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Abstract 
This chapter charts the growth of proof from early childhood through practical 
generic proof based on examples, theoretical proof based on definitions of observed 
phenomena, and on to formal proof based on set theoretic definitions. It grows from 
human foundations of perception, operation and reason, based on human embodiment 
and symbolism that may lead, at the highest level, to formal structure theorems that 
give new forms of embodiment and symbolism. 
Increasing sophistication in mathematical thinking and proof is related to earlier 
experiences, called ‘met-befores’ where supportive met-befores encourage 
generalisation and problematic met-befores impede progress, causing a bifurcation in 
the perceived nature of mathematics and proof at successive levels of development 
and in different communities of practice. The general framework of cognitive 
development is offered here to encourage a sensitive appreciation and communication 
of the aims and needs of different communities. 
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Mathematical thinking in terms of human perception, operation and reason 
The cognitive development of mathematical thinking and proof is based on 
fundamental human aspects that we all share: human perception, action and the use of 
language and symbolism that enables us to develop increasingly sophisticated 
thinkable concepts within increasingly sophisticated knowledge structures. It is based 
on what I term the sensori-motor language of mathematics, blending together 
perception, operation and reason (Tall, 2013). 

Mathematical thinking develops in the child as perceptions are recognised and 
described using language and as actions become coherent operations to achieve a 
specific mathematical purpose. According to Bruner (1966), these may be 
                                                

1 This article is a product of personal experience, working with colleagues such as Shlomo Vinner who gave me the 
insight into the notion of concept image, Eddie Gray, whose experience with young children led me to grasp the 
essential ways in which children develop ideas of arithmetic and to build a theoretical framework for the different ways 
in which mathematical concepts are conceived, Michael Thomas who helped me understand more about how older 
children learn algebra, the advanced mathematical thinking group of PME who broadened my ideas about the different 
ways that undergraduates come to understand more formal mathematics, many colleagues and doctoral students who I 
celebrate in Tall (2008) and, more recently, the working group of ICMI 19 who focused on the cognitive development 
of mathematical proof (Tall, Yevdokimov et al., 2012). 
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communicated first through enactive gestures, then iconic images, then the use of 
symbolism, including not only written and spoken language but also the operational 
symbolism of arithmetic and the axiomatic formal symbolism of logical deduction. 

The theoretical framework proposed here follows a similar path enriched by the 
experience over time, building from conceptual embodiment that combines the 
enactive and iconic modes of human perception and action, developing into the 
mental world of perceptual and mental thought experiment. Embodied operations, 
such as counting, adding, sharing, are symbolised as manipulable concepts in 
arithmetic and algebra in a second mental world of operational symbolism. As the 
individual matures, there is a further shift into a focus on the properties of mental 
objects as in Euclidean geometry, the blending of visual and symbolic modes of 
thought and the properties of arithmetic operations recast as ‘rules’ that underlie the 
generalized operations and expressions in algebra. Each of these leads to different 
forms of mathematical proof: Euclidean proof in geometry, symbolic proof, based on 
the ‘rules of arithmetic’, and blending embodied and symbolic reasoning using 
language. 

Embodiment and symbolism develop alongside each other and interact with each 
other. The early stages of practical mathematics begin with experience of shape and 
space, and of operations in arithmetic, in which properties of specific examples are 
seen to offer generic proof, such as realising that 2+3=3+2 holds not just for the 
numbers 2 and 3, but for any pair of whole numbers. This develops into the 
theoretical mathematics of definition and deduction in Euclidean and symbolic forms 
of proof. 

