that may be expressed metaphorically using language. Here we 
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are interested in the way in which mathematically ideas may be represented and 
interpreted physically or mentally using multimodal technology.  
 Embodiments can be supportive and simple in some aspects yet be complicated 
and even problematic in others. For example, Dienes’ blocks are simple embodiments for 
place value in addition. A unit is a small cube, in base 10, a ‘long’ is ten cubes glued 
together to represent ‘ten’ as a single entity. Adding two collections such as 17 plus 6 is 1 
long, 7 units plus 6 units and, combining ten of the units to give a new flat, gives 2 longs 
and 3 units, symbolized as 23. However, when the same embodiment is used for 
multiplication, additional features arise in which multiplication by 10 replaces ten units 
by a ‘long’ and ten ‘longs’ by a 10x10 ‘flat’, representing one hundred. So Dienes’ 
blocks are less appropriate for multiplication. 

In this case, a new embodiment may offer a more appropriate context for 
meaning. For instance, in the multiplication of whole numbers, multiplication of decimal 
numbers by ten can be embodied by physical operations on the symbols themselves.  A 
simple method is to write 3 zeros on a piece of paper and cover them with strips of paper 
with a single digit on the end of the strip (see Figure 24.5). The number 27 is represented 
by placing a 7 in the units place and a 2 over the first strip in the tens place to represent 
27 as 2 tens and 7 units (or 27 units). Multiplying by 10 is embodied by shifting the 
number one place to the left to get 2 hundreds and 7 tens, or 27 tens, or 270 units. (Tall, 
2013, pp. 135-137). 

 
Figure 20.5 Shifting digits physically to the left to multiply by ten 

This involves a new physical operation (moving the symbols themselves) that can then be 
imagined in the mind to ‘see’ digits moving mentally in a more sophisticated way and so 
the meaning of the symbolic operation can be supported by more sophisticated 
embodiment. It also offers a much more flexible meaning for symbolism as a basis for 
multi-digit multiplication, in which blocks of digits are moved one place to the left to 
multiply by 10 or one place to the right to divide by 10, including moving the block of 
numbers over the decimal point to see that 27 divided by 10 is 2.7 which is 2 units and 7 
tenths. (Tall, 2013, pp.135-138). 

The development of successive levels of sophistication follows the same broad 
pattern as new contexts are encountered. New embodiments can support certain aspects 
of the new situation yet be problematic in others. This occurs at successive stages of the 
curriculum where previous experience can impede new learning, in the shift from whole 
numbers to fractions, from unsigned numbers to signed numbers, from fractions to 
infinite decimals, from arithmetic to algebra. At each stage, properties that were 
supportive in one context (e.g. multiplication gives a bigger result, subtraction produces a 
smaller result, and so on) become problematic later on. 

000
H T U

00072
H T U

(1) The underlying
hundreds, tens and units.

00072
H T U

(2) Place a strip with 
a 2 over the tens to give

2 tens and 7 units, or 27 units.

(3) Shift one place left
to give 270,

which is also 27 tens.
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The development of new multi-media technology changes the paradigm. The 
multimodal environment offers the learner a way to operate on objects that behave in a 
predictable way. This provides the opportunity for the learner to gain insight in an 
intuitive, embodied way prior to developing algorithms for more sophisticated use. 
However, the particular embodiment may be supportive at one stage but become 
problematic in a new context, so there remains the longer-term task of how learning at 
one stage can impact on later learning. This involves not only the development of the 
individual child making sense of the fundamental mathematical ideas, but also the social 
interaction with the technology as a critical factor in their collective sense making. 
 
APPLICATION TO HOW CHILDREN USE MULTI-MODAL TECHNOLOGIES 
 
Exemplary Activity 1: Force feedback 

In this activity, we offered students two objects to manipulate, a plane and a 3D 
shape (e.g. a cone, cube, pyramid). First the student can use the Omni as a selection 
device for clicking-and-dragging the objects around the screen and re-orienting them 
through twisting the device handle (see figure 24.6). 

