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Introduction 
What makes reconstruction of one’s existing knowledge, such as the minus 
symbol, so difficult for so many students? The difficulty facing instructors in 
undergraduate pre-college courses involves clarifying the reasons for the 
students’ previous lack of success and identifying what precisely is lacking in 
each individual student’s development. Ausubel, Novak and Hanesian (1968) 
wrote: “the most important single factor influencing learning is what the learner 
knows. Ascertain this and teach accordingly.” New experiences that build 
coherently on prior experiences are much better remembered and what does not 
fit into prior experience is either not learned or learned temporarily and easily 
forgotten. When existing knowledge is not appropriate in a new situation, the 
learner needs to adapt their approach to cope with the new knowledge. We 
identify this need for adaptation as a major factor in causing a range of 
difficulties for students learning mathematics, in particular in the interpretation 
of mathematical notation, which, contrary to received opinion, often involves 
subtle changes of mathematical meaning. 

Undergraduate students in introductory, intermediate and college algebra 
courses have not learned to distinguish the subtle differences symbols play in 
the context of various mathematical expressions. Many of them could be 
characterized as victims of “the proceptual divide” (Gray & Tall, 1994) in 
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which they resort to the “more primitive method of routinizing sequences of 
activities–rote learning of procedural knowledge” (Gray & Tall, 1994). In the 
long run, procedural knowledge proves to be inflexible and more difficult to use 
in solving problems.  

 This is an issue that is paid little attention by a majority of mathematics 
instructors, despite the fact that the ability to think flexibly, develop conceptual 
links between and among related concepts, curtail reasoning, generalize, and 
modify improper stereotyped learning strategies are all components of the 
structure of mathematical abilities, essential for success in learning mathematics 
(Krutetskii, 1969).  

We begin by reporting the results of studies that investigated the extent to 
which undergraduates enrolled in remedial courses (introductory algebra and 
intermediate algebra) and college algebra demonstrate the ability to think 
flexibly. Following this is a description of the various changes in meaning of the 
minus symbol and of the notion of met-before. A brief overview of the duality 
and ambiguity of mathematical notation is then given. The problematic met-
before, the minus symbol, is shown to be an underlying cause contributing to 
student difficulties dealing with ambiguous notation throughout the pre-college 
algebra curriculum, limiting development of more flexible thinking. Analysis of 
particular difficulties experienced by students as they attempt to modify their 
initial arithmetic interpretations of the minus symbol (subtraction and negative 
number) to more appropriate algebraic interpretations of ambiguous 
mathematical notation are reported and examples of other met-befores that 
affect learning negatively are identified.  

Developing conceptual links between and among related concepts 
A questionnaire dealing with linear equations, intercepts and slope was given to 
university students enrolled in sections of an introductory algebra course at the 
beginning of the semester. Responses examined singly and in combination 
revealed noticeable differences in the percentage of correct responses on 
combinations of questions dealing with related concepts and offer evidence of 
students’ failure to utilize knowledge and skills learned in one context in a 
different situation. Asked to explain the difference in meaning of the 
expressions 2n and n2, 43 of 120 undergraduates (36%) gave a correct 
response—but when asked to explain the difference in meaning of the 
expressions n2 and 2n, only 8 students (7%) correctly responded (McGowen, 
2007). Some students enrolled in math-intensive courses at a nearby two-year 
college, given the same questionnaire, also interpreted the notation incorrectly. 
A pre-calculus student claimed that “There is no difference; you get the same 
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answer” and a Calculus III student responded: “n2 is n times n; 2n is the same as 
2n.” 

In a subsequent study at a large two-year college, introductory, intermediate 
and college algebra students’ responses to questions dealing with other related 
concepts were also analyzed singly and in combination. When compared, 
responses of related questions revealed a lack of robust, connected knowledge 
of elementary algebraic concepts and skills and the absence of meaningful 
understanding of basic mathematical terminology. The pattern of noticeable 
differences in the percent of correct response to related questions is an indicator 
of the failure to think flexibly. A majority of the two-year college students could 
substitute values for m and b to get the equation of a line in slope-intercept form 
(question A), but were unable to use that knowledge to select the correct 
equation of the line given its graph (question B): 

(A) The equation of the line with slope –3 and y-intercept (0,5) is: 
  a. y = – 5x + 3 b. y = 5x – 3  c. y = – 3x + 5  d. y = 3x – 5 

(B) Which of the following equations has the given graph? Circle and 
justify your choice. 

 a. 6x + 4y = 12 b. 2x – 3y = 12 c. 6x – 4y = 12  d. 3x + 2y = 12 

 
FIGURE 1: Linking graphs and symbolism 

Seventy-one percent (65/92) of introductory algebra, 83% (454/554) of 
intermediate algebra, and 89% (102/114) of college algebra students selected 
the correct equation, given the slope and y-intercept in question (A), but less 
than 1% (14/92) of introductory algebra, 22% (12/54) of intermediate algebra 
and 43% (48/114) of college algebra students selected the correct equation for 
the graph of the line in question (B). Given a linear equation in slope-intercept 
form, only 40% (37/92) introductory algebra students were able to identify the 
vertical-intercept; 41% (38/92) correctly identified the x-intercept of an 
equation in standard form.  

Students revealed a lack of meaningful understanding of basic mathematical 
terminology such as “solving” versus “evaluating in responses to the following 
items on a questionnaire: 
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(A) Finding the input when the output is known is the process of __________. 
 a. simplifying b. evaluating  c. factoring  d. solving 
(B) Finding the output when the input is known is the process of __________. 
 a. simplifying b. evaluating  c. factoring  d. solving 

Seventy percent (50/71) of introductory algebra students identified the process 
of solving in (A) but only 40% (29/71) identified the process of evaluating in 
(B). College Algebra students’ results were similar: 73% (83/114) identified the 
process of solving but only 41% (47/114) identified the process of evaluating 
correctly.  