Properties in both embodiment and symbolism develop into the formal 
mathematics of set-theoretic definition and proof in the axiomatic formal world of 
pure mathematics. While theoretical mathematics is based on embodied and symbolic 
experiences, formal mathematics guarantees that all the properties proved from given 
set-theoretic axioms and definitions will also hold in any new context that satisfies 
the given axioms and definitions. 
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Figure 1: Outline of long-term development of proof 
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Embodiment and symbolism continue to play their part in axiomatic formalism, not 
only in imagining new possibilities that may be defined and proved formally, but also 
in an amazing turnaround in which certain theorems (called structure theorems) prove 
that axiomatic systems have embodied and symbolic structures established by formal 
proof. This reveals mathematical thinking at the highest level, and mathematical 
proof in particular, as an intimate blend of embodiment, symbolism and formalism 
where individual mathematicians develop a preference for different aspects. 

The evolution of theories of mathematical thinking and proof 
Pierre van Hiele (1986) focused on structure and insight, seeing a succession of 
levels that may be described as recognition and description of figures, leading to 
definition and deduction of properties through Euclidean proof. 

Ed Dubinsky and others (Asiala et al., 1996) took an apparently different path, 
following Piaget’s idea of reflective abstraction to focus on operations that are seen 
first as actions, routinized as processes, then encapsulated as mental objects within 
knowledge schemas. 

Anna Sfard (1991) proposed a framework that alternated between operational and 
structural ways of thinking in which operations are condensed as processes, and then 
reified as mental objects that now have a certain structure. She suggested at the time 
that an operational approach inevitably precedes structural mathematics. However, 
her examples involve operational symbolism being reified as mental objects, without 
any reference to the van Hiele development of the properties of objects. 

This led to a three-part analysis in Tall, Thomas et al. (2000) through parallel 
developments of conceptual embodiment (broadly following van Hiele) and 
operational symbolism (using process-object theories) in school, leading much later 
to the axiomatic formal framework of set-theoretic definition and proof in university 
pure mathematics (Tall, 2004a, 2004b). 

Following the recent death of van Hiele in 2011 at the grand old age of one 
hundred, I revisited his ideas of structure and insight, which he applied to geometry, 
but not to the symbolism of arithmetic and algebra (van Hiele, 2002). I realised that 
the term operation should not be restricted to the symbolic operations in arithmetic 
and algebra. Operations occur in the constructions of Euclidean geometry. For 
instance, we may operate on an isosceles triangle by joining the vertex to the 
midpoint of the base to cut the triangle into two parts that are congruent (with three 
corresponding sides). This proves that the base angles must be equal, and various 
other properties follow, such as the property that the line from the vertex to the 
midpoint of the base is at right angles to the base. 

The operations of construction in geometry and the various operations in 
arithmetic and algebra have a common definition: they consist of ‘a coherent 
sequence of actions and decisions performed to achieve a specific purpose.’ A 
geometric operation is a construction that focuses on the object (the figure) and 
results in enabling us to see relationships concerning the properties of the object. A 
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symbolic operation performs a calculation or manipulation, focusing more on the 
properties of the operations themselves as the operations lead to a symbolic output. 

Furthermore the compression of operation into mental object in symbolism begins 
for the child as embodied operations on objects such as counting, adding, sharing, 
and is compressed into symbolic operations on whole numbers, fractions, signed 
numbers and so on. This reveals two distinct forms of compression from operation to 
mental object that I termed embodied compression and symbolic compression (Tall 
2013, chapter 7). 

Embodied compression focuses on the effect of the operations on the objects, such 
as counting a collection to find the number of objects, such as ‘six’. Focusing on the 
way that the objects are placed leads to a realisation of the fundamental properties of 
whole number arithmetic. For instance, the set of six objects may be subdivided, say, 
into subsets of ‘four’ and ‘two’ and, by rearranging the sets, it may be seen that ‘two’ 
and ‘four’ is also ‘six’. Reorganizing the subsets as two rows of ‘three’ allows them 
to be seen as three columns of ‘two’ so that ‘two threes’ is the same as ‘three twos’. 
Embodied compression enables us to see at a glance the flexible properties of 
arithmetic. ‘Proof’ at this early stage is a form of reasoning based on our 
interpretation of the coherence of our own perceptions and actions. This form of 
proof, in which a specific example is seen to be typical of a whole category of 
examples, is termed generic proof (Mason & Pimm, 1986; Harel & Tall, 1991). 

