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Abstract  
A teaching experiment—using Mathematica to investigate the convergence of sequence of 
functions visually as a sequence of objects (graphs) converging onto a fixed object (the 
graph of the limit function)—is here used to analyse how the approach can support the 
dynamic blending of visual and symbolic representations that has the potential to lead to 
the formal definition of the concept of limit. The study is placed in a broad context that 
links the historical development with cognitive development and has implications in the 
use of technology to blend dynamic perception and symbolic operation as a natural basis 
for formal mathematical reasoning. The approach offered in this study stimulated explicit 
discussion not only of the relationship between the potential infinity of the process and 
the actual infinity of the limit, but also of the transition from the Taylor polynomials as 
approximations to a desired accuracy towards the formal definition of limit. At the end of 
the study, a wide spectrum of conceptions remained. Some students only allowed finite 
computations as approximations and denied actual infinity but for half of the students 
involved in the study the infinite sum of functions was perceived as a legitimate 
“object”and  was not perceived as a dynamic “process” that passes through a 
potentially infinite number of terms. For some students the legitimate object was vague or 
generic but we also observed other students developing a sense of the formal limit 
concept.  
 
Keywords: Actual infinity; potential infinity; limit process; limit concept; dynamic 
visualization; embodiment; symbolism. 

1. INTRODUCTION 
Over recent years there has been extensive research concerning the difficulties that 
students experience with the limit concept. Instead of conceptualizing a limit as a mental 
object in its own right, there is a strong tendency to see it as a potentially infinite process 
that goes on forever and never quite reaches its desired goal. This has been an ongoing 
fault line in mathematics since the Greeks debated the distinction between potential and 
actual infinity over two thousand years ago. 
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The problem becomes more complicated when shifting from limits of sequences 
of numbers to limits of sequences of functions ))(( xfn . The traditional technique is to 
calculate the limit for a fixed value of x and then allow x to vary to give the limit function. 
However, this means that the learner is building on difficulties experienced with the 
limits of sequences of numbers and moving to functions at an increasing level of 
complexity. 

The invention of interactive computer graphics allows an alternative approach. 
Instead of focusing initially on the symbolic process of a sequence of numbers tending to a 
limit, then moving on to a sequence of functions tending to a limit pointwise, it becomes 
possible to focus on the graphs of successive functions ))(( xfn  as whole objects that 
change dynamically as n increases to stabilize visually on the limit function and then to 
relate this to the symbolic limit as an object that can be approximated as closely as is 
desired. For example, in figure 1, )(xPn  is the polynomial approximation to the function 
sin(x) given by 
            ,)(1 xxP =  , !3/)( 3

2 xxxP −=  ....  , !5/  !3/)( 53
3 xxxxP +−=  

The successive graphs not only get close to the limit function sin(x), they become visually 
indistinguishable from the graph of sin(x) to within the accuracy of the picture. 

 
Figure 1: Taylor polynomials of degree 1, 3, 5, 7, 9, 11, superimposed on the graph of sin(x) 

Kidron (2002) used this observation to advantage to compare two distinct approaches to 
computing the rational function )1( /1)( xxf −= . One followed the historical symbolic 
approach of Euler, writing ...)(/)()( 2

210 +++== xaxaaxRxQxf  to represent the 
function as an algebraic calculation dividing polynomials on the left and as an infinite 
sum on the right. In this representation, the error term can be written as )()( xPxf n−  
where n

nn xaxaaxP +++= ...)( 10  and, for a numerical value 0x , the error may be 
calculated numerically as )()(/)( 000 xPxRxQ n− . The other used a dynamic graphical 
approach, drawing successive polynomial approximations )(xPn  with Mathematica to see 

n=7 n=9 n=11

n=5n=3n=1
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that, as the error term becomes small as n increases, the graph of successive polynomials 
soon look virtually the same as the graph of )(xf . 

In the latter approach the infiniteness of the process of ‘getting close’ is replaced 
by the practical notion of being ‘good enough’ for the graphs to look the same on a 
computer screen. The animation that illustrates how the different Taylor polynomials 
approach the graph of the function blends together the process of “getting close” and the 
visual appearance of “looking the same”. It then becomes possible to perform a thought 
experiment to imagine drawing the graph on a computer screen of far higher resolution, 
to begin to think about the conception: ‘given a required level of accuracy, can we find a 
suitably large n such that )(xPn  and )(xf  are indistinguishable from each other to this 
required level’ We might even reason that (over a given interval [a,b]), given a specific 
numerical error 0>ε , we may seek an N such that, for n ≥ N, the graphs of  )(xPn  and 

)(xf  differ by less than ε .  
Such an approach blends together the visual perception of the changing function 

with the corresponding numerical calculations to lead to the formal definition. This 
precisely fits the ‘three worlds’ framework of Tall (2004, 2013), which characterizes the 
development of mathematical thinking through human perception, symbolic operation 
and mathematical reasoning. According to this framework, school mathematics involves 
a natural blending of two distinct mental worlds of thought: conceptual embodiment 
coordinating perceptions and thought experiments and operational symbolism where 
operations are performed by numeric and symbolic computations. Reflections on the 
properties that arise in these two worlds lead to embodied forms of definition and proof 
in geometry and symbolic forms of definition and proof in arithmetic and algebra. The 
axiomatic formal world of mathematics arises through the introduction of quantified set-
theoretic definitions with properties deduced using formal proof.  