 
Figure 20.6 Planar intersection with a square-based pyramid 

Once the plane has been moved to intersect with the 3D shape the device handle 
becomes a navigation tool for moving the red bug (see figure 24.6) around the surfaces 
and intersection providing feedback through continuous forces. Through iterative design 
we have found that using magnetism is a useful design principle to enable the user to 
focus on what part of the shapes the bug is located. This experience locks the bug onto 
the surface and the device begins to provide continuous force and abrupt changes as you 
move over a specific discontinuity (e.g. a vertex or edge). In particular, the user also feels 
“locked-on” or “sucked-in” to the intersection joints. Navigation is also driven by 3-
dimensional motions of the device so that the user is moving the Omni handle in real 
space that simulates the experience of feeling the pseudo-3D visual shapes on the screen. 
This design principle and the use of a bug was discovered to be important for children to 
coordinate their physical motion with the flat-visual space on the screen. It was a way of 
calibrating the two modalities so that children might begin to talk about both experiences. 
This had been problematic in previous editions. As we show below, the use of a red bug 
was not only fun and engaging for the children but became a useful reference point for 
the children to talk about the experiences. As we will describe though, children’s 
discourse moved from talking about the bug explicitly, i.e. the results of the bug’s 
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actions, to focusing on the specific mathematical attributes of the shapes. The bug had a 
short life in their exploration. Once the child sensed the relationship between the two 
situations, it became possible to move on from the specifics of the particular embodiment 
to reasoning about the underlying mathematical relationships.  

One variation of this activity was to use a square-based pyramid with the plane. 
We draw on a case of four 10 year olds exploring this setup to explain how students make 
sense of such mathematical configurations through our analytical framework. Our 
primary goal was to examine the types of discourse that students use to make sense of the 
configurations. 

The children were engaged in the exploration within minutes of introducing them 
to the environment. Initially, the children were focused on perception with statements that 
were a mixture of mathematical observations, metaphors and behaviours of the elements 
of the configuration. These are initial observations: 
 
John:  It might be triangle.   
Sarah:  Could be.   
John:  Could also be a square.  
Sarah:  See if it's like a wall.  
Peter:  It feels heavy.   
Sarah:  Heavy?  … 
Sarah:  The bug is like sucking on it or something.  
 

As the children continued to explore the interplay between visual and haptic 
modalities it became more evident where their initial visual forms of perceptions were 
challenged by physical information back from the Omni device: 
 
Sarah:  A triangle it looks like. 
Peter: [Continues to trace intersection and repeatedly move bug off and back 

onto intersection] When you go up here it's a triangle, [Referring to the 
shape made between the front facing edge and one part of the 
intersection] because that's how it is.  But when you go around here 
[Moves bug beneath blue shape] it kind of feels like a square.   

 
Several of the children began to focus more on the objects and their properties 

(Operational) as well as attempting to interpret the effect of their interactions (Reason) 
and how the plane is perceived of in terms of how it cuts particular parts of the pyramid 
apart: 

 
Megan: I think the square is cutting it off  [Gestures] where it's making, because 

the square it goes like that and it goes like that [Gestures square with her 
two hands].  I think it cuts it off where it goes like that [Gestures one 
corner of a square with two hands].  
 
Because it's cutting – [Points to screen] it's just leaving the bottom not the 
top. [Screen turns black] What happened? [Comes back] Oh. It's just – it's 
not cutting the side of it [Gestures] where it makes a triangle.  It's cutting 
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in the middle, [Gestures] so it makes a square on the bottom just like the 
square base pyramid.   

 
The children resolve this conflict by counting sides that they feel and turns that 

they make. They felt the sharp feedback of moving around a vertex or angle whilst being 
continually “stuck to” the intersection. The children continue to explore though based on 
an emerging sense of how this configuration can be extended and a potential 
understanding of the flexibility of this dynamic intersection. This was not prompted by 
the interviewer: 
 
Sarah: I think we can get a five-sided shape.  
Interviewer: Sorry, what? I missed that?   
Sarah: When we felt the triangle if we went on the other side of the square 

{the base of the pyramid} we could get a pentagon.   
Peter: Yeah we could.   
Interviewer: Show me how you can do that using this plane? [Students pass 

device down to Sarah] 
Sarah: [Sarah adjusts plane to intersect with the base] [Peter is drawing] 

It's like that.   
Interviewer: Okay.   
Sarah: [Traces with bug her intersection, counting sides] Then you have 

this side and then it has to go like that.  And then you have that 
side and then you have that.  And then that.   

