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In this paper we consider data from a study in which students shift from linear to 
quadratic equations in ways that do not conform to established theoretical 
frameworks. In solving linear equations, the students did not exhibit the ‘didactic cut’ 
of Filloy & Rojano (1989) or the subtleties arising from conceiving an equation as a 
balance (Vlassis, 2002). Instead they used ‘procedural embodiments’, shifting terms 
around with added ‘rules’ to obtain the correct answer (Lima & Tall, 2008). Faced 
with quadratic equations, the students learn to apply the formula with little success. 
The interpretation of this data requires earlier theories to be seen within a more 
comprehensive framework that places them in an evolving context. We use the 
developing framework of three worlds of mathematics (Tall, 2004, 2013), based 
fundamentally on human perceptions and actions and their consequences, at each 
stage taking into account the experiences that students have ‘met-before’ (Lima & 
Tall, 2008; McGowen & Tall, 2010). These experiences may be supportive in new 
contexts, encouraging pleasurable generalization, or problematic, causing confusion 
and even mathematical anxiety. We consider how this framework explains and 
predicts the observed data, how it evolves from earlier theories, and how it gives 
insights that have both theoretical and practical consequences. 
KEYWORDS: Theories of learning; solving equations; quadratic equations; 
procedural embodiment; three worlds of mathematics. 
Empirical data and theoretical frameworks for the solution of linear equations 
It is our view that theories of learning evolve over time as phenomena are noticed and 
formulated in coherent ways that later need to take new data into account. In this way 
initial ideas may be enriched and become part of a more comprehensive whole. In 
this paper, specific data in linear equations and the transition to quadratic equations 
will be placed in a broader framework for cognitive development that brings together 
several distinct strands of research within a single theory. 
The research of Filloy & Rojano (1989) suggested that an equation such as  
with an expression on the left and a number on the right is much easier to solve 
symbolically than an equation such as . This is because the first can be 
‘undone’ arithmetically by reversing the operation ‘multiply by 3 and subtract 1 to 
get 5’ by ‘adding 1 to 5 to get  and then dividing 6 by 3 to get the solution 

. Meanwhile the equation  cannot be solved by arithmetic undoing 
and requires algebraic operations to be performed to simplify the equation to give a 
solution. This phenomenon is called ‘the didactic cut’. It relates to the observation 

  3x −1= 5

  3x + 2 = x + 6

  3x = 6
  x = 2   3x + 2 = x + 6
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that many students see the ‘equals’ sign as an operation, arising out of experience in 
arithmetic where an equation of the form  is seen as a dynamic operation to 
perform the calculation, ‘three plus four makes 7’, so that an equation such as 

 is seen as an operation which may possibly be solved by arithmetic 
‘undoing’ rather than requiring algebraic manipulation (Kieran, 1981). 
Lima & Healy (2010) classified an equation of the form ‘expression = number’ as an 
evaluation equation, because it involved the numerical evaluation of an algebraic 
expression where the input value of x could be found by numerical ‘undoing’, and 
more general linear equations as manipulation equations, because they required 
algebraic manipulation for their solution. 
On the other hand, if the solution of linear equations is considered in terms of the 
conceptually embodied notion of a ‘balance’, the difficulty of the equations is 
reversed. The equation , can easily be solved as a balance by imagining 
the xs to be identical unknown objects of the same weight and representing the 
equation with 3 xs and 2 units on the left and one x and 6 units on the right. It is then 
possible to remove 2 units from either side to retain the balance as , and 
then remove an x from both sides to get , leading to . In writing the 
prophetic paper entitled ‘the balance model: hindrance or support for the solving of 
linear equations with one unknown’, Vlassis (2002) noted that, as soon as negative 
quantities or subtraction are involved, then the embodiment becomes more 
complicated and hinders understanding. For instance, the equation  cannot 
be represented directly as a balance because the left-hand side  cannot be 
imagined as 3x with 1 taken away if the value of x is not known. 
This reveals that the didactic cut and the balance model give rise to very different 
orders of difficulty. In the didactic cut the equation  is easier to solve than 
the equation , but in the balance model the order of difficulty is 
reversed. 
The data of Lima & Tall (2008) presented an analysis of Brazilian students’ work 
with linear equations that did not fit either the didactic cut or the balance model. 
Their teachers had used an ‘expert-novice’ view of teaching and had introduced the 
students to the methodology that they, as experts, found appropriate for solving 
equations, using the general principle of ‘doing the same thing to both sides’ to 
simplify the equation and move towards a solution. However, when interviewed after 
the course, students rarely used the general principle. They did not treat the equation 
as a balance to ‘do the same thing to both sides’, nor did they show any evidence of 
the didactic cut. 
Instead, they focused more on the specific actions that they performed to shift 
symbols around and ‘move towards a solution’ using two main tactics: 
1) ‘swop sides, swop signs’ 
in which an equation  is operated upon by shifting the 1 to the right and 
the x to the left and changing signs to get: 

 3+ 4 = 7

  3x −1= 5

  3x + 2 = x + 6

  3x = x + 4
  2x = 4   x = 2

  3x −1= 5
  3x −1

  3x −1= 5
  3x + 2 = x + 6

  3x −1= 3+ x
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2) ‘swop sides and place underneath’ 
in which the 2 associated with the expression 2x in the equation above is moved from 
one side of the equation to the other, then placed underneath to give 

. 

In an attempt to use such rules, some students made mistakes, such as changing 
 to 

(a)    (b)   (c) . 