2. HISTORICAL EVOLUTION OF IDEAS 
Historically, the mathematics of change and growth emerged in Greek times with the 
conflict between the potential infinity of performing a repeating sequence of actions as 
long as desired and the actual infinity of completing such a process. Initially geometry 
and number were seen as separate ideas. In geometry, a length had magnitude, so a 
product of two lengths was an area and of three was a volume. By the simple expedient of 
choosing a unit length, Descartes (1637) used the theory of proportions to interpret the 
product of lengths as a length and introduced Cartesian coordinates to link geometry to 
algebra. Early developments of the calculus in the seventeenth century involved 
mathematicians such as Kepler (1604) and others who imagined a smooth curve as a 
polygon with an infinite number of infinitesimally small straight sides, with the tangent at 
a point simply being the prolongation of one of these sides. Barrow (1670) used this idea 
to formulate geometrical principles that Newton (1671) and Leibniz (1684) developed 
into symbolic methods to compute rates of change and growth. In the eighteenth century, 
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Euler (1748) focused on the symbolism and performed operations on infinite series as if 
they behaved according to the same rules as finite arithmetic. In the nineteenth century, 
Cauchy (1821) and others continued to imagine the number line visually in the manner of 
the Greeks as an entity in itself on which numbers could be marked. Bolzano (1817) 
realized the need to introduce formal definitions of the real numbers, which led to the 
formal definition of limit introduced by Weierstrass that became the foundation of 
modern analysis. Subsequently Hilbert (1900) proposed the formalist approach based on 
formal set-theoretic definition and deduction. 

Before Hilbert, mathematics had always been linked to natural phenomena, 
observed perceptually, imagined mentally within the mind and calculated symbolically. 
This is exemplified by the name ‘natural philosophy’ to describe the kind of mathematics 
used by Newton to imagine mathematical models to linking the falling of an apple to the 
motion of the planets. After Hilbert, pure mathematics is given a formal foundation that is 
‘future-proofed’, in the sense that any theorem proved in a system satisfying explicit set-
theoretic axioms and definitions would hold in any other context where those axioms and 
definitions are satisfied, so that formal mathematics has greater generality than natural 
mathematics. 

The shift from the natural mathematics in school to formal mathematics in 
university continues to present formidable obstacles to the learner whose experience is 
based on symbolic computation in arithmetic and algebra and visual perception in 
geometry, blended together in a natural approach to the calculus. 

In the twenty-first century, new tools are being introduced that enable us to 
visualize thought experiments and calculate powerfully and accurately. This offers a new 
approach to mathematical analysis through a natural approach blending dynamic 
embodiment and computational symbolism leading naturally to formal definitions and 
proof (Mejia - Ramos & Tall, 2004; Tall, 2009, 2013). 

This study considers an approach by Kidron (2002, 2003) to use Mathematica to 
enable her students to investigate and debate the historical development of the calculus, 
contrasting Euler’s symbolic approach with power series as infinite polynomials and a 
dynamic visual approach as the sequence of graphs of polynomials )(xPn  stabilizes on 
the limit function )(xf . The strategy is to consider the error term )()( xPxf n−  as the 
difference between a known function )(xf  and a polynomial, both of which are 
computable, and so the error function can be calculated. It transpires that, in this 
approach, some students imagine the function )(xf  as an infinite sum 

...)(...)()( 21 ++++ xaxaxa n   with a polynomial approximation 
  )(...)()()( 21 xaxaxaxP nn +++= , 
where the error term is conceived as an ‘infinite tail’ in the form 

...)()( 21 ++ ++ xaxa nn  
The various student experiences with Mathematica are used to stimulate a class 
discussion to encourage students to formulate and debate their individual views of the 
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potential and actual aspects of the limit concept, to seek a resolution that may lead to the 
formal limit concept. 

3. RECENT RESEARCH ON STUDENT VIEWS OF INFINITE 
PROCESSES AND CONCEPTS 
As individuals we only live for a finite time and can only carry out actions a finite 
number of times. Since Greek times, the natural conception of infinity is the concept of 
potential infinity, including the unlimited possibility of counting or the possibility of 
dividing an interval into successively smaller parts. However, when considering a 
sequence of numerical values given by a formula such as 1, 3/1  ,2/1 ,…the successive 
terms follow a pattern that may be conceived as a variable quantity nsn /1=  that 
‘becomes arbitrarily small’ as n increases (Cornu, 1981, 1991). From such a viewpoint, 
the sequence )( ns  where  
 )101(19...999.0

places  

n

n
ns −== !"#   

tends to a quantity that is less than one by an arbitrarily small quantity. Fischbein, Tirosh 
and Hess (1979) reported a case where a student insisted that ...8/14/12/11 ++++  is 

∞− /12 . This is consistent with the idea that the limit object will have the same 
properties as the objects tending to the limit. For instance, the sequence, 0.9, 0.99, … is a 
sequence whose nth term is )101(1 n− , which is always less than one, so the infinite 
decimal 0.999…, is also less than one. Tall (1986) called such a limit a ‘generic limit’ 
that is conceived as having the same properties that are common to all the terms in the 
sequence.  