Responses of graduate students majoring in mathematics reveal that they too 
sometimes have an inadequate understanding of mathematical terminology. A 
faculty member at a two-year college who had given the questions on solving 
versus evaluating to her students was invited to pose as a student by a textbook 
publisher’s representative and submit a question to an online tutor. This was a 
new free service being offered by a textbook publishing firm to students whose 
school adopted the publisher’s textbook. Graduate students working on their 
PhDs in mathematics were employed as online tutors. The graduate student 
tutor working that afternoon was asked to explain the difference between 
solving an equation and evaluating a function or expression. He replied:  

 “If a book asks you to evaluate x2 – 2x + 1, what they are asking for is a simplified 
version of this polynomial which would be (x – 1)2. Solving an equation or expression 
is actually plugging in a particular value to come up with a solution. 
For example: 
   f(x) = x2 – 2x + 1. Solve for f(4). 
  f(4) = 42 – 2(4) + 1 = 16 – 8 + 1 = 9. 

Is this helping you feel a little bit better about the difference between the two?” 
 (McGowen, 2006, p. 25).  

Changes in meaning of mathematical concepts throughout the curriculum 
In this section we will illustrate a general principle that mathematical concepts 
change meaning as the curriculum progresses into more general contexts and 
this changing meaning causes difficulties that lead to disaffection with 
mathematics. Essentially, a way of working that is perfectly satisfactory in one 
context no longer works in a more sophisticated context. We begin with a focus 
on the particular example of the use of the minus sign. 

Initially the minus sign is encountered in whole number arithmetic where it 
is used to evoke the operation of subtraction, or ‘take away’. Here the minus 
sign in 5–3 means ‘start with five and take away three’. The result is 2 and it is 
visibly less than the initial quantity 5. This leads to the conception that ‘take 
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away’ leaves less. It is even ‘a common notion’ explicitly listed in the 
foundations of Euclidean geometry in the form ‘the whole is greater than the 
part.’ In whole number arithmetic, numbers are magnitudes that do not have a 
direction or sign. 

The second meaning of the minus sign occurs when negative numbers are 
encountered. The symbol –3 refers to the negative number –3. Now numbers are 
of three distinct kinds, positive numbers where +3 is essentially the same as the 
familiar number 3, negative numbers such as –3 and the single number 0 which 
is neither positive nor negative. On the (horizontal) number line, 0 is in the 
middle, positive numbers are on its right and negative numbers are on the left. 
On the vertical axis, positive numbers are above zero and negative numbers 
below. 

A third meaning occurs in algebra where –x is the additive inverse of x. It is 
the number which, when added to x gives zero. The meaning is different from 
that in dealing with a number such as –3, for the latter carries with it the 
meaning that they symbol is a negative number. However, when the variable x 
is given a particular numerical value, the value of –x need no longer represent a 
negative number. When evaluated as a number, the result can be negative (if the 
numerical value of x is positive), negative (if the value of x is negative) or even 
zero (if the value of x is zero).  

There is a fourth meaning which is encountered in systems such as the 
complex numbers or the integers modulo a whole number, which satisfy the 
rules for a ‘commutative ring’. These include the standard arithmetic of addition 
and multiplication including the existence of an additive inverse written as –x 
for every element x in which x + (–x) = 0 but may not satisfy the rules for order. 
(The order properties require that every element must be classified into three 
exclusive possibilities: ‘positive’, ‘negative’ or the zero element where an 
element x is either ‘positive’ or ‘negative’ or zero and the sum and product of 
two ‘positives’ are both ‘positive’.) In the case of the integers modulo 3, if we 
write n3 as the remainder of n modulo 3, then we have 13 +13 = 23  and 
23 +13 = 03  so 23 is –13 and if the system were given an order, then this term is 
simultaneously ‘positive’ and ‘negative’. A similar argument can be made to 
show that the complex numbers cannot be ordered because i is not zero and if it 
is ‘positive’, so is the product of i times i and if it is ‘negative’, then –i must be 
‘positive’ which again shows that –1 is ‘positive because it is the product 
(−i)(−i) = −1 . Both possibilities will lead to the necessity that both –1 and its 
square +1 are ‘positive’ which violates the order axioms. 

This fourth meaning involving the algebra of commutative rings, which 
includes the integers, rationals, reals, complex numbers, integers modulo n, and 
other general systems is a higher level concept again which is not encountered 
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in school or in elementary college algebra courses, but it does extend the notion 
that concepts may fundamentally depart from meanings that are perfectly 
satisfactory in one context but become problematic in a more sophisticated 
context.  

These four changes in meaning also have affects in other areas of the 
curriculum, for instance, the meaning of the negative sign in the power notation 
3–2, or in the notions of inverses not only in addition but in multiplication, 
where 7 divided by 3 has a remainder when dealing with sharing of whole 
numbers, but can be a fraction 73  or 2 13 . There are also other quite different uses 
of the minus sign in the function notation f −1  which impede understanding. 