Symbolic compression involves performing a counting operation to obtain a 
number concept, for instance, the operation of ‘count-on’ calculates ‘two and eight’ 
as counting on eight to get ‘three, four, five, six, seven, eight, nine, ten’ while ‘eight 
and two’ is the short count ‘nine, ten’. Here the two operations are very different, one 
is a long count, and the other is short. The general properties of the symbolic 
compression are therefore not as self-evident as they are with embodied compression. 

A gifted child may grasp the flexible properties of arithmetic as part of a coherent 
knowledge structure in which symbols operate dually as process or concept (which 
we termed a ‘procept’) that may be used as an organising principle to simplify 
operations. A child who focuses on procedural operations of counting taking place in 
time will find arithmetic operations to be far more difficult to cope with. Eddie Gray 
and I called this bifurcation ‘the proceptual divide’ between those fixed in 
increasingly complicated counting procedures and those who develop flexible ways 
to derive new facts from known facts (Gray & Tall, 1994). 

This bifurcation between those who find mathematics ‘easy’ and those who find it 
impossibly difficult begins at a very early age. It should be taken into account in 
seeking to explain and predict how each individual attempts to make sense of 
mathematics, building on increasingly sophisticated perception, operation and reason. 

Long-term pleasure and pain 
Emotions play a vital role in mathematical thinking and have a profound effect on 
how individuals make sense of mathematical proof. As my supervisor, Richard 
Skemp used to say: ‘pleasure is a signpost, not a destination.’ His goal-oriented 
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theory of learning (Skemp 1979) saw children starting out with the goal of seeking to 
make sense of the world. Successfully linking together ideas in coherent ways gives 
pleasure, success breeds more success, so that a child with a history of success builds 
up a positive feed-back loop where an encounter with a problematic situation is often 
met with the determination to conquer the difficulty. However, lack of success leads 
to an anti-goal, to avoid a sense of stress. Further encounters with stress may lead to a 
negative feed-back loop in which the desire to avoid failure leads to less engagement 
with the mathematics and less technical proficiency that causes even more difficulty 
and greater mathematical anxiety (Baroody & Costlick, 1998). As a result of the 
negative feedback, students may seek the comfort of learning procedures by rote to 
succeed in examinations and prefer to learn proofs procedurally rather than seek to 
grasp deeper meanings that do not seem to make sense. 

An analysis of the development of mathematical thinking reveals the surprising 
conclusion that mathematics is not a system that builds logically on previous 
experience at each stage, even though every mathematics curriculum in the world is 
intent on presenting topics in a coherent sequence, carefully preparing the necessary 
pre-requisites at each stage for the more sophisticated stages that follow. On the 
contrary, an experience that has been ‘met before’ may be supportive in some new 
situations yet problematic in others. 

The concept of ‘met-before’ was introduced by Lima & Tall, (2008) and 
McGowen & Tall (2010) to describe ‘a structure we have in our brains now as a 
result of experiences we have met before.’ Some ideas that work in one situation such 
as ‘addition makes bigger’ or ‘take away makes smaller’ in whole number arithmetic 
are supportive in the context of fractions yet problematic in the context of signed 
numbers. This recalls the concept of ‘epistemological obstacle’ developed by 
Bachelard (1938) and Brousseau (1983) and the need for accommodation by Piaget 
(see, for example, Baron et al., 1995) or reconstruction by Skemp (1971). 

However, the notion of met-before refers to the effect of previous experience on 
new learning. A particular met-before is not in itself supportive or problematic, it 
becomes supportive or problematic in a new situation when the learner attempts to 
make sense of the new ideas. For instance, ‘take away leaves less’ is supportive in 
some contexts (e.g. everyday situations where something is removed, in the 
postulates of Euclidean geometry, or taking one whole number from another) but it is 
problematic in others (such as taking away a negative number or in the theory of 
infinite cardinals). 