Lakoff and Núñez (2000, p. 258) appeal to the same fundamental idea in their 
‘metaphor of infinity’ in which: 

We hypothesize that all cases of infinity—infinite sets, points at infinity, limits of 
infinite series, infinite intersections, least upper bounds—are special cases of a single 
conceptual metaphor in which processes that go on indefinitely are conceptualized as 
having an end and an ultimate result. 

Such a principle was essentially formulated by Leibniz in his ‘principle of 
continuity’, that ‘In any supposed [continuous] transition, ending in any terminus, it is 
permissible to institute a general reasoning, in which the final terminus may also be 
included.’ (Child, 1920, p.147.)1 It is also directly related to the symbolic approach of 
Euler to deal with infinite power series as if they obey the same rules as finite 
polynomials. 

The transition from practical arithmetic involving finite operations and finite 
decimals is known to be problematic. 

                                         
1 The translation given by Child omitted the term ‘continuous’ that was in the original Latin. 
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Kidron & Vinner (1983), Vinner & Kidron (1985) observed that the infinite 
decimal is perceived as one of its finite approximations: “three digits after the decimal 
point are sufficient, otherwise it is not practical”, or as a dynamic creature which is in an 
unending process. Monaghan (1986) found that students often viewed both repeating and 
non-repeating infinite decimals as ‘improper numbers which go on for ever.’ An 
expression such as ...414.12 =  is not read as ‘ 2  can be computed exactly as the limit 
of a decimal expansion’, but more usually as saying that ‘ 2  can be described to any 
required accuracy by approximating to an appropriate number of decimal places.’ Li & 
Tall (1993) found students who agreed that 1/9=0.1+0.01+… yet did not accept the 
equation written in the other direction as 0.1+0.01+… =1/9. Their reasoning was that 
dividing 1 by 9 successively gave 0.1, then 0.11, and so on, while the terms 0.1+0.01+…  
could not be added together to give 1/9, because the process is potentially infinite and can 
never be completed in finite time. 

However, by using a dynamic approach visualizing whole graphs instead of first 
dealing with limits at a point, it is evident that students can conjecture the slope function 
for specific functions such as x2, x3, xn, sin(x), cos(x), by drawing the graph of 

hxfhxf /))()(( −+  and investigating the visual picture for smaller values of h (Tall, 
1986). This offers a long-term approach to the calculus, building on a perceptual 
foundation, leading long-term to symbolic, then formal theory. (See Tall (2013), chapter 
11.) 

Research in the transition from visual and symbolic modes of operation to formal 
set-theoretic definitions in analysis reveal that students differ in the way that they attempt 
to make sense of new ideas. Some students attempt to build on their visual imagery, some 
attempt to build from the formal definitions and others simply learn proofs by rote (Pinto 
& Tall, 2002, Weber, 2004). Alcock & Simpson (2004, 2005) found that some students 
use images to provide access to the subtleties of formal analytical concepts while others 
focus almost entirely on the symbolism and rarely use visual ideas. The effectiveness of 
dynamic images in learning the concept of limit has been discussed and studied by 
Kidron and Zehavi (2002), Kidron (2003, 2008), Tall and Vinner (1981), Williams 
(1991), and others.  

4. THE EMPIRICAL STUDY 
This study uses the symbolic and graphical facilities provided by Mathematica to enable 
the students to follow the historical development of expressing functions in terms of 
power series, contrasting the symbolic approach of Euler and a visual approach that 
pictures Lagrange’s remainder formula for (x)P-f(x)(x)R nn   =  to give an upper estimate 
for the difference between the function and its Taylor approximation. In both cases, 
visual pictures produced by Mathematica are used to explore how successive Taylor 
approximations (x)Pn  soon become indistinguishable from the function )(xf  (as in 
figure 1). 
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For instance, the polynomial approximation to sin(x) around x = 0 of degree 5 is 
....  , !5/  !3/)( 53

5 xxxxP +−=  . The error )()( 5 xPxf −  given by the Lagrange remainder 

is 
6!

66 (c) xf )(

 for some c between 0 and x. The absolute value of the error (as a function 

of x and c, with ππππ ≤≤≤≤− c-   ,  x ) can then be plotted. The c value in ππ ≤≤ c-  
that corresponds to the exact error is unknown, so the students were requested to look at 
all pairs ),( cx  such that ππππ ≤≤≤≤− c-   ,  x . The 3-dimensional plot in figure 2 
represents the error (in fact, an upper estimate of the absolute value of the error) as a 
function of the two variables x and c. In this specific plot the upper estimate of the error 

is obtained, for example for π=x  and 
2
π=c . 