In (a) the 2 is passed over the other side and its sign is changed; (b) correctly ‘shifts 
the 2 over and puts it underneath’ but also ‘swops the sign’; (c) shifts the 2 over and 
puts the 4 underneath. When questioned, no student mentioned the principle of ‘doing 
the same thing to both sides’, instead they developed what Lima and Tall called 
procedural embodiments which involved embodied actions on the symbols to ‘pick 
them up’ and ‘move them to the other side’ with an extra ‘magic’ principle such as 
‘change signs’ or ‘put it underneath’ to ‘get the right answer’. Procedural 
embodiments worked for some students but they also proved to be fragile and 
misremembered by many others, leading to the wide range of errors that are well-
known in the literature (Matz, 1980; Payne & Squibb, 1990). 
Our purpose is not simply to find and catalogue errors. Instead we seek to evolve a 
single theoretical framework that covers all three aspects: the didactic cut, the 
balance model and the problem with ‘doing the same thing to both sides’. Such a 
theoretical framework should relate to both cognitive development and the emotional 
effects of the learning experience. To integrate these different aspects into a single 
framework, we begin with a theoretical construct that relates current learning to 
previous experience. 
Supportive and problematic met-befores 
The effect of previous experience on current learning may be studied using the notion 
of ‘met-before’, which has a working definition as ‘a structure we have in our brains 
now as a result of experiences we have met before’ (Lima & Tall, 2008, McGowen & 
Tall, 2010). The effect of previous experience has both cognitive and emotional 
aspects. In general, students encountering algebra for the first time already have 
experience of arithmetic, in which expressions such as  have answers. This 
acts as a met-before that causes problems in algebra where an expression such as 

 is a generalized operation that does not have an answer unless x is known. 
The concern that algebraic expressions ‘do not have answers’ is often referred to as 
the ‘lack of closure’ (Collis, 1978) and is seen as an obstacle in the general solution 

  

3x − x = 3+1
2x = 4.

  
x = 4

2
= 2

  2x = 4

  x = 4 − 2
  
x = 4

−2   
x = 2

4

 3×5− 2

  3x − 2
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of equations. However, when the full data is examined, we can see that it is not 
always an obstacle. If the value of x is known, then the expression  can be 
evaluated and so the expression can have a clear meaning as an operation of 
evaluation. This has positive implications when solving an equation such as 

 where the process of evaluation may be undone: start with the 7, add 2 to 
get 9, then divide 9 by 3 to get the solution .  
The notion of an expression as ‘an operation to be evaluated’ therefore acts in 
different ways with different types of equation: it is problematic for equations 
requiring algebraic manipulation but it is supportive in solving an equation that can 
be interpreted as an arithmetic evaluation. 
Met-befores have both mathematical and emotional consequences. We conjecture 
that supportive met-befores operating in a new context allow old methods to be used 
in a pleasurable way to make generalizations of established techniques in new 
settings. Problematic met-befores impede generalization and cause confusion. A 
confident individual may be frustrated by such impediments and work to find new 
ways of thinking that conquer the problems. A less confident individual may feel 
alienation that grows over time as successive problematic aspects in new contexts 
cause anxiety and increase the desire to avoid the pain by attempting to learn ‘what to 
do’ to seek at least the pleasure of passing tests. 
This offers a refined formulation of the original research into the didactic cut by 
Filloy & Rojano (1989), where many of the students were able to solve simple 
evaluation equations before being taught to solve equations using algebraic 
manipulation. The notion of an equation as a process of evaluation is supportive for 
solving evaluation equations but problematic for manipulation equations. Another 
observation made at the time is that the introduction of the algebraic technique in 
solving linear equations caused a loss in ability for some students to solve simple 
equations using arithmetic undoing. This loss in facility when faced with a new 
technique is common in mathematics learning. For instance, Gray (1991) noted that 
some children introduced to column subtraction may make errors that did not occur 
when they performed the same operation using simple mental arithmetic. 
This is consistent with the absence of the didactic cut in the data of Lima & Tall 
(2008). The students had been presented with a new formal principle for solving 
equations by ‘doing the same thing to both sides’. This new principle was not 
generally implemented as intended, instead the students focused on shifting symbols 
with additional rules as procedural embodiments that treated both evaluation and 
manipulation equations in the same way. Thus the students performed the same type 
of operation in both cases and made the same sort of error. 
This suggests a need to encompass the earlier analyses involving the ‘didactic cut’, 
the ‘help or hindrance’ of the balance metaphor, or the reasoning of ‘doing the same 
thing to both sides’ within a single framework that sees the students’ ideas evolve as 
they encounter new contexts where previous experiences may be supportive or 