A problematic met-before arises not only in the individual learner, it is a 
widespread feature of the nature of mathematics itself. In shifting to a new context, 
say from whole numbers to fractions, or from positive numbers to signed numbers, or 
from arithmetic to algebra, generalization is encouraged by supportive met-befores 
(ideas that worked in a previous context and continue to work in the new one) and 
impeded by problematic met-befores (that made sense before but do not work in the 
new context). 
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For instance, properties such as commutativity, associativity, distributivity are 
supportive as number systems are broadened through whole numbers, integers, real 
numbers, complex numbers, but other aspects such as ‘take away gives less’ or ‘the 
square of a non-zero number is positive’ become problematic. 

Crystalline concepts 
Given this increasing difficulty of problematic aspects that occur in generalization, I 
sought a unifying principle that is supportive in mathematical thinking and binds 
mathematical ideas together in any given context. In Tall (2011), I formulated a 
working definition of a crystalline concept as ‘a mathematical concept that has an 
internal structure of relationships that cause it to have specific properties in the given 
mathematical context.’ Such concepts include: 

• platonic objects in geometry, such as points, lines, triangles, circles, congruent 
triangles, parallel lines that have properties arising through Euclidean proof; 

• operational symbols as flexible procepts in arithmetic, algebra and symbolic 
calculus that have necessary properties through calculation and manipulation; 

• set-theoretic concepts in axiomatic formal mathematics whose properties are 
deduced by formal proof. 

Not only do crystalline concepts occur at the highest levels of mathematical thinking, 
they emerge in the thinking of a young child who sees the flexible proceptual 
structure of arithmetic through embodied compression rather than the procedural 
step-by-step counting procedures of arithmetic that operate in time. 

They enable flexible thinkers to see mathematical ideas in astonishingly simple 
ways. It is not that the fractions  

4
8 ,  

7
14 ,  

101
202  are all equivalent to each other and to 

the simplest possible canonical form  
1

2 , it is that they are all manifestations of a 
single crystalline concept – the rational number one half – also represented as a 
unique point on the number line. 

It is not that the expressions   2(x + 7)  and   2x +14  are equivalent but different, 
where the first can be turned into the second by ‘multiplying out the brackets’ and the 
second can be turned into the first by ‘factorization’, it is that both expressions are 
different ways of writing the same crystalline concept as an algebraic expression. 
Indeed, the functions f (x) = 2(x + 7)  and g(x) = 2x +14  are not simply equivalent, 
they are precisely the same function. Students who think flexibly in terms of 
crystalline concepts have much more powerful means of relating mathematical ideas 
than those who see equivalent ideas that are changed from one form to another by 
carrying out procedures. 

Likewise, in axiomatic formal mathematics, an axiomatic system such as ‘a 
group’ is a crystalline concept with rich interconnections between its properties. We 
may not know what specific group we are dealing with, but we do know that it has an 
identity that we may denote by e, and that if x is any element, we can define the 
power  xn  for any positive or negative integer and prove that  xm+n = xmxn  for any 
integers m, n. 
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A crystalline concept may be defined formally and then its properties may be 
deduced as theorems to build up a knowledge structure where relationships are tightly 
interconnected by formal proof. For example, we can prove that if we begin with the 
axiomatic definition of an ordered field F, then in this context we may formulate any 
of the equivalent definitions for completeness, to prove that a complete ordered field 
is not only unique up to isomorphism, it is also unique as a crystalline concept. 

At the highest level of pure mathematical research, it is the compression of 
structural properties of defined formal concepts into crystalline concepts that gives 
gifted mathematicians a simplicity of thought that is beyond the mere proving of 
theorems of equivalence. An ordered field not only contains a subfield isomorphic to 
the rational numbers, it can be conceived as a crystalline concept that contains the 
crystalline concept of the rational numbers. 

I recall the ideas that I encountered as a graduate student when theoreticians spoke 
of the identification of one structure with another structure as ‘an abuse of notation’. 
On the contrary, it is this way of thinking that gives the biological brain of the 
mathematician a level of flexibility to conceive mathematical ideas in more simple 
and insightful ways. 