 

Figure 2: The error as a function of x and c 

In our research study, we analyze how students progress from the embodied and symbolic 
worlds to the formal definition of limit. The participants were high school students 
learning at the highest level (grade 11, N = 63). They learned mathematics six hours a 
week during the entire year. Two hours in the PC lab were devoted to the topics 
“Approximation” and “Interpolation”. The other four hours were devoted to standard 
subjects in Calculus, Algebra, and Trigonometry. The students were introduced to the 
notion of derivative as a limit intuitively with no formal approach. Therefore the learning 
experience in the PC lab was their first encounter with convergence phenomena with the 
aim of enhancing their ability to pass from a visual interpretation of the limit concept to 
formal reasoning.  The laboratory consisted of 20 PCs, each equipped with Mathematica. 
The lab was also equipped with a system that transmits the content of the screen of each 
computer to all the computers in the classroom. Kidron (2003) analyzed the role played 
by Mathematica in enabling the students to “walk the same paths” as the founders of 
mathematical theory from the period of Euler in 1748 to the period of Runge in 1901. 

They were introduced to two approaches to approximate functions by Taylor 
polynomials. One involved the students following the original text of Euler (1988), aided 
by the Mathematica package in order to do the “continued division procedure” to 
calculate )1/(1 x−   as described by Euler. The students were requested to translate 
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Euler’s algorithmic thinking into Mathematica commands, which required them to be 
very explicit to instruct Mathematica to carry out his ideas and to gain insight concerning 
Euler’s “development of functions in infinite series”.  

In the second approach, students used the notion of order of contact, finding a 
polynomial of given degree that has the highest possible order of contact with a given 
function. In this approach, the teacher presented dynamic graphical animations and 
invited the students to analyze the process of convergence and to describe what they see 
in the dynamic pictures. They were asked to translate the dynamic pictures into analytical 
language and construct their own animations by changing parameters and choosing 
different functions, for example, to test the convergence of the Lagrange Remainder 
(displayed as a 3-D animation) for different functions. 

Three types of data were collected for research purposes: the students’ 
Mathematica files, a record of student questions and comments during the sessions, and 
written tests without Mathematica.  

In this paper we analyze the students’ evolution of ideas from a potentially 
infinite process to the limit as an object, in terms of Euler’s symbolic view of a power 
series as an ‘infinite polynomial’, and the visual convergence of the finite polynomial 
approximations to the function itself. This was studied using the record of a discussion 
that illustrated the various conceptions that arose as the students debated the ideas 
between themselves and a written test that enabled the categorization of individual 
personal conceptions. 
5. STUDENTS REACTIONS: FINDINGS AND DISCUSSION 
5.1 The class discussion 
The class discussion took place in a context where the function )(xf  and the Taylor 
polynomial n

nn xaxaaxP +++= ...)( 10  were both known, so the computation of the error 
)()( xPxf n−  is the numerical difference between two known functions. However, this 

error function is also the infinite tail of the power series which leads to: 
Research Question 1. Were the students able to overcome their potential infinite 

process view? In particular, did they conceptualise the error term )()( xPxf n−  
as a potentially infinite calculation or as a legitimate object? 

This problem was voiced by one of the students: 
Dina: How could we speak about a graph that describes the error )()( xPxf n− ? This 
difference is the ‘infinite tail’, ... xa xa n

n
n

n ++ +
+

+
+

2
2

1
1  . How could this difference be well 

defined? 
A similar reaction is shown at the beginning of the following point-wise 

discussion, which took place as the teacher proved Taylor’s theorem at x = 0. In one step 
of the proof, in order to calculate the derivative of a certain term, she mentioned that the 
error term 
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)xa.....xaxa(a) f(xd n
n 0

2
020100 ++++−=  

is a constant when 0x  is a constant. 
Student reactions to this idea demonstrated different phases in destabilizing the 
conception of an infinite sum as growing to be infinite. 

Phase 1: The beginning of a conflict 
[1]. Julia: Why is d a constant? 
[2].Teacher: )xa.....xaxa(a) f(xd n

n 0
2
020100 ++++−= , therefore d is the difference 

between two constants.  
[3]. Julia: But d is the ‘infinite tail’… of the polynomial. How could it be a constant? 

Phase 2: The conflict 
[4]. Tomer: We compute the error for a given n. 
[5]. Julia: But )xa.....xaxa(a) f(xd n

n 0
2
020100 ++++−= . So, how could it be that d is a 

constant? 

Phase 3: A turning point. An infinite sum of numbers could be equal to a given 
number. 
[6]. Tomer: )xa.....xaxa(a) f(xd n

n 0
2
020100 ++++−=  is an infinite sum that is equal to 

a given number! 
[7]. Ron: Yes! For example, you have 1/2+1/4+1/8+1/16+1/32+… which equals 1. 

Phase 4: Back to the conflict phase. The infinite sum is growing all the time. 
[8]. Julia: Will it not be bigger than 1 when we continue to add terms? 

Phase 5: An attempt to resolve the problem. 
[9]. Dan: In the example 1/2+1/4+1/8+1/16+1/32+…, the infinite sum is a defined 
number but there are other examples in which the infinite sum is not a given number. It 
tends to ∞ ! 
[10]. Adi: So how could we know if )xa.....xaxa(a) f(xd n

n 0
2
020100 ++++−=  is an 

infinite sum which is equal to a given number? 

Phase 6: Focusing on the ‘process itself’ and not on the divergent process of adding 
terms to the sequence. 
[11]. Yifat: In the last lab we have seen animations, which demonstrate that when ∞→  n
, the expression )xa.....xaxa(a) f(xd n

n 0
2
020100 ++++−=  tends to 0. 