  3x − 2

  3x − 2 = 7
x = 3
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problematic. It involves more than simply studying a single context, say quadratic 
equations, to see how it can be taught and learnt to best advantage. It requires a 
framework to make sense of the whole growth of mathematical knowledge of 
individuals, as they build personal ways of thinking over the long-term, based on 
fundamental human ways of thinking and the consequences of previous experiences. 
The three worlds of mathematics 
The framework of three worlds of mathematics (Tall, 2004, 2013) is an overall theory 
of cognitive and affective growth in mathematics that has evolved to build from the 
early development of ideas in the child, through the years of schooling and on to the 
boundaries of research in formal mathematics. 
It is strongly related to a wide range of theoretical frameworks formulated by Piaget 
(1970), Dienes (1960), Bruner (1966), Van Hiele (1986), Skemp (1979), the SOLO 
taxonomy of Biggs & Collis (1982), the structural and operational mathematics of 
Sfard (1991), process-object theories (such as those of Sfard (1991), Dubinsky (e.g. 
Asiala et al., 1996), Gray & Tall (1994)), theories of advanced mathematical thinking 
(Tall (ed.), 1991), as well as theories from cognitive science such as the embodied 
theory of Lakoff and his colleagues (e.g. Lakoff & Núñez, 2000), the blending of 
cognitive structures formulated for example by Fauconnier and Turner (2002) and 
other aspects such as the role of various levels of consciousness (Donald, 2001). 
Detailed discussion of all these aspects can be found in Tall (2013). However, the 
main purpose of the theoretical framework is not to collate all these theories together 
with all their intricate details that differ in many ways, but to seek the fundamental 
essence of essential ideas that they have in common. 
Following Skemp (1979), whose theoretical framework builds from perception 
(input) and action (output) and becomes increasingly sophisticated through reflection, 
the three-world framework builds on the tripartite structure of perception, operation 
and reason. All three of these aspects arise throughout mathematics. Van Hiele 
(1986) provides a growth of perception of geometric figures, where operations on 
figures produce geometric constructions and reasoning develops in sophistication 
through Euclidean definition and proof. Process-object theories build on actions that 
become mathematical operations, encapsulated as mental objects (procepts) that 
operate dually as processes (such as addition) and concepts (such as sum) (Gray & 
Tall, 1994). Overall, the learning of school mathematics requires that the student 
blends together, in the sense proposed by Fauconnier and Turner (2002), embodied 
perception and operation that lead to geometry on the one hand and arithmetic and 
algebra on the other. Both may be blended together, for instance, through 
representation of relationships in the cartesian plane, where perceptual ideas of 
dynamic change are related to operational techniques for computing change and 
growth in calculus. 
At the higher levels of school mathematics, methods of reasoning lead to Euclidean 
proof in geometry and symbolic proof – based on the ‘rules of arithmetic’ – in 
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arithmetic and algebra. 
In university, applied mathematicians broadly build on their experience of natural 
phenomena to construct mathematical models that can be used to reason about 
situations and compute solutions. Pure mathematicians take natural ideas and 
translate them into formal objects specified set-theoretically and deducing their 
properties using mathematical proof. 
Underlying this whole development is the nature of the species Homo Sapiens where 
the child builds on initial sensory perception and action and evolves increasingly 
sophisticated forms of mathematical thinking using language and symbolism. 
The sensory side develops through exploring and interacting with the structures of 
objects, recognizing properties, using language to describe, define and deduce 
relationships in an increasingly sophisticated mental world of conceptual embodiment 
that includes geometry and other perceptual representations; it develops over the 
longer term from physical perception to increasingly subtle mental imagination using 
thought experiments. This may be described using the four van Hiele levels that may 
usefully be subdivided into two distinct forms of thinking: the practical ideas of 
shape and space developed through recognition and description and the theoretical 
ideas of Euclidean geometry developed through definition and deduction using 
Euclidean proof (see Tall, 2013). 
The motor side of human action develops into a world of operational symbolism in 
which operations on objects such as counting, measuring, sharing, adding, 
multiplying, and so on, are symbolized as mathematical concepts such as number, 
fraction, sum, product, and operations are generalized as manipulable expressions in 
algebra. At every stage, operations are practiced and internalised as mental objects. 
Properties of the operations that have been recognised and described in practical 
mathematics may then be defined as ‘rules of arithmetic’ that become the basis for 
more technical aspects, such as the properties of prime numbers and the theory of 
factorization in arithmetic, and the formulation and solution of equations in algebra. 
Conceptual embodiment and operational symbolism blend together in the calculus 
where embodied ideas of rates of change and growth are blended with numerical and 
algebraic processes to formulate the symbolic operations of differentiation and 
integration and their inverse relationship expressed in the fundamental theorem of 
calculus. 
At a later stage in university pure mathematics, fundamental properties are 
formulated as axioms in a third world of axiomatic formalism where concepts are 
defined set-theoretically and further properties are proved as theorems using 
mathematical proof. Even here, the full evolution of formal mathematics essentially 
follows the same underlying van Hiele-like framework. The development of formal 
mathematical theory begins with the recognition and description of possible 
properties (in the form of conjectures) and the definition and deduction of formal 
theory using set-theoretic definition and formal proof. 
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The algebra of linear and quadratic equations studied in this paper occurs in the later 
stages of operational symbolism in school where arithmetic is generalized to algebra. 
It also has conceptual embodiments not only as graphical representations but also as 
physical and mental representations as a balance. The solution of equations 
introduces more general forms of reasoning such as the principle of ‘doing the same 
thing to both sides’ that has meaning in both embodied terms, as a balance, and 
symbolic terms, as an equation. 
More formal techniques in algebra involve manipulating symbols to simplify 
expressions, factorizing expressions and performing operations such as multiplying 
out brackets. For example, the expression  may be rewritten more simply as 

 and factorized as . Here the operation may be imagined as changing 
one expression into another or as representing the same underlying conception 
written in two different ways. There is clearly a difference as processes:  
multiplies 3 times x and adds 6, while  multiplies 3 times the sum of x and 2. 
However, the results of the operations are the same, and in algebraic manipulation, 
they are considered to be different ways of representing the same underlying object. 
This difference between a focus on carrying out various procedural rules of operation 
to change something into something else and the more flexible view of working with 
the same idea represented in different ways is fundamental in simplifying 
mathematical thinking. This leads to the introduction of a central simplifying idea. 
Crystalline concepts 
The curriculum is full of examples where mathematical concepts are represented in 
different ways that can also be considered as being essentially the same. For example, 
we speak of ‘equivalent fractions’ where the fractions  and  are ‘equivalent’ but 
different (as processes) but the rational numbers  and  are one and the same 
concept. 
Tall (2011) formulated a working definition of a crystalline concept as ‘a concept 
that has a structure of relationships that are a necessary consequence of its context’. 
Such a concept has strong internal bonds that hold it together so that it can be 
considered as a single entity. Just as Sfard (1991) spoke of ‘condensing’ a process 
from a sequence of distinct steps which we may interpret as a metaphor for 
transforming a gas that is diffuse to a liquid that can be poured in a single flow, we 
can think of ‘crystallizing’ as the transition that turns the flowing liquid into a solid 
object that can be manipulated in the hand, or, in mathematics, manipulated in the 
mind as an entity. This metaphor does not mean that a crystalline concept has 
uniform faces like a chemical crystal, but that it has strong internal bonds that cause it 
to have a predictable structure. 
Crystalline concepts are found throughout mathematics in many guises. They arise 
throughout geometry where specific figures have interrelated properties as a 
consequence of their definitions and more general concepts such as congruent 
triangles and parallel lines have definitions that cause them to have predictable 