The notion of ‘met-before’ 
McGowen and Tall (2010) argue that the general idea of metaphor, when used 
to perform an intellectual analysis of how concepts are conceived, does not 
necessarily give a complete view of how students learn. The notion of met-
before (Tall, 2004, Nogueira de Lima & Tall, 2008, McGowen & Tall, 2010) 
was introduced to focus on how new learning is affected by experiences that the 
learner has met before. A met-before is ‘a mental structure that we have now as 
a result of experiences we have met before’ and applies to all current 
knowledge that arises through previous experience, both positive and negative. 
What students bring to their learning, both in terms of previous experience that 
is supportive and previous experience that may be problematic describes what 
the student thinks now as a consequence of experiences met-before. 
Inappropriate use of personal met-befores can lead to subtle difficulties in 
learning for the student. 

Met-befores are a personal construct of the individual that apply in different 
ways in different individuals in different contexts. Some fortunate individuals at 
certain stages of their development have experiences that they interpret in more 
general ways than others. For instance, one child may realize that addition is 
independent of order without being told, while another child, counting on 
fingers, finds a sum like 8+2 much easier than 2+8 because counting on 2 after 
8 is much easier than counting on 8 after 2. This can lead to very different 
developmental paths for individuals but it should not be assumed that the 
spectrum of success and failure is set in stone. So much of individual 
development in mathematics depends not only on the innate ability or the hard 
work of the learner, but also at every stage on how the learner uses their current 
knowledge to make sense of new ideas and how they are mentored by a 
perceptive support that takes account both of the mathematical meanings and 
the needs of the learner. 
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A wider picture of the issues can be found in the book How Humans Learn 
to Think Mathematically (Tall, 2012). In this paper we concentrate on the 
specific example of the long-term changes in meaning of the minus sign.  

Duality and ambiguity of the minus symbol 
Ideas that have been evolving in the literature in recent years are steadily 
becoming more focused to explain why some aspects of mathematics give 
pleasure to students as they make sense of them and pain as they become 
disaffected by new ideas that do not make sense (Skemp, 1979). Gray and Tall 
(1994) suggested that the mathematician’s desire for precision and rejection of 
ambiguity, has led to the failure of realizing the underlying duality and 
ambiguity of symbolism which gives it such flexibility, particularly in the 
teaching of mathematics. Symbols such as 3–2 have a dual use as process (take 
2 away from 3) and also as concept (the difference between the two numbers 
which is 1). Gray and Tall hypothesized that the ability to think flexibly in 
mathematics depends on this dual use of symbolism for both procedure and 
concept, a duality found throughout mathematics. They defined the blending of 
process and concept represented by the same notation to be a procept as 
“symbolism that inherently represents the amalgam of process/concept 
ambiguity” to explain the divergence and qualitatively different kind of 
mathematical thought evidenced by more able thinkers compared to the less 
able (Gray and Tall, 1991, 1994). 

The symbol –3 is an example of a procept which can be interpreted in 
several ways, depending upon the context. As indicated in the previous section, 
the minus sign could be an operation representing subtraction, or part of the 
symbolism for a negative number, –3. Demarois, McGowen & Whitkanack 
(1996, p. 169) used the term ‘opposite’ of a number to speak of its additive 
inverse as a unary operation on a function in their intermediate algebra 
textbook. They introduced the third meaning of the minus sign given earlier in 
this paper as a function inputting a number x and outputting –x. If these 
operations are analyzed using the notion of function then the first three 
meanings for the minus sign given in the previous section can be interpreted in 
terms of: 

(a) The process of subtraction which is a binary process requiring two inputs 
where the expression 7–3 has inputs 7 and 3 (which are initially unsigned 
numbers), 

(b) a mathematical object, negative three, 
or  

(c) a unary function inputting 3 and outputting the value –3. 
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Students first encounter the minus symbol when they are introduced to the 
arithmetic binary operation of subtraction. When a number such as –3 is 
introduced, students encounter the second interpretation of the minus symbol. 
This leads to difficulties in interpreting the notations for arithmetic operations. 
For example, sixty-two percent of 160 university students enrolled in an 
introductory algebra course evaluated (–3)2 as 9 but only 26% correctly 
evaluated –32 as –9. In subsequent studies at two-year colleges, 516 
intermediate algebra students were asked the same two questions. Eighty-one 
percent of the students (418/516) correctly evaluated (–3)2 but only forty-nine 
percent (251/516) correctly evaluated –32. Evaluation of –52 included: –25, 25, 
–10, 10, (–5)(–5) = 25, (–5)(5) = –25, –3, and 152 . Evaluation of (–5)2 

included (–5)(–5) = 25, 25, –25, 5 × 5 = 25 , –10, 5–2, –3, and 110 .  
Interpreting mathematical notation involving the ambiguity of the minus 

symbol when squaring a negative number versus taking the opposite of a 
number squared requires flexibility to deal with both process-object ambiguity 
and notational ambiguity involving order of operations as well as the ability to 
switch one’s train of thought. Comparing –32 with (–3)2 requires students to 
deal with both types of ambiguity flexibly. The large discrepancies in correct 
responses to related questions, 62% versus 26% and 81% versus 49%, reveal the 
difficulty of interpreting ambiguous notation experienced by students with 
fragmented knowledge and lacking flexibly to distinguish the subtle differences 
symbols play in the context of various mathematical expressions. 

The initial arithmetic interpretations of the minus symbol (subtraction and 
negative number) is a problematic met-before for many students when they 
encounter algebraic interpretations of ambiguous mathematical notation. When 
numbers are replaced by variables and interpretation of the minus symbol as 
“additive inverse” is introduced, the student’s arithmetic interpretation of the 
minus symbol when confronting the ambiguity of –x needs to be restructured. 
This requires flexibility of thought and a realization that context must be 
considered. Broadly speaking, undergraduate students entering pre-college 
courses, shown the minus symbol on the blackboard or overhead and asked 
what comes to mind when they see the symbol, first list “subtraction,” followed 
by “negative number.” In fourteen years of research, not one of these students 
has included “the additive inverse”, “the multiplicative inverse “ or the more 
advanced notion of “the inverse of a function” as interpretations of the minus 
symbol. 