Therefore, the expression .... xa xad n
n

n
n ++= +

+
+

+
2

02
1

01  is a given number and not an 
expression that tends to ∞ ! 

As we reflect on the developing class discussion, we begin with the first research 
question to analyse to what extent the students involved were able to overcome their 
potential infinite process view and to conceive an infinite sum as something that is not 
necessarily growing to be infinite. 
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Dina and Julia, both high achievers in mathematics, are unwilling to give the error 
term the status of legitimate object. For Dina, the object spoken about is the graph of the 
difference between the given function and the Taylor polynomial and for Julia the object 
is a number – the numerical value of the error term for a given numerical value of x. We 
want to stress one interesting point: In spite of the fact that in the two cases, the teacher 
presented the error term as the difference between the function and the approximating 
polynomial, both Dina and Julia considered the error term in its other representation as an 
infinite sum of functions (Dina) or as an infinite sum of numbers (Julia). 
The class discussion indicates that, at least for some students, a conflict exists. The 
teacher focused on the error term as the difference d between two constants, 

)xa.....xaxa(a) f(xd n
n 0

2
020100 ++++−= . Julia considered the representation of d as an 

infinite sum ... x ad n
n += +
+

1
01  . She agreed that the difference between two constants is 

a constant and yet she was not ready to accept the infinite tail as a constant. Julia looked 
at the infinite sum as an unending process, as something growing all the time. Her 
question: ‘Will the sum 1/2+1/4+1/8+1/16+1/32+… not be bigger than 1 when we 
continue to add terms?’ shows that her attention is drawn by the never-ending process of 
adding terms to the sequence. 

A turning point takes place in phase 5 where some students differentiate between 
two types of infinite sums: those who tend to ∞  and infinite sums that give a finite 
number, despite the divergent process of adding terms to the sequence. The animation of 
the error term helped the students to reflect on the question to which of these two types of 
infinite sums the ‘infinite tail’ .... xa xad n

n
n

n ++= +
+

+
+

2
02

1
01  belongs. Phase 6 

demonstrates how the dynamic visualization encourages a focus on the convergent 
process of the error term tending to zero rather than the potentially infinite process of 
adding terms together. Even though the computer was turned off during the discussion, 
the mental images may still remain. As a consequence, by substituting a value 0x  for x, it 
was possible to encourage the students to realize that the infinite sum of numbers 

.... xa xa n
n

n
n ++ +

+
+

+
2

02
1

01  is not growing to be infinite in this case and could equal a 
given number. 

The class discussion illustrates the influence of blending embodied visualization 
and operational symbolism on students’ potential infinite conceptions (Research question 
1). The “infinite tail” is potentially infinite and problematic to compute in a finite time. 
However, it is also represented symbolically by the Lagrange remainder formula, which 
can be visualized dynamically to show how the upper estimate of the absolute value of 
the error tends to zero for large n. 

In the class discussion, a spectrum of conceptions were voiced: some students 
were reluctant to give the infinite sum the status of a ‘legitimate’ object, seeing it instead 
as a potentially infinite process as reported in the literature. To address the second 
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question relating to the further development from potentially infinite process towards the 
limit concept, we used a written test. 

5.2 The written test 
The written test sought to analyse the personal conceptions of individual students and to 
respond to the following:  

 
Research Question 2. What progress did the students make in shifting towards the 

formal definition of the limit concept? 
 Did they conceive the infinite sum as a process of approximation or were 

they able to move towards the formal limit concept? 
 
To investigate this question, the students were presented with the following problem from 
the textbook by Davis, Porta and Uhl (1994).2 

Question: When someone says ....x...xxx
x

n ++++++=
−

321
1
1  for 11 <<− x , 

the meaning of this statement is subject to a controversy that raged in 
mathematical circles for years and still raises its head every so often even now. 
One group, including Zeno, said: ‘Infinite sums exist only in theory. In practice, 
there is no such thing as an infinite sum. Saying that 

 ....x...xxx
x

n ++++++=
−

321
1
1  for 11 <<− x  

really means that, by using enough of the expansion of )1/(1 x−  in powers of x, 
you can get as close to )1/(1 x−  as you like.’ 
A second group, including Euler, said: ‘This is an actual infinite sum.’ 
The third group, including Bolzano and Weierstrass, said: 
‘The first two groups really have nothing to fight about. You just define the 

infinite sum ....x...xxx
x

n ++++++=
−

321
1
1  to mean that given an x with 

11 <<− x  and a tolerance t then you can find a power m so that  

tx...xxx
x

m <+++++−
−

)1(
1
1 32 .’ 

Which group are you in, and why? 