  2x + 6+ x
  3x + 6   3(x + 2)

  3x + 6
  3(x + 2)
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structure. For instance, a triangle with two equal sides must, as a consequence, have 
two equal angles, even though the definition specifies only the equality of the sides 
and does not mention angles. In operational symbolism, numbers, algebraic 
expressions and, more generally, procepts, are crystalline, where the same underlying 
concept may be symbolised and manipulated in various ways.  For instance, the 
number 5 may also be written as 2 + 3 and if 3 is taken away from 5, the result must 
be 2. In axiomatic formalism, axiomatic systems and defined concepts within those 
systems all have necessary properties that can be deduced by mathematical proof 
(Tall, 2011). 
Our interest in this paper focuses on the crystalline structure of equations and how 
they have necessary structures that can be seen to operate in flexible ways. For 
instance, if we begin with an equation and operate on it by ‘doing the same thing to 
both sides’ in a way that can be reversed (such as adding the same quantity to both 
sides, or multiplying throughout by a non-zero number), then the new equation has 
the same solutions, as do any further equations produced by a reversible operation. 
This offers an overall coherence to the solution of equations where the underlying 
solutions remain unchanged by the operations on the equations. However, students 
who use procedural embodiments remained focused more on the step-by-step 
sequence of actions to move towards a solution in which the equations are changed 
into new equations rather than grasping the overall principle of ‘doing the same thing 
to both sides’ which has the effect of maintaining the coherence of the solution 
throughout the whole activity. 
An overall framework 
Taken together, the ingredients of our framework suggest that the development of 
mathematical thinking involves three distinct ways of making sense of mathematics, 
each of which develops in sophistication: 

First, through making sense through our physical perceptions and actions 
developing into mental structures through thought experiments; 
second, through our actions which become organized mathematical operations 
that are symbolized and lead to increasingly sophisticated calculation and 
symbol manipulation; 
and third, through the increasingly subtle use of language and reason that 
begins with recognition and description of properties, then develops through 
definition and various forms of mathematical deduction. 

Learning builds on previous experiences that may be supportive and encourage 
generalization of ideas in new contexts or problematic and impede understanding. 
Supportive met-befores give pleasure and problematic met-befores cause frustration. 
The student who succeeds in making sense of the new situations develops in 
confidence and responds to problematic met-befores by responding to the challenge 
to conquer the difficulties. In the longer term this may lead to increasingly rich 
knowledge structures and the vision of mathematical ideas as crystalline concepts. 
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The student who is unable to cope with new situations sees them as becoming 
increasingly complicated and may feel alienated and develop mathematical anxiety.  
A student who uses a method that has problematic undertones may be able to ‘do’ a 
problem and get the correct answer, while feeling uncomfortable about its meaning. 
Obtaining the correct answer is only part of long-term learning. A student may 
succeed at one stage but a problematic met-before lying in the subconscious may 
impede future learning. Using the goal-oriented theory of Skemp (1979), this may 
drive the student away from the goal of understanding mathematics to the alternative 
goal of learning procedures to solve standard problems. Procedural learning may give 
initial success yet fail to provide a flexible basis for successful learning in new 
contexts, leading to increasingly complicated procedures rather than richly connected 
crystalline structures. For example, procedural embodiment may give some success 
in solving linear equations but may impede learning when solving quadratics. 
The case of algebra and the shift from linear to quadratic equations 
The specific case under discussion in this paper involves the long-term growth of 
mathematical thinking that at an earlier stage involved the generalization of 
arithmetic to algebra and here focuses on the shift from linear to quadratic equations. 
It occurs as students build on their previous experience in arithmetic, developing 
mainly symbolic methods of solving linear equations that do not link either to the 
symbolic didactic cut or to the embodied notion of a balance, and do not explicitly 
use the more general reasoning of ‘doing the same thing to both sides’. Instead they 
shifted the symbols around in an embodied sense, ‘collecting like terms together’, 
‘moving terms to the other side’, and using additional techniques such as ‘change 
signs’. Our attention now turns to how these students develop as they encountered 
quadratic equations. 
We first report and analyse the collected data, then we consider this data in relation to 
the wider literature and the overall theoretical framework outlined in previous 
sections. Our purpose is to evolve a practical theory that explains and predicts why 
students learn in a manner based on their previous experience that may be supportive 
or problematic in a new context. In particular we take note of the observation of 
McGowen and Tall (2010) that the effect of previous experience applies not only to 
the met-befores of students, but also of the theorists who build the theories. We 
therefore expect theoretical frameworks to evolve over time to take account of new 
ways of making sense of observed data. 
THE RESEARCH STUDY 
The data presented in this paper was collected in the doctoral study of Lima (2007), 
developed at The Pontifical Catholic University of São Paulo (Brazil) and the 
University of Warwick (UK). The research involved sharing ideas with a group of 
high-school teachers whose objective was to examine their current teaching practices 
to seek ways to improve their teaching. The researcher encouraged the teachers to 
carry out their own ideas and to share the design of research instruments and the 
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collection of data. The data came from 80 high school students in three groups, one 
of 32 15-year-olds, one of 28 15-year-olds, both from a public school in the city of 
Guarulhos/SP; and one group of 20 16-year-olds from a private school in São 
Paulo/SP. All of them had already been taught how to solve linear equations at least 
two years before the research took place, followed by quadratic equations a year 
later. This research focuses on their long-term grasp of experiences that they had met 
before. 
In the study, there were three data collections, each one administered by the class 
teacher in a lesson lasting 100 minutes. The first invited the students to construct a 
concept map of their knowledge of linear and quadratic equations, the second was a 
questionnaire and the third was an equation-solving task. After an initial analysis of 
data, twenty students were selected for interviews, conducted by the researcher, in the 
presence of an observer, and tape recorded for further analysis. Students who 
participated in interviews were chosen by the kind of work they presented – including 
either typical mistakes or correct answers. In the interviews, we wished to investigate 
why students performed as they did. In particular, they were asked to explain what 
kind of symbol manipulation they had performed and why they believed it was a 
proper way to proceed. In this paper, we focus specifically on the work students 
performed when they were asked to solve quadratic equations and relate this data to 
the overall framework of three worlds of mathematics. (Detailed analyses of other 
parts of the study can be found in Lima & Tall, 2006a; Lima & Tall, 2006b; Lima, 
2007; Lima & Tall, 2008, Lima & Healy, 2010.) 
Tasks with quadratic equations 
The data used to investigate the students’ conceptions of quadratic equations came 
from two instruments, an equation-solving task, with three linear equations and four 
quadratic equations: 