Formal constructions building up more general systems – for example, from 
natural numbers, to integers, to rational numbers, to real numbers, and beyond – all 
involve equivalence relations of ordered pairs in one structure to construct the next. 
At each stage we get an isomorphism between equivalence classes of ordered pairs 
and a substructure of the larger system. This development involves supportive met-
befores that encourage generalization and problematic met-befores that impede 
progress. Yet once we have the larger system, we no longer need to speak of 
isomorphisms, we can simply refer to the subsystem as a subset given by specified 
properties. Being able to move flexibly between seeing subsystems as subsets or as 
isomorphic copies leads naturally to the cognitive notion of crystalline concept. It 
offers the human brain a simpler way to think of strictly formulated isomorphic 
systems as a single underlying crystalline concept that can occur in different contexts 
yet operate in the same coherent way in every representation. 

The transition from proof in embodiment and symbolism to formal proof 
The overall framework for cognitive development from the newborn child to the 
frontiers of mathematical research was further developed in the ICMI Study 19 on 
Proof and Proving (Tall, Yevdokimov et al, 2012), and has been extended in How 
Humans Learn to Think Mathematically (Tall, 2013).  

The van Hiele levels (1986) have been variously reconsidered by a range of 
authors, may now be seen in as four successive levels which I term 

• Recognition of basic concepts such as points, lines, and various shapes; 
• Description of observed properties; 
• Definition of concepts to test new examples to see if they satisfy the definition and 

to use the definitions to formulate geometric constructions; 
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• Deduction in the form of Euclidean proof in plane geometry. 

Each of these is a form of structural abstraction in which the structure of the objects 
under consideration and their relationships shift to successive new levels of 
sophistication. This begins first with observations of geometric objects whose 
structures are recognised and described. At this point the foundations of Euclidean 
proof are laid down by formulating definitions for figures that not only allow them to 
be categorised and constructed but also to use ideas such as congruent triangles and 
parallel lines to construct Euclidean proof. 

Van Hiele also described a fifth level of rigour that may be seen as shifting in two 
directions, the first is to different embodied contexts such as projective geometry or 
spherical geometry, the second is in terms of the more sophisticated world of 
axiomatic formalism as prescribed by Hilbert. 

Van Hiele (2002) saw these levels apply to geometry and not to the symbolic 
development from arithmetic to algebra. The calculation with numbers and 
manipulation of algebraic symbols involve quite different mental activities from 
those in Euclidean proof. However, once operations are encapsulated as number 
concepts and generalized as algebraic expressions, these too have properties that can 
be recognised and described, then defined as ‘rules of arithmetic’ to be used in 
algebraic proofs to deduce theorems. Thus the sequence of structural abstraction also 
occurs in the higher levels of operational symbolism to provide definitions of whole 
numbers, such as even, odd, prime and to deduce theorems such as the uniqueness of 
factorization into primes. 

Exactly the same structural abstraction arises in the axiomatic formal world of set-
theoretic definition and formal proof. This builds on our experience of conceptual 
embodiment and operational symbolism, beginning with the recognition and 
description of mathematical situations and then the definition of axiomatic systems 
and of defined concepts within those systems, and deduction of properties of systems 
and defined concepts using formal proof. 

Experienced mathematicians have flexible knowledge structures that they wish to 
pass on to their students. However, by the time students pass through school to enter 
university, they will have already developed in very different ways based on how 
they have managed to make sense of previous experiences. 

Krutetskii (1976) produced significant evidence that the most gifted children are 
more likely to develop a strong verbal-logical basis to mathematical thinking than a 
visual-pictorial foundation. Out of over a thousand students, the most gifted nine 
were classified with five analytic (verbal logical), one geometric (visual-pictorial), 
two combining both (one more visual, the other more verbal) and one who was not 
classified. Presmeg (1986) found that the most outstanding senior school 
mathematics students in her study (7 pupils out of 277) were almost always non-
visualizers. Of 27 ‘very good’ students (10% of the sample), eighteen were non-
visualizers and five were visualizers. 