Skemp (1987) identified position, as well as size, as components of a symbol 
system which contribute to students’ difficulties. The expression –21/2 requires 
the mutual assimilation of separate schemas, each of which has a structure of its 
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own. If the relationship between ambiguous symbols and the conceptual 
structure is such that they are in equilibrium, or in which the conceptual 
structure is dominant, symbols help us use the power of mathematics. Some 
students therefore find these ideas natural and easy to use. If, however, the 
procedural use of symbols dominate the conceptual system, students will 
become “progressively more insecure in their ability to cope with the increasing 
number, complexity, and abstractness of the mathematical relations they are 
expected to learn” (Skemp, 1987, p. 186).  

Skemp (1987, p. 188) claimed that “symbols are magnificent servants, but 
bad masters, because by themselves they don’t understand what they are doing.” 
He cautioned that new material needs to be presented in such a way that it can 
always be assimilated conceptually and defined symbolic understanding to be 
“the ability to connect mathematical symbolism and notation with relevant 
mathematical ideas”. The definition of a symbol system as “a set of symbols 
corresponding to a set of concepts, together with relations between the symbols 
corresponding to relations between the concepts” (Skemp, 1987, p. 177) is 
similar to that put forth by Backhouse (1978) and by Byers and Herscovics 
(1977). 

Mathematics instructors generally fail to recognize the difficulties students 
experience in interpreting the minus symbol. Its meaning is so obvious and 
trivial to them that it does not appear to be a difficulty even worthy of 
examination. The introduction and growing use of technological tools which 
seek to implement the mathematician’s intuitive understanding of the minus 
symbol with the computer scientists’ traditional programming practices 
challenge us to rethink our own understandings as well as our instructional 
practices. Mathematicians, using the traditional power notation, interpret the 
algebraic expression y = – x2 as y = –( x2) , when given a negative number input. 
The graphical representation of y = –x2 may be described as “the opposite of the 
graph of y = x2.  

A software developer has the sometimes difficult task of transforming 
ambiguous mathematical notation into unambiguous programming code when 
designing routines which are supposed to reflect accepted mathematical 
practice. The general computer programming convention for the notation –32 is 
that the number includes its sign, thus –32 is thought of as meaning (–3)2, i.e., 
negative three squared, and y = –x2 is interpreted as y = (–x)2. In Tall’s original 
Graphic Calculus software, an input string of characters was processed 
internally so that if a minus sign occurred at the beginning of the expression, 
such as y = −3x2 + 2  or even as the first element inside a bracket, such as 
y = 4(−3x2 + 2)  then the string was internally processed to place a zero before 
the minus sign, so that the expression was interpreted as y = 0 − 3* x ^ 2 + 2  or 
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y = 4 + (0 − 3* x ^ 2 + 2)  so that it was interpreted internally in the standard 
mathematical sense without the user even being aware of the problem. Texas 
Instruments programmed its graphing calculators to implement the 
mathematician’s intuitive, traditional power notation interpretation in their 
software. These calculators include separate keys for the binary operation of 
subtraction  and the unary operation of additive inverse . Entry of  
yields the answer –9, but entry of  results in the positive answer, 9. 
Inclusion of both the subtraction and additive inverse keys, with their different 
functionality, places the burden of interpretation on the user, as well as focusing 
attention on the need to understand the role of language, context and grouping 
symbols. 

This is an example of a situation in which the use of technology requires 
mathematics instructors to clarify their own understandings and re-examine 
their assumptions, as they incorporate the use of these technological tools into 
their courses. Using graphing calculators necessitates explicit acknowledgment 
and discussion of the ambiguity of the notation and of an awareness of the 
language used (minus, difference, opposite of, additive inverse), and of 
activities that might better effect reconstructions of students’ arithmetic 
schemas and the met-befores of associating the minus symbol with the 
operation of subtraction and negative number.  

How do students interpret –x? Is their interpretation dependent upon the 
words used with the symbol(s)? What comes to mind when one hears “minus”, 
“difference”, “negative x”, “the additive inverse of x” or “the opposite of x”? 
Does –x denote a process (taking the additive inverse) or an object (negative 
number)? What are they prepared to notice? Do they see two symbols, “–” and 
“x”, or one symbol, “–x”? How do their prior experiences and existing 
knowledge of the minus symbol impact their understanding and interpretation of 
it? Studies of college students’ difficulties identified the minus symbol as a 
problematic met-before that, if not explicitly addressed, continues to cause 
difficulties for many students as they advance to subsequent courses (McGowen 
and Tall, 2010). In the book How Humans Learn to Think Mathematically (Tall, 
2012), this is shown as a major reason for disaffection throughout the whole 
curriculum as more and more students become disillusioned because they either 
find new ideas too complicated to cope with, or they find them problematic 
because they interpret new ideas in old ways that are no longer appropriate. The 
result is that almost everyone ends up teaching and learning how to do 
mathematics in ways that impede long-term learning. 

Students are generally taught that “we don’t like to start an algebraic 
expression with a minus sign,” thus when we write y = mx + c, for m = –1, we 
tend to write y = c – x, and avoid confronting the ambiguity directly. However, 
when evaluating a quadratic function such as y(x) = –x2 + 1 given x =–3, do 
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students interpret –x2  as subtraction –(x)2 or as squaring the negative (–x)2 ? Do 
they see the evaluation of –x2 + 1 as –9+1 = -8 or as 9+1 = 10 ? 