These three representations relate to the approach used in the teaching experiment. Some 
students respond as with Zeno that there is no actual limit, only a potential one. Some 
respond to the idea of actual infinity as represented by Euler and a third group resolved 
                                         
2 In the original question of Davis, Porta and Uhl, and in our study, the sequence of responses in 
the question was given with Euler first and Zeno second. Here we place Zeno first and Euler 
second, to follow the same order both in history and in cognitive development. 
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the conflict in a way that builds towards the formal definition. The lab sessions involved 
situations like: ‘you give me a measure of error e > 0 and I will find a power N such that 
the absolute value of the error term is smaller than e’, ‘you give me another measure of 
error e, smaller than the previous one, and I will find a suitable power N such that … .’ 
This was done in the context of the embodied visualizations of the upper estimate of the 
error (see figure 2). The students were encouraged to think of the process of finding a 
suitable N for each e in the sense that ‘what I have done once, I can do again.’ The 
concept of infinity involved in such situations is the natural concept of potential infinity 
but it also has the possibility to lead to the formal definition of limit. 

We were interested in seeing how the experience in the lab may help the students 
move towards the formal definition, although we were also conscious that various 
difficulties could arise. For example, a range of conceptions observed in the literature 
arose in the study, including ‘only the finite is meaningful,’ ‘there is no such thing as an 
infinite sum,’ ‘the infinite sum is just a finite approximation,’ or ‘the infinite sum is the 
process of approximation itself.’ We were interested in how the students’ experiences 
combining dynamic visualization and symbolic calculations may contribute to a natural 
approach to the limit definition. 

The analysis of the students’ arguments in justifying their answers enabled us to 
reflect on the second research question dealing with the students’ ability to make a 
transition from the potentially infinite process view to the concept of infinite sum and on 
towards the formal definition of limit. 

5.3 Categorising the written responses 

We examined the students’ arguments in justifying their answers and, apart from 
category 0 that offered no relevant information, we placed them in four categories: 

Category 0 No relevant answer or no explanation. 

Category I There is no such thing as an infinite sum. 

Category II The infinite sum is perceived as a dynamic process that passes through a 
potentially infinite number of terms: ......1111 322 ,...xxx, xxx, , ++++++  

Category III The infinite sum is perceived as a legitimate object in one of the following 
ways: 

i) The ‘infinite polynomial’ is recognized as a legitimate entity with a 
vague and unclear meaning; 

ii) The infinite sum is perceived as a generic limit object, described as 

x−1
1  is ∞+++++ x...xxx 321 . 

Category IV The infinite sum is conceived as the limit of the infinite process 
of approximation. 
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The various responses were placed in different categories and percentages are 
given to indicate the approximate size of each category: 

Category I There is no such thing as an infinite sum (13 %) 
This includes responses indicating that a large number of terms is perceived to be very 
big but finite: 
‘I am in the first group. I agree with those who claim that in fact there are no infinite 
sums. Infinite sums exist only in theory. Nothing in the world is endless. There is an end 
to the approximation. … The problem is how to get this finite approximation since the 
number of its elements is so big that there is yet no computer that is able to find it. The 
approximation exists but we are unable to compute it. The difference 

)1(
1
1 2 mx....xx
x

++++−
−

 equals 0 if we choose the appropriate m. We do not know 

how to compute this number because the number of computations that are required. […] 
I know that the third group is right because that is the way that I learnt but I tend to 
agree with the first group since their arguments seem reasonable to me and fit my way of 
thinking.’ 
Note the conflict in this response. The student ‘knows that the third group is right’ but 
tends to ‘agree with the first group’ because the arguments ‘seem reasonable’ and ‘fit my 
way of thinking.’ It proves often to be the case that assigning a response to a single 
category is a matter of degree rather than an absolute allegiance to a single view. 
However, viewing the overall spectrum of responses enables us to gain insight into the 
different ways in which students express the subtlety of their opinions. 
In the majority of answers that illustrate Category I, the infinite sum is often seen to exist 
in theory, but not in practice: 
‘An infinite sum exists only in theory. It is not practical. In order to do something 
practical with an infinite sum, you have to stop it at some stage.’ 
In some answers, the student reports the strong influence that the computer has on their 
conceptions: 
‘In the laboratory, I learn that the expression ‘infinite polynomial’ means the possibility 

to approach 
x−1
1  as much as we want. The computer also considers the expansion in 

power series as a theoretical concept and it permits the expansion only after we fixed a 
certain power.’ 
‘Euler, considering the infinite sum as an actual infinite sum, as an entity (something like 
π) argues that it will be easier to define (while working by hand) the infinite sum as an 
expansion in a power series. But, since there exist nowadays computers with suitable 
software , it is preferable to work in a way that enables us to feel that at the moment we 
decide what will be the measure of error, the deviation in the approximation will not be 
exaggerated.’  
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Category II The infinite sum is perceived as a dynamic process that passes through 
a potentially infinite number of terms: 1, 1 + x, 1 + x + x2, 1 + x + x2 + x3, … (35%) 
Here the process is infinite but each stage is represented by an approximating polynomial 
with a finite number of terms. 
The following answer illustrates Category II: 
‘The polynomial can always approach the function better and in the same way that when 
we add digits 3 to 0.3 then it approaches 1/3 – we can add digits 3 as much as we want 
and as a result we can approach better 1/3 (0.333 is nearer 1/3 than 0.33) – in the same 
way, the more powers there are in the expansion, the better the polynomial approaches 
the function.’  
Sometimes, this perception of the infinite sum as a potential infinite process is 
accompanied with some reservation that expresses a conflict in the process of obtaining 
100% accuracy: 
‘Infinity is a tendency and not a number. Thus, when we tend to an infinity of terms, the 
error will tend to 0. The first group is right: I can get the precision I request only if I use 
enough terms. But, after all, I have a problem with the definition of the first group: If I 
request a precision of 100% – a zero error – I cannot reach it except if I will be helped by 
the definition of the second group.’ 