, , , , 

together with a questionnaire that included two quadratic equations: 

, . 

The questionnaire also included a request to respond to the solution of the final 
quadratic equation as given by an imaginary student ‘John’: 

To solve the equation  for real numbers, John answered 
in a single line that: 

‘  or .’ 

Is his answer correct? Analyse and comment on John’s answer. 

Figure 1: John’s Problem (question 8 of the questionnaire). 
Interviews with selected students revealed additional personal information on how 

3l2 − l = 0 r2 − r = 2 a2 − 2a − 3 = 0 m2 = 9

t 2 − 2t = 0 (y − 3)(y − 2) = 0

  (x − 3)(x − 2) = 0

  x = 3   x = 2
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they interpreted the tasks and their thinking in seeking solutions. 

DATA AND RESULTS 
A total of 68 students gave their answers to the equation-solving task and 77 
responded to the questionnaire, due to absences on each day. From an analysis of all 
the instruments, our findings are that the students mainly interpreted an equation as a 
calculation, building on their previous experience working with numbers. For 
instance, when asked, ‘What is an equation?’ in the questionnaire, 36 out of 77 
students (47%) answered that ‘it is a calculation in mathematics’ or some equivalent 
response. Less than half the students mentioned the unknown. Instead, the responses 
often focused on the equals sign interpreted as a signal to perform a calculation 
(termed an operational sign by Kieran, 1981), consistent with their earlier experience 
of using an equals sign in calculations in arithmetic. 
The responses to the six equations are given in Table 1, with the number using the 
formula in square brackets. 

Equation Correct One root Incorrect Blank Total 

 4 [4] 0 [0] 41 [6] 23 [0] 68 [10] 

 3 [3] 9 [0] 31 [5] 25 [0] 68  [8] 

 3 [3] 0 [0] 40 [3] 25 [0] 68  [6] 

 1 [1] 15 [0] 27 [2] 25 [0] 68  [3] 

 6 [6] 0 [0] 62 [11] 9 [0] 77 [17] 
 8 [8] 0 [0] 63 [7] 6 [0] 77 [15] 

Total 25 [25] 24 [0] 264 [34] 113 [0] 426 [59] 

Table 1: Solutions of equations [those using the formula in brackets] 
Two correct roots using the formula 
The first column reveals that in total, of the 426 responses, only 25 (6%) gave a 
correct response with two roots and all of these used the formula. A study of the 
individual solutions reveals that not one student completed the square to solve any of 
the quadratic equations and not one student used factorization, not even in the case of 
equations  or . 
Even in the final equation , which is already factorized, none of the 
students used the given factorization. Only 8 out of 77 responses to this question 
(10%) gave a correct solution and all of them multiplied out the brackets and used the 
formula. Seven of the 63 incorrect solutions also used the formula but were unable to 
carry out the required manipulation. 
One correct root using evaluation or procedural embodiment 
The partially correct solutions with one root (column 3) either guessed a value that 

  a2 − 2a − 3 = 0

  r2 − r = 2

  3l2 − l = 0

  m2 = 9

  t2 − 2t = 0

  ( y − 3) ⋅( y − 2) = 0

  t2 − 2t = 0   3l2 − l = 0

  ( y − 2).( y − 3) = 0
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satisfied the equation or used procedural embodiment shifting the power to the other 
side and turning it into a root. 
Of the 9 students finding one root for , all solutions were found by 
arithmetic evaluation. Several students explained in interview that they thought of the 
equation  as ‘a squared number taking away the same number resulting in 
2, is 2’ using the familiar fact that  is 4, so  is 2. 
The equation  was solved correctly by just one student, who quoted the 
formula which therefore gave the two roots. Of the 68 students responding to this 
question, 15 (22%) found the solution as a single square root, either by square-
rooting 9 or by using a procedural embodiment to shift the square root over the other 
side where it became a (positive) square root (Figure 2). 

 
Figure 2: Passing the exponent to the other side as a square root 

In interview, one of them explained, ‘the power two passes to the other side as a 
square root.’ In this explanation, the student makes it clear that there is a movement 
of the exponent and a transformation from a square power to a square root. 
Just as with linear equations, what seems to be happening in this student’s 
explanation is a movement of symbols and an additional magic rule for changing 
something: the power is passed to the other side and is transformed into a square root. 
It is a new variation of familiar procedural embodiments such as ‘swop sides, swop 
signs’, and, perhaps for this reason, the students were satisfied to find just one value. 
Neither this student, nor any of the others interviewed, mentioned the possibility of 
another (negative) root. 
No correct solutions 
Out of a total of 426 solutions, 264 (62%) were incorrect and 113 (27%) were blank. 
Only two out of the 27 erroneous solutions of  attempted to use the formula 
and both failed to use it correctly. All the others followed a general strategy of 
‘moving towards a solution’ by ‘simplifying’ the quadratic equation in a mistaken 
procedural way to obtain a linear equation that they could then attempt to solve by 
procedural embodiment. 
For example, one student rewrote  as m.m and then interpreted this as ‘two ms’ to 
give a linear equation that led to an erroneous solution (Figure 3). 

  r 2 − r = 2

  r 2 − r = 2
 22  22 − 2

  m2 = 9

  m2 = 9

  m2



13 

 
Figure 3:  seen as 2m 

A common error made on various equations by nine students (13%) out of 68 on the 
equation solving task was simply to replace ,  or  respectively by m, r and a, 
and then solve the equation as if it were linear. Others used the exponent of the 
squared term to square its coefficient (Figure 4). 