What do students know and how do they know it 
The initial study designed to provide information about students’ ability to 
interpret function notation and the minus symbol in various contexts, evaluate 
functions, and translate among representations included a pre-test given to 
twenty-six two-year college students enrolled in an intermediate algebra course 
during the first week of the semester (McGowen, 1998). Only six of twenty-six 
students correctly evaluated both –32 as –9 and (–3)2 as 9, using the standard 
conventions. Interview transcripts revealed that most students were unaware of 
the difference between finding the additive inverse of a number squared, i.e., 
−x2 , interpreted as “finding the opposite of ‘x squared’,” and squaring a 
negative number, (–x)2. 

Students build up their mental images of a concept in a way that may not 
always be coherent and consistent and they do not experience cognitive conflict 
when the context is changed. When asked to square the binomial (t–2)2 students 
frequently write t2– 4, They generally fail to recognize that the same process of 
squaring a binomial is invoked when they are given a quadratic function such as 
f (x) = x2 − 3x + 5 , and asked to evaluate f (t − 2) . They fail to execute the 

procedure correctly in either task, sometimes writing t 2 + 4 − 3t + 5  in the 
second instance, while writing t 2 − 4  in the first instance. Two different, 
incorrect answers to the same task embedded in different contexts is indicative 
of a compartmentalization of knowledge and path-dependent logic due to prior 
experiences. When interviewed, students expressed surprise that they were 
being asked to square a binomial as part of the process of evaluating a function. 
They were unaware that they had given two different answers, both incorrect, 
for squaring a binomial, until, during the interview and examining their work, 
they examine what they had previously written. The fact that students 
experience no cognitive conflict when executing procedures suggests that they 
routinize the procedures, developing mechanical skills, not cognitively-based 
methods of operation. 

The pre-test documented how met-befores from prior experience in 
arithmetic involving grouping symbols and the minus symbol becomes 
problematic when evaluating a quadratic function. The failure to recognize that 
a negative value is being squared is so established and stable that its selection 
and retrieval is automatic for many students. Asked to evaluate 
f (x) = x2 − 3x + 5 , given x = –3, fifteen students wrote f –3( ) = –32 – 3 –3( ) + 5 . 

Six of those students interpreted –32 as (–3)2 = 9 and evaluated the function as 
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f –3( ) = 23. Though none of these students used parentheses to indicate they 
were squaring a negative number, they all used parentheses when substituting 
−3  for x in the linear term. Another six students of the fifteen showed the same 
initial work but evaluated –32 as –9, writing –9 + 9 + 5 = 5; two students wrote 
(–3)(3) – (3)(–3) + 5 = 5 One student interpreted f –3( )  as a multiplication and 
proceeded to divide both sides by –3. Eleven of the twenty-six students used 
consistent, correct notation and completed the evaluation correctly.  

The majority of errors were initially assumed to be the result of ‘a lack of 
understanding about the algebraic order of operations’ and ‘a failure on the part 
of students to use grouping symbols consistently’. The iconic representation of a 
function was introduced as an organizing lens, and using the graphing 
calculator, students were encouraged to compare the binary process of 
subtraction with the unary process of finding the opposite (additive inverse). 
They investigated the role order of operations and grouping symbols play in the 
processes of squaring a negative number (–3)2 and in finding the additive 
inverse (opposite) of a number squared, –32. Figure 2 illustrates the use of the 
function machine for these investigations.  

 
FIGURE 2: Function Machine Representations: Binary & Unary Processes  

Since TI calculators are themselves function machines, they automatically 
supply the missing input when the binary operation of subtraction is selected 
and only one input is entered. They display what the student enters (input) as 
well as the result of the computation (output). The iconic representation of a 
function machine and the graphing calculator provided students with tools for 
visualization and analysis. 

Students were given three tasks: (1) subtract three, (2) find the additive 
inverse of three; and (3) to enter –32. The calculator displays are shown in 
Figure 3.  

Unary Function - One Input
Input 1 

Function process

Binary Function - Two inputs

Function process

Input 1 

Output  Output  

Input 2 
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FIGURE 3: TI-83 View Screen of Binary and Unary Operations 

As subtraction is a binary operation, Screen 1 automatically supplies the 
missing first input, displayed as “ans,” when the subtraction key is pressed first. 
“Ans” uses the last result in memory as first input (in this case, –3). The 
subtraction performed was -3 – 3, with the result, -6. On screen 2, -3 is 
displayed (upper left) when the “opposite” or additive inverse key is pressed, 
followed by 3. The result of the unary operation of taking the additive inverse of 
3 is -3, displayed on the right. Screen 3 displays two calculations and their 
results: (a) calculating the opposite of three squared, which is -9 and (b) 
squaring a negative 3, which is 9.  

Class discussion focused explicitly on the input-output process conception of 
function. The need for consistency in the use of notation and the role of context 
were also topics of discussion. Students analyzed other arithmetic operations 
using the iconic input-output function machine representation, characterizing 
them as either binary or unary functions. Re-conceptualizing arithmetic 
operations as unary or binary functions provided students with a framework 
within which to clarify their understanding of the difference between the 
operations of subtraction and finding the additive inverse of a number. The 
arithmetic investigations were followed by investigations evaluating symbolic 
representations such as f (x) = x2  for f (−3)  and f (x) = −x2 . 