This suggests that a small number of those students who enter university are 
powerful verbal-analytic thinkers who may benefit from making sense of set-
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theoretic definitions, an even smaller number base their thinking on visual-pictorial 
representations, and others who may have a blend of visual embodied thinking and 
operational symbolism or who prefer to learn procedurally by rote. 

Some students seek a natural approach based on a blend of previous experiences 
of embodiment and symbolism from school mathematics. Some with a more verbal-
logical basis may seek to use a formal approach based on set-theoretic definitions and 
the deduction of properties using formal proof. Others seek to learn proofs 
procedurally to reproduce in examinations. All of these approaches may involve 
supportive and problematic aspects, which have been detailed in the literature (e.g. 
Pinto & Tall, 1999; Weber, 2004; Tall, 2013).  

As students become more experienced and shift to graduate studies, Weber (2001) 
produced evidence that research graduates are more likely to respond flexibly to 
problems by making links between concepts in a sophisticated knowledge structure 
while undergraduates in their early studies, have yet to develop such flexibility. 

This is consistent with the lack of aesthetic appreciation of mathematical ideas 
noted by Dreyfus and Eisenberg (1986) and also with the relationship noted by 
Koichu, Berman & Katz (2007) between “aesthetical blindness” of students and 
factors such as self-esteem that affect their aesthetic judgement. 

The theoretical framework presented here traces the development of cognitive and 
emotional aspects throughout the lifetime of the individual. A few students, 
characterized as being ‘gifted’ develop verbal-analytic skills that enable them to build 
formally from set-theoretic definitions to construct highly connected crystalline 
concepts that may have embodiments and operations linked to underlying formally 
proved structure theorems. But many others, who focus on ‘maximising their mark on 
the exam’ to ‘get a good degree’ to move on in their lives, have good reasons for 
doing so. The mathematics is problematic for them and it doesn’t make sense. 

Structure Theorems 
Some theorems based on formal axioms and definitions prove formal structures that 
enable the ideas to be reconsidered in embodied and symbolic terms. For example, a 
finite dimensional vector space over a field F is isomorphic to Fn, so that its elements 
may be represented symbolically as n-tuples and its linear maps as matrices, and in 
the case where F is the field of real numbers and n = 2 or 3, it may be embodied in 
two or three dimensional space. In the same way a finite group is isomorphic to a 
subgroup of a group of permutations, which allows it to be operated on symbolically 
and embodied as the transformations of a geometric object. 

Structure theorems enrich formal mathematics with new forms of embodiment and 
symbolism, to enable mathematicians to recognise problems, imagine possibilities, to 
formulate conjectures and to prove new theorems. Mathematicians of different 
persuasions see proof as their main research goal, but achieve it in different ways, as 
the algebraist Saunders MacLane observed when comparing his approach with that of 
the geometer Michael Atiyah: 
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For MacLane it meant getting and understanding the needed definitions, working with 
them to see what could be calculated and what might be true, to finally come up with new 
‘structure’ theorems. For Atiyah, it meant thinking hard about a somewhat vague and 
uncertain situation, trying to guess what might be found out, and only then finally reaching 
definitions and the definitive theorems and proofs. (MacLane (1994), p. 190–191.) 

Both strategies follow the same format – becoming aware of a problem, considering 
possibilities, formulating conjectures and seeking proof – and this follows the broad 
van Hiele format of recognition, description, definition and deduction: 

 Problems 
(recognition) 

Possibilities 
(description) 

Conjectures 
(definition) 

Proof 
(deduction) 

Atiyah 
thinking about a 

vague and uncertain 
situation 

trying to guess 
what may be found 

out 

reaching 
definitions 

 and definitive 
theorems and 

proofs 

McLane 
getting and 

understanding 
needed theorems 

working with them 
to see what could 

be calculated 

what might be 
true 

come up with 
new theorems 

Figure 2: van Hiele-like developments in mathematical research 

The overall development of proof 
The long-term growth of mathematical thinking of proof begins with the perceptions 
and actions of young children, and develops through three successive levels: 

• practical mathematics exploring shape and space and developing 
experience of the operations of arithmetic. This involves the recognition 
and description of properties, such as the observation that the sum of 
numbers is not affected by the order of operation and proof is often 
formulated as generic proof. 