 
Figure 4: Using the power of the unknown in its coefficient 

Here the switch from  to 9l may involve seeing the power applying to both terms 
and applying it only to the part that the student can actually calculate, namely to the 
numerical coefficient. 
The effect of these faulty operations may be seen as an attempt to ‘move towards a 
solution’ by a procedural embodiment that transforms the quadratic equation into a 
more familiar linear problem, which then proceeds by procedural embodiment. In 
Figure 3, the final part correctly ‘moves the 2 underneath’. In figure 4, after reducing 
the quadratic to the equation , the student shifts the 8 over the other side, 
putting it on top with the zero below, then moves to the final ‘solution’ by ignoring 
the zero (perhaps because it may ‘do nothing’) to leave the solution as 8. 

John’s Problem 
There is clear evidence that some of the students believe the formula to be the ‘right’ 
way to solve quadratic equations (despite the difficulties that they had in applying it). 
Evidence for this arises in the responses to ‘John’s Problem’ (Figure 1). Thirty 
students out of 77 (39%) claimed that his solution was correct. Three (4%) mentioned 
the formula saying things like, ‘He must have used the quadratic formula in his 
mind.’ Eleven students (14%) declared that ‘John didn’t solve the equation’ 

  m2

  m2
  r 2   a2

  3l2

  8l = 0
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essentially ‘because he did not use the formula.’ Four students (5%) used the formula 
to solve the equation and compared the result with John’s solution. One of these used 
the formula incorrectly and obtained different values from John, insisting that John 
was wrong (Figure 5). 

 

Figure 5: A student’s use of the quadratic formula and his verbal comments 
Most of the students who believe that they needed to use the formula to get the 
solutions for a quadratic equation lacked the flexibility to manipulate algebraic 
symbols. No one responded to say that John’s answer is correct by referring to the 
principle that when a product is zero, one of the factors must be zero. Some responses 
referred to the need to carry out the calculation, to test whether the solution is 
correct: 

‘If he guesses that, as it equals zero, x should be 3 or 2, it is wrong. But maybe, he 
is very clever, calculated in his mind, and supposed that this is the answer.’ 

or 
‘I don’t know, but I think it is wrong because he didn’t do the calculation, he just 
put the results that were by the side of x.’ 

Such responses often involve a procedurally embodied form of evaluation by 
mentally ‘putting’ numerical values for the variable ‘into’ the equation. Four students 
(5%) (three in the questionnaire and one during interview) said that John is right 
‘because putting  or  gives the number zero’, while two others substituted 
both values successively into the equation to check both solutions (Figure 6). 

 
Figure 6: Replacing values for x in the equation. 

One of those performing the substitution explained in interview: 
Student: To see if the answer is right, I have put 3 here [in the place of x] to see 

‘Ah! I don’t know,but I think 
that John is wrong and I 
think that my way is right;
I said my way, not my 
results, ok?’

  x = 3   x = 2
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what result I would get, and then another calculation with 2. 
Interviewer: Why have you put 3 in the place of x, and then 2 in the place of x? 
Student: Because here it says that x is equal to 3 so, if x is 3, then I replace the 
number to see what I get.  
Interviewer: And what happens if the result is the same as the one in the equation? 
Student: If it is zero, then x is 3. 

The language here speaks of ‘putting’ or ‘substituting’ a numerical value into an 
equation to evaluate the expression to check the equation, combining both evaluation 
and procedural embodiment successfully in a manner reminiscent of experiences with 
linear equations. This operation is successful for those who use it and reflects not 
only the particular operation of evaluation but also a formal characteristic of the 
solution process: that the solution is a number that satisfies the equation when it is 
put in place of x and the evaluation is carried out. 
DISCUSSION 
What is evident from data collected in this study is that very few of these students use 
flexible algebraic symbol manipulation or formal principles such as ‘do the same 
thing to both sides’. Having developed a technique of embodied procedural symbol 
shifting in linear equations, some used a similar technique to solve equations of the 
form , by shifting the power over the equal sign where it becomes a square 
root and gives only a single solution. No one completed the square or factorized 
equations to find the solution. A small number used the formula and many of these 
had difficulty if algebraic manipulation was required to get the equation into the right 
form to use the formula. Students who used procedural embodiments all failed to get 
both roots, either finding a single root by shifting a square on one side to the other 
where it became the (positive) square root or by making errors in symbol-shifting that 
gave erroneous results. 
In summary, all correct results giving two roots (6%) used the formula, while all the 
results giving a single correct result (6%) either used a procedural embodiment 
shifting the power to a square root on the other side, or guessed a single correct 
solution. All other solutions were either blank (27%) or often used a form of 
procedural embodiment to give a wrong answer (62%). 
Now we see that the attempts at solutions involve either fragile procedural 
embodiments (as in linear equations) or a minority use of the quadratic formula with 
little understanding. This could relate to the teachers desire to give the students a 
technique (the formula) that they knew could be used in all cases, in preference to the 
complications of completing the square or factorizing quadratics. However, the 
strategy had extremely limited success, especially in cases where it required symbolic 
manipulation to translate the equation into the needed form , which 
most students in the study found difficult. 
This data does not make for comfortable reading. The teachers as experts attempted 
to teach the students as novices to practice the procedures that they had found to be 

  x2 = k

  ax2 + bx + c = 0
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successful for their own solution of equations, but the students saw the operations in 
terms of their own experience and most did not grasp the general theory. 
The three-world framework suggests the need to take into account three main aspects: 