As homework, students were asked to submit a written reflection about their 
investigations. In the reflection they were to complete three sentences: (1) “I 
used to think … (2) Now I realize …, and 3) I’ve changed my mind about …”. 
Four students who evaluated –32 incorrectly during the classroom investigation, 
wrote on their reflections that they had made a careless sign error and now 
understood the problem. One student wrote that she knew her answer was 
correct (it was actually incorrect) because the other members of her group 
agreed with her. These students consistently evaluated either the numerical 
expression or a quadratic function with a negative-valued input incorrectly 
throughout the remaining twelve weeks of the semester. Written reflections, 
together with other investigations and interviews, resulted in modifications of 
other students’ existing concept images (McGowen, 1998, pp. 104-107). 

1 2 3



 

14 

David Ausubel, along with Richard Skemp, Robert B. Davis and others, 
maintained that meaningful learning results when the student consciously and 
explicitly ties new knowledge to relevant concepts within his/her schema. The 
most important element of meaningful learning is how new information is 
integrated into an existing knowledge base. Using criteria proposed by David 
Clark et al. (1996), learning in which “students are actively involved in 
integrating, or linking, new concepts and skills into an already existing 
conceptual framework, not simply accumulating isolated facts and procedures,” 
is characterized by evidence that the student: 

• claims to have learned something new; 
• can articulate what it is they think they have learned, with some degree of 

clarity and accuracy;  
• can demonstrate formation of links with an existing framework that the 

student already possesses.  
Meaningful learning occurred for several students. Interview transcripts provide 
insights into their met-befores, as well as evidence of the extent to which they 
modified their existing knowledge. Students who were successful focused on 
qualitatively different features of the processes than did those students who 
modified their prior experiences inappropriately. Typical of the students who 
were successful is the reflection of Student B:  

I realized that the problem was looking for the opposite of 32...but I didn’t understand 
the rationale. When I see the sign (–) it is a change for me to know that it means “the 
opposite of.” I always though it meant a negative number or –(–x), a positive x. The 
reflection assignment enhanced my understanding of the opposite of a square by 
looking at it as two functions, and then order of operations would have exponents first, 
then the opposite of the value. I didn’t know what the order of operations was in 
relation to exponents and oppositing.... I do know this now. Exponentiation takes 
precedence over oppositing in the absence of grouping symbols. 

This articulate response provides evidence that meaningful learning has 
occurred. The student has assimilated newly-acquired knowledge, re-
conceptualizing the two processes of squaring a negative number and taking the 
opposite of a number squared as functional processes, accompanied by a change 
from insecurity to confidence—a changed mental state that gives the student a 
degree of control over the situation not previously had (Skemp, 1987). 

Other responses reveal the complexity of interpreting ambiguous notation 
and the difficulties inherent in trying to re-construct one’s existing 
understanding of the minus symbol as a result of cognitive conflict. Tall and 
Vinner (1981, p. 152) have noted: “Only when conflicting aspects are evoked 
simultaneously need there by any actual sense of conflict or confusion”). The 
confusion two students experienced are documented in written reflections: 
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I learned that without parentheses you cannot make –32 = 9. The change of thinking 
I’ve had since this assignment is drastic! I began to realize how crucial parentheses are. 
The parentheses show that there is only one operation being done. Without parentheses, 
two operations are being taken. Ex: –32 = –9 means take the opposite and square; (–3)2 
[means] just square –3. I find this a bit hard getting used to! [Student M] 

Any two negative numbers that are multiplied by each other must result in a positive 
answer. After discussing the assignment I felt that even though I may not have been 
able to find the correct answer, I still learned that I have to go about a few different 
ways to try to find an answer and by discussing with someone else I am able to check 
my answers...sometimes my old ways of thinking like to butt in and I have a hard time 
saying no and to keep on trying the problem. [Student A] 

How students assimilate new knowledge depends upon their prior experiences 
and previously-constructed cognitive images, how the new problem is 
represented, how they retrieve and represent relevant existing knowledge, and 
what they focus attention on based on the visual cues they pick up from 
scanning the written symbols. Met-befores, true in a given context, can 
sometimes lead to cognitive conflict in another context. When asked to evaluate 
–32, some students focused on the fact that the answer must be negative and 
ignored what it means to square a number. They attempted to resolve the 
cognitive conflict they had experienced by focusing on getting the correct 
answer: 

Now I know that when you square a –3 it stays negative. –32 is always negative. 
[Student C]  

I didn’t understand that when you multiply –32 that it is (–3)(3) which will give you the 
answer –9. I always though it was (–3)(–3) regardless of parentheses. Now I realize that 
was wrong. [Student K]  

These responses are examples of the spatial problem of size and position 
described by Skemp (1987). He attributed students’ difficulty to the task of 
having to deal with two schemas: the symbol system and the structure of 
mathematical concepts. The students’ responses suggest that it is the symbol 
system which dominates their conceptual structure and mathematics is nothing 
more than the manipulation of symbols. 

Students’ efforts to interpret ambiguous notation document the bifurcation 
that occurs as a consequence of the qualitatively different ways of thinking and 
constructing knowledge as individual students assemble bits and pieces of 
knowledge into their existing cognitive collages based on prior experiences. 
How one’s met-befores are modified are not only based on one’s prior 
experiences, but on the initial focus of attention, how what is perceived is 
classified, and what relevant knowledge is retrieved from memory and used in 
the present situation. Sfard (1991, p. 17) reminds us that “Algebraic symbols do 
not speak for themselves. What one actually sees in them depends on the 
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requirements of the problem to which they are applied. Not less important, it 
depends on what one is able to perceive and prepared to notice.” Skemp (1987, 
p. pp. 10-11) claims: “We classify every time we recognize an object as one 
which we have seen before […] once it is classified in a particular way, we are 
less open to other classifications.” Edelman (1992, p. 87) argues that the ability 
to carry out categorization is embodied in the nervous system and that 
perceptual categorization is “the selective discrimination of an object or event 
from other objects or events for adaptive purposes […] that does not occur by 
classical categorization, but rather by disjunctive sampling of properties.”  