Interviewer: So for a pentagon, how many sides do you want to feel?   
Sarah: Five.   
 

This is an example of embodied compression that could potentially lead to forms 
of symbolic compression with similar explorations of other polyhedra. Children are 
focusing on the objects involved in this configuration and can flexibly manipulate the 
intersection through dynamically (visually) editing the slope of the tangent plane. There 
is evidence that the faces of the shape are important for the children in trying to reason 
the classification of the intersection (i.e. by moving the plane into the base of the 
pyramid) but the faces are not being enumerated at this stage.  

At this stage, the young students do not express the idea that the planar 
intersection of a polyhedron of n faces would be at most an n-gon. However, our work 
with high school and undergraduate students with a similar activity led to such 
discoveries being made along with similar forms of reasoning. This suggests that the 
design and use of multimodal technologies in the future can potentially establish learning 
environments for students at various age levels and needs. This example and subsequent 
ones outlines an opportunity space for open-ended and semi-structured activities.  
 
Exemplary Activity 2: Multiple inputs correspond to mathematical variables 
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Figure 24.7 Creating a circle from two inputs 

In this activity, one student controls the lateral-moving Point 1 and another student 
controls the vertical-moving Point 2, or one student controls both simultaneously (see 
Figure 24.7). The goal is for the students to trace a coloured-blob around the fixed circle. 
A third student (or third finger input) can adjust the colour of the trace, in order to make a 
rainbow of colour around the circle (point on the spectrum), or the size of the blob (point 
H). 

This activity exemplifies how the technological affordances of multi-touch can be 
adapted in mathematically meaningful ways hence could be described as mathematical 
affordances of the technology. Let us offer a simple example to explain what this means. 
Consider using an iPad to watch a movie. A pinch-gesture can be used to make the movie 
smaller (or larger if the pinch is reversed outwards). This is a mode of interaction, and an 
affordance of the operating system and hardware. It allows the user to operate in a 
particular way. Consider now a geometric shape where the user performs a similar 
gesture either as a pinch or with two fingers (since the operating system allows such 
interactions) and the shape is dilated. Here the technological affordances can be made 
mathematical actions. In a sense, the biological actions are mathematized, putting 
mathematics at the very tips of students’ fingers. Unlike on a computer, here the user can 
provide two inputs simultaneously to manipulate the sliders (on point 1 and 2). Point 1 is 
constrained in order to be moved along an invisible horizontal line segment and Point 2 
on a vertical line segment orthogonal to the horizontal one. In this construction we have 
parameterized two input functions using traditional interactive tools. The two sliders are 
combined to create one output hence the input co-variates create a single visual output, 
i.e. the blob, which they need to trace around a fixed circle. Such an input methodology 
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can be conducted by one person with two fingers or by two people with single finger-
input strokes. We have found the latter to lead to collaborative problem-solving 
techniques where each person directs the other to create the desired output. The 
coordination of such discourse moves can establish mathematical arguments regarding 
the relationship between the input routines (social/individual) and output 
(computational/visual). 

In our studies, elementary school and undergraduate students rapidly move 
towards moving the point-sliders separately. This has been completed using single-
discrete finger movements of point 1 followed by point 2, followed by point 1 and the 
point 2 to create 4 discrete line segments as the initial trace, i.e. a square. Many groups in 
our studies have done this both individually and collaboratively. Such initial 
investigations illustrate perception based on information from actions on base-objects in 
the learning environment. Following the visual feedback, students realize that they are 
not meeting the challenge of tracing of a circle and focus more on the effects of their 
inputs and the properties of these interactive elements controlled by their touch. In one 
example, two students expressed: 

 
Rob:  We need to move point 1 left and right … 
Sally:  And point 2 up and down but with a different speed I think 
 