Category III The infinite sum of functions is perceived as a legitimate object but not 
clearly as the formal limit definition (28%) 
These were subdivided into two subcategories: 
 (i) The ‘infinite polynomial’ is recognized as a legitimate entity with a vague and 

unclear meaning. (19%) 

As an example, in the following answer, the student views the infinite polynomial as a 
legitimate object but does not yet fully grasp the representation of the third group as a 
formal definition of the second group’s actual infinite sum: 

‘To each power m we can compute the error between the function and the expansion 
and to each tolerance t small as we want, we can find m that meets the requirement 

tx...xxx
x

m <+++++−
−

)1(
1
1 32 . If we choose t smaller and smaller, we will be 

able to find m bigger and bigger that meets the requirement but every time that we fix 
m and t we move from an infinite polynomial to a finite polynomial.’ 

(ii) The infinite sum is perceived as a generic limit object. (9%) 
‘I am in the second group since the limit of the approximating polynomial of 

mx...xxx +++++ 321  is ∞+++++ x...xxx 321 . We know this fact from the 
expansion in power series around 0 according to Euler. We can choose a 
polynomial with ∞  terms such that the coefficient of each term of the polynomial 

)( 32  xOc xb xa +++  equals 1.’ 
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The term )( 3 xO  in the student’s answer represents the infinite tail as it is represented in 
the syntax of Mathematica. This symbol and the way the student wrote the infinite sum 

∞+++++ x...xxx 321 creates the impression of a symbolic manipulation of an infinite 
number of terms.  

Students may also note that the quest to get an exact answer will always involve a 
non-zero error: 

‘I am in the second group since even if we will add more and more terms to the 
sequence ..1 2 +++++ nx...xx  yet a difference will remain (maybe a very small 

one) between the sum and
x−1
1 , i.e. 

)!(n
(c) fx  ....x....xx

x

)(n)(n
k

1
)1(

1
1 11

2

+
=+++++−

−

++

. 

It means that only at infinity will we get a zero error. I do not think that we can 
take enough terms to get a zero error. We can get some precision but not a 100% 
precision.’ 

By using the Lagrange expression for the error, which may never equal zero, the student 
reinforces the impression that it is not possible to get 100% precision. 
Category IV The infinite sum is conceived as the limit of the infinite process of 

approximation (22%) 
Some answers demonstrate that the infinite sum is conceived as the limit of the sequence 
of partial sums: 

‘I am in the third group. I think that the argument 

x
x....xx n

n −
=++++

∞→ 1
1)1(lim 2

 
 is the best description of the expansion of the function in power series.’ 

Other answers reveal that the infinite sum 
...xa....xaxaaxf n

n +++++= 2
210)(  

is defined because 0)( lim =
∞→

xRnn
 with 

)...()()( 2
210

n
nn xaxaxaaxfxR ++++−= . 

Other answers placed in this category refer to the importance of the infinite polynomial 
‘tending to’ the limit: 

‘ I do not agree with the second group since this group pays no attention to the fact 

that the infinite polynomial .1 2 ..x....xx k +++++   tends to 
x−1
1  .’ 

Some answers refer to upper bound ideas that are relevant in this particular example: 

‘
x−1
1  is the bound of the sum of the infinite series.’ 
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This was, for example, the answer of Julia, the student who played an important role in 
the previous class discussion. 

While some students are happy to view an infinite sum as an actual infinity, 
others see it as a potentially infinite process. Others, as in the following response, may 
acknowledge both views as being possible: 

‘The infinite polynomial means that we can approach the function 
x−1
1  as much 

as we want. I do not agree with the second group since the infinite sum is a limit 
and I cannot consider it as a sum of an infinite number of terms at once. 
Nevertheless, there are some cases in which it is possible to work with the infinite 
sum. For example, we can look at Euler’s way of finding the coefficients of the 
expansion into power series by his method of undetermined coefficients. Euler did 
not mention a specific power.’ 

In this case, the student had used Mathematica in the computer lab to follow the original 
text written by Euler and seems influenced by the way that Euler manipulated the infinite 
number of terms in the power series. 

Some students were able to rationalise the two views in a complementary manner 
as an ongoing process or a legitimate object. For instance Dror responded as follows: 

‘I agree with the third group. The first and the second group complement each 
other. The second group looks at the infinite expansion as an entity that is 

perceived at once. This is the right way of looking: 
•

= 333.3
3
10  and, in spite of the 

fact that it is a periodic infinite decimal, one can perceive it as an entity at once. 
The first group considers the number from the mathematical theory and sees it in 
reality. In practice, there is no such thing as an infinite sum: neither human being 
nor computers can perform infinite computations; they can perform only 
approximations. 