Analysis of students’ comments in the subsequent study supports these 
claims. Student B focuses on the two processes, comparing and contrasting 
them, combining the visual cues of parentheses, exponents, and minus symbols 
into a coherent, appropriate reconstruction of her knowledge and growing 
awareness of the role of context. Student C disjunctively focuses on the 
exponent and the squaring process, which, once she is aware that the minus 
symbol denotes a negative answer in this context, causes conflict. Two students 
focused attention on the presence/absence of parentheses—M successfully and 
A, unsuccessfully. K, like C, disjunctively samples multiple cues (squaring 
indicated by the exponent, the minus symbol indicating a negative number, and 
the minus symbol indicating the answer should be negative), combining them 
inappropriately.  

Interview transcripts also provided clues about the initial focus of attention. 
Student D appears to have focused initially on squaring a number and the role of 
the order of operations. Student L focused on the arrangement of symbols and 
interpretation of the task, relating prior experiences with new knowledge about 
the role of parentheses.  

 I never thought about the order of operations when I was supposed to square three first 
then put in the opposite. [Student D] 
I was confused because before whenever a variable was to be substituted for a 
particular number it was expressed like this: x = –1, not f(–1). I used to think that –32 = 
9. Now I realize that the answer is –9. I used to think f times (–1). Now I realize what 
the problem asks for. I used to think the substitution was correct. Now I realize that the 
parentheses are missing and my notation is incorrect. [Student L] 

Concept maps created in the fourth week of the semester reveal other student 
conceptions that do not coincide with mathematical practice, including the 
association of y(x) = −x2  with a graphical representation of a parabola opening 
upwards and y(x) = x2  with the graphical image of a parabola opening 
downward as indicated by arrows in the lower left corner of the concept map in 
Figure 4. Perhaps being ‘positive’ is associated with having a maximum and 
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being ‘negative’ links to a minimum. We do not know. But something caused 
the student to respond in this way. 

 
FIGURE 4. Week 4 Concept Map with Inappropriate Connections 

Class members encouraged the student to test her beliefs by examining the 
graphs and input/output table values of the two functions. These investigations 
demonstrated that her initial drawings were incorrect but the student needed 
several additional investigations before she modified her existing knowledge. 
The student’s concept image then remained stable throughout the semester as 
indicated on her final concept map completed during Week 15. The 
reconstructed concept image is indicated in the portion of the final concept map 
outlined in Figure 5. 
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FIGURE 5. Week 15 Concept Map showing Reconstructed Concept Image 

Despite reconstructing the graphic representations of x2 and –x2 appropriately, 
this student continued to interpret –x as a negative number and –(–x) as a 
positive value, assuming that the numerical value of x was always positive. Her 
previous experiences of the minus symbol used to indicate a negative number 
was deeply embedded into her existing conceptual schema and was not 
impacted as a result of the graphing investigations. During the final interview, 
this student when asked the meaning of –f(x), responded “negative output, the 
answer is negative.” and when asked “What first comes to mind when you see 
f(–x)”, answered “negative input, the input is negative.” Asked how she knew 
this, the student replied, “I just assumed it would be negative because the minus 
sign is in front of x.” The interviewer wrote down –5 and –x, then asked “Does 
it makes a difference if the minus symbol is in front of a number or in front of a 
variable?” The student responded: “Being in front of a variable, it would be a 
negative answer. And negative five is just that, negative five.”  

Earlier in the interview the student had indicated that c in the expression 
(x − c)  could be either positive, negative or zero. Asked how the minus symbol 
in the expression (x – c) differs from f(–x) or –f(x), the student replied: Because 
they [pointed at –f(x) and f(–x)] are by themselves.” The physical arrangement 
of the minus symbol preceding a variable appears to be perceived initially as a 
cognitive unit by many students interviewed. This symbol pattern apparently 
activates a path of selection and retrieval based on an arithmetic 
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conceptualization of a negative number—an object, not a process, which cues 
the retrieval of a schema that includes the met-before of the minus symbol 
preceding a number or variable as always indicating a negative number. This 
concept image is so refined and stable, its selection and retrieval is automatic 
(McGowen, 1998, pp. 108-114).  

The cognitive demands on students as they attempt to make sense of 
ambiguous mathematical notation, both arithmetic and functional, are far more 
formidable in their complexity than has generally been recognized. Comparative 
investigations, explicit class discussion, the use of function machine 
representations and the graphing calculator and reflective writing assignments 
generated cognitive dissonance that challenged most students to re-
conceptualize previous understandings after reflecting on what they had done 
and thought. As the result of teaching interventions designed to address the lack 
of understanding about the minus symbol, many difficulties experienced by 
students were revealed. Students voiced their confusion, and described their 
struggles to attempting to determine which interpretation of the minus symbol 
was appropriate in a given context. One student expressed the difficulty he and 
many in the class were struggling with, as a result of the interventions: “How do 
I know what the negative sign means in a given problem? Which way do I think 
about it?” 

The most successful students demonstrated significant growth in their 
mathematical abilities over the semester. However, their improvement in ability 
to deal flexibly with conceptual questions was not as great as their improvement 
in their ability to deal flexibly with ambiguous notation in procedural questions. 
Students at the other extreme, the least successful, were somewhat more able to 
deal flexibly with procedural questions involving ambiguous functional notation 
than they were with traditionally formatted questions. The least successful 
demonstrated almost no growth during the semester and what little growth did 
occur was very inconsistent, both within individual students as well as between 
members of the group. 