Given this initial form of reasoning of the essential elements and their potential role in 
creating a new mathematical object (the blob output point) we highlight this as a form of 
embodied compression where they focus on the effect of their input operations, in 
particular the speed of their input as a model for the mathematical variation formerly 
embedded in this activity. For example, one student in this group described: 

 
Jared: I think we need to move it faster and slower at some points … 
 

Finally, two students in the group move to a form of reasoning that involves the 
coordination of both inputs: 

 
 Rob: Point one is kind of a y-axis… And point two is kind of a x-axis 
 
 Sally:  Like… One person can control … like going up-and-down … like going  
  on the sides of the circle … and the other person can control the … top  
  and bottom of the circle 
 
The combination of such reactions and establishment of properties of the moving inputs 
and outputs lead to iteratively successful circles. Symbolic compression is at an 
elementary stage here where the structure of the inputs with respect to the output are 
informally formulated but the essential properties of such coordination are established: 1. 
Two inputs create one output, 2. The two inputs need to co-vary, i.e. move together in 
some fashion, 3. The 2 input-touch motions need to vary in terms of motion to map the 
circle. This still lacks the formal symbolic clarity of defining how such motions can be 
described in terms of a phased combination of sinusoidal motions (functions), i.e. 

.  

€ 

x 2 + y 2 = (sin t)2 + (cos t)2 =1
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With recent prototypes we have explored a new design space that allows students 
to share their construction and parameterize their contributions in ways that can lead to 
mathematically rich discussion in terms of comparison, reasoning and deduction. 
Through the affordances of wireless connectivity, students can share their investigations 
electronically with the teacher who can display through their device connected to a 
projector thus providing a public space for discussion. In addition, the activity can be 
reconfigured at an individual or group level for comparison in this display space, for 
example, varying the circle diameter or shape, which can lead to a contrast of actions and 
formulated procedures in a whole-class discussion. 
 

DISCUSSION AND FUTURE PERSPECTIVES 
 
We have looked closely at learners’ discourse in terms of their utterances and actions 
both individually and socially since they have worked in groups. In particular the role of 
non-scholastic language in making sense of the properties of mathematical objects or 
concepts, e.g. the planar intersections of solids, categorizing shapes and surfaces, making 
sense of geometric transformations or composition of transformations through multi-
touch to name a few. We have observed in other work (Gucler, Hegedus, Robidoux & 
Jackiw, 2013) that some forms of non-scholastic statements are mathematically 
meaningful in scaffolding meaning for the group, and some scholastic language can be 
used in mathematically inaccurate ways (e.g. drawing on prior knowledge of shapes in 
incorrect ways). Students sometimes experienced cross-modality where one modality 
(what they see) conflicts with another modality (what they feel). 

Using embodied compression, children are focusing on objects and the 
consequences of their fluid interaction with the environment. They are also engaged in 
co-action (Moreno-Armella & Hegedus, 2009) where they are guiding and being guided 
by their actions within this dynamic, responsive environment, which potentially allows 
them to “see through” to the underlying mathematical structures inherent in the figures on 
the screen and the “invisible” forces of the haptic device (Hegedus & Moreno-Armella, 
2011). We see the beginning of this in example 1 where the students realize and 
rationalize the intersection being a pentagon through visual-haptic arguments and in 
example 2 in Jared’s comments about the dynamics of his movement (finger actions) in 
that they need to change speed at some points which give rise to the circularity of the 
output blob. “Seeing through” can be thought of as potential insights, perceptions into, or 
metaphors regarding the underlying structure. An underlying structure here might be the 
formal parametric definition of the circle. 

We have observed that it is very difficult to parse out the visual from the haptic 
experience but what the child or children perceive is of particular relevance. The real 
challenge is developing learning environments with sequences of curriculum activities 
that enable students to transition to forms of symbolic compression. Without a focus on 
such students might only focus on the embodiment which could be an impediment to 
future learning. 