(i)  conceptual embodiment and the transition to operational symbolism, 
(ii)  the symbolic transition from arithmetic to algebra, 
(iii) the introduction of general formal principles, such as ‘do the same thing to 

both sides’.  
We consider each of these in turn. 
Conceptual embodiment and the transition to operational symbolism 
Students’ responses bring little evidence of attempts to make use of conceptual 
embodiments of equations. Indeed, if we look at previous research involving both 
linear and quadratic equations, we find that such embodiments tend to have 
limitations beyond the more simple cases. The work of Vlassis, for example, has 
already shown how the conceptual embodiment of a linear equation as a balance 
proves to be supportive in simple cases but is problematic where negative quantities 
are involved.  
In relation to quadratic equations, an interesting visual approach arose from the time 
of the Babylonians, and extended in Arabic mathematics in terms of physically 
‘completing the square’. Based on this idea, Radford and Guérette (2000) designed ‘a 
teaching sequence whose purpose is to lead the students to reinvent the formula that 
solves the general quadratic equation’ (p.69). An example is given in Figure 7.  

 
Figure 7: The Babylonian Geometric Model 

The pieces were cut out of cardboard and the solution could be found by cutting the 
rectangle vertically in half (Figure 8a), rearranging the pieces to move one half  
rectangle round to the bottom (Figure 8b), then realizing that what is missing to 
‘complete the square’ is the corner square with sides . Filling this in to get a 
total area of  units (Figure 8c), we find the larger square has side 8 units 
and so, taking off the 5 units leaves x = 3. 

x

x 10
The length of a rectangle is 10 units. Its 
width is unknown. We place a square 
on one of the sides of the rectangle as 
shown in the figure. Together the two 
shapes have an area of 39 square units. 
What is the width of the rectangle?

 5× 5
 39+ 25= 64
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Figure 8a Figure 8b Figure 8c 

Cut the  rectangle Rearrange the pieces Complete the square 
Students were then encouraged to think of a number of similar examples and derive a 
symbolic solution to equations of the form  to find the general solution: 

 

They were shown how  could be rewritten as , and 

substituting  for b and  for c gives the general solution of  as 

 
The next step suggested is to replace c by  to obtain the solution of 

 as 

 
The paper continues (p.74) with the comment: 

Of course, this formula is equivalent to the well-known formula 

 

where, in order to obtain all the numerical solutions, one also needs to consider 
the negative square root of . This leads us to the formula: 

 

The authors suggest that this is a good way to introduce the quadratic formula for 
students because it relates geometry and algebra, aiming ‘to provide a useful context 
to help the students develop a meaning for symbols’ (p.74). They note that many 
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students were able to solve the initial tasks but ‘need some time to abandon the 
geometrical context themselves to the numerical formulae’, commenting on the 
complexity of the semiotic structures, without any explicit reasons for the difficulties. 
The three-world framework clarifies the details. The representation of variables 
geometrically as lengths requires the quantities to be positive. If the same method is 
applied to an equation of the form  such as , instead of 
adding rectangles , this involves cutting them away. Having cut off one 
rectangle from the right-hand side of the square, as in Figure 9, the lower right  
square has already been removed, so it is no longer possible to cut away the full 
rectangle size  along the bottom. 

 

Figure 9: Attempting to cut off two rectangles of size 5×x 

This reproduces the phenomenon observed in the linear case where an embodiment 
supportive for unsigned numbers becomes problematic when signed numbers are 
introduced. 
The symbolic transition from arithmetic to algebra 
We have already seen the ‘didactic cut’ in action for linear equations where the 
evaluation equation  can be ‘undone’ but the more general manipulation 
equation  requires algebraic manipulation to find a solution. 
The quadratic case is more complicated. Some simple equations have solutions that 
can be ‘undone’ by arithmetic operation, such as  where the operation of 
squaring can be undone to give the square root . An equation that is already 
factorized such as  may also be solved by evaluation, by substituting 
each of the values 2, 3 to see that they both satisfy the equation. However, although 
these solutions are self-evident for an expert, they prove to be problematic for the 
student who has learned to solve linear equations by procedurally embodied symbol 
shifting. In the first case, only the positive root is found, consistent with the 
experience in solving linear equations that have only a single solution. In the second 
case the students did not use the general principle that if a product of brackets is zero, 
then one of the brackets must be zero; instead all of those who sought to find a 
solution did so by attempting to multiply out the brackets and use the formula. 
The ‘didactic cut’, which has proved to be a helpful theoretical construct in dealing 
with the symbolic solution of linear equations, is less relevant in the solution of 
quadratic equations. An equation ‘quadratic expression = number’ in general does not 
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have a quadratic in a form of an operation that can be ‘undone’. Lima and Healy 
(2010) suggested that a quadratic of the particular form  may be 
‘undone’ as an evaluation equation by starting with d, subtracting c, dividing by a, 
taking a square root and then subtracting b to find x. Such a generalized procedure 
does not occur in any of the data. It is not a procedure that the students have practiced 
and it does not offer a method of ‘undoing’ more general quadratic expressions. 
Instead, one needs to manipulate the symbols, either by factorization into two linear 
factors or by ‘completing the square’. Thus the ‘didactic cut’, while being a suitable 
theoretical construct for linear equations, does not readily extend to quadratic 
equations. 
There are three main symbolic techniques for solving quadratic equations: 
factorization (if that is appropriate), completing the square, or using the formula 
arising from completing the square. Vaiyavutjamai & Clements (2006) analysed the 
written solutions of 231 Grade 9 Thai students after eleven lessons studying all three 
techniques and found data similar to the present study. Students did not use the 
principle that if the product of two brackets was zero, then one of them must be zero. 
They solved the already factorized equation  by multiplying out the 
factors and using the formula. To check if these solutions are correct, some replaced 
the x in the first bracket by 3 and in the second bracket by 5, as if the equation 
simultaneously had both solutions. In dealing with the equation 𝑥! = 9, some 
students responded by saying that ‘in that equation x appears only once, and therefore 
there is only one solution’ (p.72). 
Thorpe (1989) reported that even when students could successfully find solutions for 