The second group looks at the expansion ...xx
x

+++=
−

21
1
1  from left to right 

and the first group looks at it from right to left (they start from the expansion and 
try to arrive to the quotient). For this purpose, they need a finite number of terms. 
The third group simply confirms that the equality could be read in both two 
directions.’ 

Dror’s answer demonstrates that the formal definition offers a resolution of the difference 

between Euler’s approach from left to right, ...xx
x

+++=
−

21
1
1 , and the analytical 

limit from right to left, 
x

...xx
−

=+++
1
11 2 . 
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In the preceding discussion, it is clear that an individual may not respond 
precisely in a single category. The much-quoted definition of concept image (Tall & 
Vinner, 1981, Vinner & Hershkowitz, 1980) formulated the principle that: 

Sensory input excites certain neuronal pathways and inhibits others. In this way 
different stimuli can activate different parts of the concept image, developing them in 
a way which need not make a coherent whole. 

We shall call the portion of the concept image which is activated at a particular 
time the evoked concept image. At different times, seemingly conflicting images may be 
evoked. Only when conflicting aspects are evoked simultaneously need there be any 
actual sense of conflict or confusion (Tall & Vinner, 1981, p. 152). 

In this sense, a student in conflict may say one thing at one time and something 
different at another. Thus the classifications and percentages involved may not be precise. 
Nevertheless, they are indicative of the variety of responses that occur. 

The study offers the students the opportunity to express their own views in a 
context that covers a wide range of conceptions. Taking Categories I and II together, 
nearly half the students either reject the infinite sum (13%) or see it as a potentially 
infinite process (35%). Category III sense the limit as a mental object either relating it, 
often unclearly, to the infinite polynomial of Euler (19%) or to a generic limit (9%). 
Category IV, (22%) are beginning to see that the opposing views need not be so much in 
conflict, moving towards a view consistent with the formal definition. 

6. REFLECTIONS 
This study has used the power of Mathematica’s symbol manipulation and dynamic 
graphics to study the historical development of Taylor series using Euler’s infinite 
polynomials and Lagrange’s error function. The students were provided with an 
environment to manipulate the symbolism and represent the error function graphically to 
see how it tended to zero. 

The introduction of Euler’s use of infinite polynomials proved to be problematic 
for students familiar only with performing finite operations. However, it offered an 
explicit conflict in the relationship between the process of tending to the limit and the 
limit concept as a legitimate mental object. It stimulated explicit discussion not only of 
the relationship between the potential infinity of the process and the actual infinity of the 
limit, but also of the transition from the Taylor polynomials as approximations to a 
desired accuracy towards the formal definition of limit. 

A wide spectrum of interpretations remained, from those who only allowed finite 
computations as approximations and denied actual infinity, through those who had a 
sense of the limit as a legitimate object that was vague or generic, to those developing a 
sense of the formal limit concept. 

The part of the study focusing on the graphical approach alone (as distinct from 
Euler’s work with infinite polynomials) offers a natural transition from embodiment and 
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symbolism to the formal definition. While the limit of a numerical sequence involves a 
concept image where the terms may get close to the limit but never equal it, the visual 
picture of a sequence of functions tending to a limit can be illustrated in a visual way by 
seeing how the graphs of the approximations )(xPn   become indistinguishable from the 
limit function )(xf . This experience may be used to suggest the definition ‘given any 
error e > 0, it is possible to find an N such that, for n ≥ N, the graphs of )(xPn  and )(xf  
differ by less than e.’ 

Paradoxically therefore, the introduction of the limit of a sequence of functions 
may be cognitively easier to comprehend in an embodied sense than the limits of a 
sequence of numbers. This is certainly true in the initial stages of the calculus where 
looking at the graph of the practical slope function 

 
h

xfhxf )()( −+   

and allowing h to get small dynamically allows the student to see that, for 2)( xxf = , the 
practical slope function stabilizes to 2x visually and this can be translated directly into the 
symbolic calculation of the derivative. Such an approach can be used to see the 
derivatives of standard functions and also motivate the derivative as the slope of the 
tangent vector. Once the learner has mental imagery for the notion of the derivative as the 
slope function for several standard functions, it is natural to seek to compute the 
derivatives of sums, products, composite functions and only at this stage need one begin 
to introduce a more formal definition of limit. (See Tall, 2013, chapter 11.) Using 
dynamic imagery and symbol manipulation, alternative approaches to the calculus 
become possible that build from embodied perception and symbolic manipulation in the 
calculus to formal definitions and more sophisticated ideas in multi-dimensional calculus 
and analysis.  

Different approaches will be appropriate in various contexts. Some may require 
calculus in applications to model physical situations mathematically to solve and predict 
consequences of the mathematical model, some may study analysis in pure mathematics 
or non-standard analysis in logic. The approach here offers a combination of historical 
development and modern technology to enable students in high school with very different 
views to participate in a reflective discussion of the issues involved in historical 
development. At the end of this study a spectrum of conceptions remain. However, 
instead of personal conceptions remaining implicit in the students’ minds, the differences 
have been made explicit as part of an ongoing debate concerning the evolution of 
mathematical meaning from potentially infinite process to approximation within a desired 
error and on to the later formal definition of limit. 
This research was supported by the Israel Science Foundation (grant No. 843/09). 
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