These are perennial points though for many popular technologies in mathematics 
education including Logo, Dynamic Geometry, and Spreadsheets. It might be that any 
aim of moving towards symbolic compression and comprehension (and even application) 
through the use of such technologies is at odds with providing access to more students, 
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i.e. you cannot achieve both. But then the practice of mathematical thinking is potentially 
changing because of the transformative role such multimodal technologies have on the 
distributed cognitive and communicative activities of the classrooms such that the nature 
of mathematical discourse evolves. Such technologies can be thought of as cognitive 
extensions of the biological self (i.e. thinking through our fingertips), or the drawing 
closer of our natural biological senses and the abstraction of mathematical thinking 
through the mediating effect of multimodal technologies. As Rotman (2000) has 
suggested: 

… [S]uch a transformation of mathematical practice would have a revolutionary 
impact on how we conceptualize mathematics, on what we imagine a 
mathematical object to be, on what we consider ourselves to be doing when we 
carry out mathematical investigations, and persuade ourselves of certain 
assertions, certain properties and features of mathematical objects, are to be 
accepted as “true”. Indeed the very rules and protocols that control what is and 
isn’t mathematically meaningful, what consitutes a “theorem”, for example, 
would undergo a sea change (p. 68-69). 
 

The essential point here is that not only do these technologies allow a shift in the 
mathematical representational infrastructure but can enhance the communication 
infrastructure of the classroom in the types, and new forms, of mathematical discourse 
that can arise from such use in the future. 

We have explored the affordance of linking mathematical objects or functional 
relationships through haptic environments. For example, the child can use the haptic 
device to provide dynamic changes to inputs that are mathematical variables and receive 
physical feedback that is a dependent variable to the input(s). Here the technological 
environment co-acts in different ways mathematically to the navigational scenarios 
described above. In the activity illustrated in Figure 24.8, a child can click and drag 
points A, B and C (vertices of the triangle) or D (a point to control the translational 
position of a parallel line which the triangle is constructed on), but the Omni device is 
programmed to provide resistance (force feedback) that is proportional to the area of the 
triangle ABC. Moving certain vertices will result in invariant resistance (e.g. C) whereas 
others will create changing resistance due to the base or height of the triangle being 
modified. 

 
Figure 24.8 Dynamic triangles 

In our preliminary work, children can attribute the inputs to mathematical variables that 
result in the output “feeling” and mathematical representation. Whilst children in our 
studies have not explained this relationship as Area = ½ * base * height, they have 
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described the Area to be related to changes in the base and height, a form of embodied 
compression. This is also the beginning of symbolic compression but more work needs to 
be done to understand and realize how such experiences can establish such forms of 
symbolizing. 

Multi-touch environments such as Explorer allow young learners the interaction 
with simple configurations that involve mathematically meaningful input and outputs. 
Such modalities allow children to use various modalities to explore configurations and 
focus on their actions (to develop their perception) and their operations on objects and 
their iterative responses based on core interactivity design principles. Such forms of co-
actions (between multi-modal iterations and their output which further guide actions) can 
generate learning environments that enable students to focus on the operations that enable 
an understanding of the mathematical properties and structures being investigated. Tall 
(2013) aspires towards the “long-term simplification of mathematical ideas” and such 
infrastructures can offer such opportunities. This notion of simplification is both 
mathematical (where mathematicians and teachers make sense of the mathematical 
structures by formulating new concepts that can be manipulated as mental entities) and 
also personal (where learners make sense of the compressed entities in flexible ways). 
Such flexible thinking can be encouraged at all levels. For example, by building on the 
prototypical examples above students could engage in a multi-touch/input approach to 
collaboratively create an isosceles triangle or some other classification of 2D triangles 
through group-strategizing. Such actions on the base vertices A or B could establish 
methods to focus on the steps necessary to create an equi-angular shape or similar 
magnitudes of sides and develop symbolic compression. In addition, with well-
configured sketches, many “parent-child” relationships, which preserve mathematical 
attributes, could be discovered through a multi-touch approach. A free triangle with no 
constraints on the vertices would lead to a collaborative strategy (or an individual one) 
that focuses on the effect of moving one vertex with respect to the other one; or the 
effects of moving two vertices with respect to the corresponding sides; or the invariance 
of such actions on some of the properties of the triangle. 