• theoretical mathematics of definition and deduction, as exhibited by 
Euclidean proof in geometry, and of the definition of the ‘rules of 
arithmetic’ and properties such as even, odd, prime, composite, and the 
theoretical deduction of theorems such as uniqueness of factorization into 
primes. 

Theoretical mathematics is appropriate for most applications of mathematics, while 
those who go on to study pure mathematics change meaning once more to 

• formal mathematics based on set-theoretic definition and deduction. 
In mathematical research, mathematicians use various combinations of embodiment, 
symbolism and formalism to imagine possible theorems and to formulate conjectures 
to seek proof and to shift to ever more sophisticated levels using structure theorems. 
This framework offers mathematicians, mathematics educators, teachers and learners 
the opportunity to share an overall development of proof based on the fundamental 
sensori-motor bases of human thinking that becomes increasingly sophisticated 
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through the use of language and symbolism. It offers an integration of the cognitive 
and affective development of mathematical knowledge and mathematical proof. 
To enable different communities of practice to come together for mutual benefit, it is 
essential to develop a common context of discourse that enables different 
communities to speak meaningfully to each other. In the final chapter of How 
Humans Learn to Think Mathematically (Tall, 2013), I consider the problems 
encountered in communication between different communities. It becomes clear that 
each community has its own ways of working that may be highly appropriate in its 
own context but that the shift to another context involves met-befores that may 
impede the possibility of an expert in one community making sense of the needs of 
another community. This suggests the need for a sense of openness and willingness to 
listen to other points of view and to see the relevance of various viewpoints in 
different contexts. It should be possible for a community to realise that viewpoints 
that may be essential in their own context may not be appropriate in others. For 
instance, a formal mathematician could become more sensitive to the practical needs 
of mathematics in the everyday community, or recognise the theoretical requirements 
of applied mathematicians, who build on natural modelling of real situations rather 
than formal set-theoretic definitions and proof. In the other direction, it should be 
possible for those involved with practical mathematics to develop some insight into 
more technical requirements, or for technical mathematicians to have a sense of the 
power of the greater generality of axiomatic mathematics. The goal should surely be 
a more respectful understanding between various communities of practice involved in 
mathematics, including pure and applied mathematicians, mathematics educators and 
a range of other communities of practice in science, sociology, psychology, 
philosophy, history, cognitive science, constructivism and so on. 

The theory presented here focuses on the fundamental ideas of proof that occur as 
humans use their perception, operation and reason to build increasingly sophisticated 
mathematical knowledge. It begins with practical experiences in which specific 
examples may be seen as generic examples of proof. Then these experiences lead to 
theoretical proof based on Euclidean definition and proof in geometry, definitions 
based on the symbolic ‘rules of arithmetic’ in arithmetic and algebra, or a blending of 
embodied thought experiment and symbolic proof. At a formal level, definitions are 
given as quantified set-theoretic definitions and formal proof that apply in any 
context where the axioms and definitions are satisfied. 

The long-term development is affected by supportive and problematic met-befores 
that apply not only to developing students, but also to the historical evolution of 
mathematics and to the competing views of differing communities of practice. 
Experts with sophisticated knowledge structures are subject to personal conceptions 
of mathematics that they may share with other experts in their community but 
perhaps not with other communities. The framework given here offers an opportunity 
to evolve theoretical ideas into the future by blending differing viewpoints to grasp 
the fundamental basis of the long-term development of mathematical thinking and 
proof by building on the fundamental ideas of perception, operation and reason. 
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