quadratic equations using the formula, the ‘±’ sign in  might not be 

meaningfully understood. 
When Gray & Thomas (2001) used graphic calculators to combine symbolic 
manipulation with graphic representations, they encouraged their students to practice 
paper and pencil methods of solution and to plot the graphs of functions to solve 
quadratic equations in various ways. They found little progress in procedural skills to 
solve quadratic equations, that the students seemed not to understand the principle of 
performing the same operation in both sides of an equation, and that they used 
procedures without understanding why they worked. Students were able to perform a 
range of individual tasks yet lacked the flexibility to move easily from one 
representation to another, for example, to switch from a symbolic to a graphical 
representation to visualize the solutions of equations in terms of where the graphs 
meet the horizontal axis. 
In all these studies, many students have difficulty making flexible sense of the 
solutions of quadratic equations. 

  a(x + b)2 + c = d

  (x − 3)(x −5) = 0

  
−b± b2 − 4ac

2a
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The introduction of the formal principle ‘do the same thing to both sides’ 
The introduction of the principle of ‘doing the same thing to both sides’ also made 
little impact on many students in the current study or in the research papers quoted 
above. This is consistent with the shift in meaning in the worlds of embodiment and 
symbolism from the practical aspects of school mathematics to the more formal 
aspects of embodied and symbolic reasoning. It does not involve the higher level of 
axiomatic systems and formal proof, but it does signal a shift to a more general level 
of operational symbolism, building not on specific operations, but on a general 
strategy. While there were some students that had a flexible view of operational 
symbolism who showed some appreciation of its meaning, most students in the 
current study either found incorrect solutions or left the solution blank. 
REFLECTIONS 
The data in this paper shows only 6% of the responses in this study correctly finding 
both solutions of a quadratic equation, all of whom use the formula, with 6% finding 
one solution, either by inspection or by procedural symbol shifting. All other 
solutions were either blank (27%) or gave an incorrect answer (62%). Our previous 
analyses of these students (Lima & Tall, 2008) indicated that they solved linear 
equations based on their previous experience of arithmetic operations, in which 
operations are carried out to obtain an answer, mainly by procedural symbol shifting 
to move towards a solution. With neither type of equation did the students use 
flexible manipulation of symbols or the general principle of ‘doing the same thing to 
both sides’. The problems that students using procedural methods encountered with 
linear equations become even more severe with quadratic equations, a finding not 
limited to this study, but also in all the other research considered in the literature 
review. 
Gray and Tall (1994) proposed the proceptual divide in which a spectrum of 
performance in arithmetic grows from those students who begin to use flexible 
relationships between numbers to make their task easier to those who continue to 
focus on procedures of counting where the difficulties grow even greater as the topics 
become more sophisticated. 
This study reveals that the proceptual divide continues further into algebra. While 
some students may develop flexible methods to solve linear equations, most of those 
in this study solved linear equations by procedural symbol shifting that leads to even 
greater problems when attempting to solve quadratic equations. The learning that 
occurs at each stage affects subsequent stages and the bifurcation between those who 
make flexible use of symbolism to make sense of the mathematics and those who use 
procedural embodiments can only grow wider until, as here, those succeeding in 
solving quadratic equations are a small minority. 
The development of algebra is part of the whole growth of mathematical thinking 
which is formulated as blending embodiment and symbolism in school mathematics, 
leading to embodied and symbolic forms of reasoning, which are later transformed 
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into an axiomatic formal world of set-theoretic definition and proof in university pure 
mathematics. 
The three-world framework formulates the cognitive and affective development of 
mathematical thinking over a lifetime from a newborn child to the full spectrum of 
adult mathematical thinking. It includes the effects of supportive met-befores that 
enable generalizations in new contexts and problematic met-befores that impede 
progress, with a growing awareness of the crystalline structure of mathematical 
concepts that enable them to be grasped and manipulated as mental entities with 
flexible meaningful links between them. 
The particular study of the solution of linear and quadratic equations occurs in 
operational symbolism with some support from embodied representations. The forms 
of reasoning appropriate to school algebra involve more formal use of embodiment 
and symbolism without any reference to the third world of axiomatic formalism. The 
reasoning in the solution of algebraic equations builds symbolically on the operations 
of generalized arithmetic, shifting from evaluation equations to equations requiring 
more general symbolic manipulation that give rise to the problematic aspects of the 
didactic cut. This may be blended with various conceptual embodiments such as 
seeing the solution of equations as the intersection of graphs, imagining the equation 
as a physical balance or cutting up squares in the case of quadratic equations. 
Methods that work with physical quantities – such as the equation as a balance, or the 
representation of x2 as a physical square – become problematic when negative 
quantities are introduced. The introduction of more general strategies, such as ‘doing 
the same thing to both sides’ prove to be problematic for students who interpret the 
generalities in terms of procedural symbol-shifting. The proceptual divide reveals a 
spectrum of performance between those who remain limited to learning step-by-step 
procedures and those with the flexibility of being able to grasp the crystalline 
structure of mathematical concepts. 
To address these issues requires more than focusing on the particular context at a 
particular level of the curriculum. The problems encountered in quadratic equations 
lie not only in that topic, nor in what is carried forward from linear equations, but in 
the whole build up of mathematical structures over the student’s lifetime. The 
bifurcation between success and failure is likely to become even wider as supportive 
and problematic met-befores affect successive learning in increasingly sophisticated 
mathematical contexts. This makes it incumbent on us as mathematical educators to 
evolve an approach to long-term learning in the light of what each student has met 
before. 
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