In addition, the potential of such devices in a connected environment can help 
develop the process of symbolic compression as students individually, collaboratively 
and in comparison, externalize the steps that are necessary in coordinating a workspace of 
procedures and sense-making of mathematical concepts and attributes. The public 
workspace could be a collaborative arrangement where each student is developing a 
variation of a set of configurations, e.g. a family of similar triangles, or an aggregative 
enterprise where children build particular linked pieces of a constructions knowing how 
their piece interacts with someone else’s product or the whole group construction. 

We have attempted to introduce how recent multimodal technologies can create 
learning environments for students to access the basis for the mathematical properties of 
shapes, configurations and functional relationships focused on variation and co-variation. 
This can be achieved, and in the future refined, through the combination of various 
modalities in particular touch and visual. The primary purpose is to enable access to the 
embedded mathematical structure in order that a “focus on real-world embodiment can 
make sense for early learners, giving embodied meaning to symbolic operations.” (Tall, 
2013, p.173.) 
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We propose that the long-term development of mathematical thinking can be 
sustained through the careful use of multimodal technologies and meaningful 
implementation. Careful because of the potential for causing confusion for students in 
conflicting modal experiences highlighted earlier and also because of the possibility that 
formal symbolic compression might not be achieved through such implementation. The 
opportunity space that we outline here needs to be explored in ways that can create 
coherent mathematical experiences that not only allow access to mathematical ideas and 
concepts but also develops into more general symbolic thinking. This might not be 
possible for the whole spectrum of learners and future works needs to address this 
critically as more curriculum is developed that integrate such technological affordances 
in meaningful ways. We have tried to demonstrate here ways of doing this where the 
physical experience has been pre-programmed to correspond to mathematical attributes 
or multiple touches (input) correspond to mathematical operations, e.g. transformations. 
Both of these approaches are demanding on time and should be built and tested in a 
research environment. The alternative is a form of edu-tainment where the feedback is 
superfluous to the mathematics of the activity.  

Future work also needs to address which populations of students are being 
addressed and what the significance of the research actually means. In the studies 
reported here we have worked with traditional populations but we also see the need to 
work with multimodal technologies for specific categories of learners, such as those with 
special educational needs (as outlined at the start of this chapter). Future work needs to 
focus on pedagogical strategies and the preparation of teachers to implement such 
strategies. 

One of the long-term critical issues for effective implementation of technologies 
in schools is the professional development of teachers not only to understand how to use 
the new tools but also the pedagogical implications. Depending on the stage of their 
careers, teachers might be faced with re-thinking how such technologies can enhance the 
learning environment or even transform the very nature of the classroom in terms of how 
mathematics is re-described. If teachers are later in their career this might involve a shift 
in mindset to how content is conceived of and how it might be effectively introduced 
through such new technologies. Hennessy, Ruthven and Brindley (2005) build on 
Cuban’s message by reporting on use of ICT in England. They report that teachers in 
their study might affirm that their practices are changing but they are not participating 
actively in technology-based curriculum design and implementation in their schools. 
They propose five specific aims for successful integration of ICT at the level of 
departmental policy and planning: (a) Providing teachers with “opportunities for long-
term collegial interaction involving critical reflection, sharing ideas, and research 
concerning the use of ICT” (p. 187); (b) Integrating ICTs into a structure of work in 
alignment with the national prescribed curriculum and help in meeting learning 
objectives with critical and appropriate use; (c) Taking into account and enhancing 
students and teachers’ levels of technological expertise; (d) Systematically evaluating the 
affordances of ICT for attainment of specific learning goals and (e) Offering a balance of 
complementary ICT-based and other learning activities. They claim organizational 
change processes are important in generating strategies to successful implementation of 
technology-based instruction and emphasize “shared ownership of plans” (p. 186) at 
organizational level as a requisite to implement technology into the school instructional 
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practices with a significant impact on student learning. Our work and proposed claims for 
future development and implementation need to address such aims to have any 
widespread significance in mathematics classrooms in the future. 

In conclusion, the central focus here is on the fundamentals of mathematics and 
how the latest advances of multi-modal technologies can promote learning through the 
development of mathematically meaningful transformations of technological affordances. 
This should potentially impact curriculum design, how we teach and how our children 
learn in the future. 
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