This seemingly evident remark has highly significant consequences. Much of 
current research data reports how students perform in typical classes. If the 
teaching and learning fails to take account of the complex changes in 
mathematical meaning and the needs of individual students, then it suggests that 
the less successful students operated in increasingly complicated ways. Thus the 
analysis of errors becomes more complicated and the variety of research 
reported proliferates in different directions. A more coherent view may be 
sought not by simply compiling statistics how different students perform but by 
seeking to encourage students to make more sense of the changing nature of 
mathematics, which, in turn, requires teachers, curriculum designers and 
mathematics educators to seek to make more sense of the long-term 
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development of mathematical ideas and of the cognitive development of 
learners. 

The Minus Symbol and other Met-befores 
Students’ prior arithmetic operational experiences include other met-befores 
that can cause difficulty when variables are introduced. Some are evident met-
befores such as ‘the difference is the larger number minus the smaller’, 
‘multiplication makes bigger’, ‘addition gives a bigger result while subtraction 
makes smaller’ and problems coping with the minus sign. However, there are 
also more complicated errors relating to mis-remembering rules learnt by rote. 
Student responses to the following question (Bright and Joyner, 2003) provide 
additional evidence of ideas that were perfectly satisfactory in their original 
arithmetic context but are now recalled as met-befores that interfere with 
construction of new knowledge. Students were given several pairs of variables 
representing positive or negative values according to their respective positions 
on the number line pictured below and asked the following survey question to 
determine which had the greater value. 

 The numbers 0, 1, x, y, and –z are marked on the number line below.  

 
FIGURE 6: quantities on a number line 

For each pair of numbers circle the number that has the greater value. If the two 
numbers are equal, circle both numbers. 

A.  y  – y   D. x – y   y – x 
B.  z  – (–z)   E.  |y|  –y 
C.  2y  y   F.  x + y   x – y 

A majority of 128 two-year college students enrolled in an introductory algebra 
course recently surveyed claimed that 2y was larger than y (Part C). The two 
most common explanations for this choice were “2y is greater because it is two 
times more than y” and “2y because it has a number in front of the letter.” One 
student added “and because it has more variables” (again perhaps because the 
more (whole) numbers you multiply together, the more you get.) Nearly one-
third of the students responded that the two expressions x – y and y – x (Part D) 
were equal. Reasons given included: “same problem, just switched around,” 
“because they are both subtracting a variable,” and “because you don’t know if 
the variable was an opposite or not.” Less than one-third of the students 
indicated that x – y is greater than x + y (Part F) and were able to provide a valid 
reason. The most common response was: “x + y because the numbers were 
added,” which may relate to the met-before with whole numbers that the sum is 
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bigger than the difference. One out of every five students responded that 
“x + y = x – y.” Reasons given for this choice included: “because adding a 
positive and a negative is the same as subtracting a positive and a negative 
number” and “because in both equations you are really adding the numbers.” 
Note, in this case, that y is visibly negative, so subtracting a negative means 
changing its sign and adding the positive (McGowen & Tall, 2010, p. 174).  

This is consistent with the hypothesis that changes in context lead to 
difficulties in making sense of the mathematics and consequently, learning by 
rote may result in more fragile knowledge that is likely to break down. There 
may be a further unintended consequence. By failing to help students make 
sense of the new ways of thinking appropriate for a new context, we may give 
ourselves a proliferation of even more new difficulties that make later teaching 
and learning even more complicated. When teachers understand what students 
know and how they think, and then use that knowledge to make more effective 
instructional decisions, significant increases in student learning occur. Black & 
Wiliam (1998) examined approximately 250 studies and found that gains in 
student learning resulted from a variety of methods all of which had a common 
feature: formative assessment. This is a form of assessment that uses the data 
acquired to adapt instruction to better meet student need. They concluded that 
(1) improving formative assessment resulted in noticeable increases in student 
learning; (2) there is room for improvement; and (3) there are ways to improve 
the effectiveness of formative assessment:  

What is needed is a culture of success, backed by a belief that all can 
achieve. Whilst it can help all pupils, it gives particularly good results with low 
achievers where it concentrates on specific problems with their work and gives 
them both a clear understanding of what is wrong and achievable targets for 
putting it right. Pupils can accept and work with such messages, provided that 
they are not clouded by overtones about ability, competition and comparison 
with others. In summary, the message can be stated as follows: 

Feedback to any pupil should be about the particular qualities of his or her 
work, with advice on what he or she can do to improve, and should avoid 
comparison with other pupils (Black & Wiliam, 1998, p. 143). 

In addition, self-assessment by students is an essential component of 
formative assessment. Before a student can take action to improve their 
learning, feedback about their efforts has three elements: the desired goal, the 
evidence about their present position and some understanding of a way to close 
the gap between the two and all three must to some degree be understood before 
one can take action to improve their learning. Black & Wiliam concur with the 
research into the way that people learn:  

“New understandings are not simply swallowed and stored in isolation—
they have to be assimilated in relation to pre-existing ideas. The new and the old 



 

22 

may be inconsistent or even in conflict, and the disparities have to be resolved 
by thoughtful actions taken by the learner. Realizing that there are new goals for 
the learning is an essential part of this process (Black & Wiliam, 1998, p. 143). 

 In an attempt to better understand what students know and how they 
think, three instructors at a two-year college agreed to participate in a formative 
assessment project and investigate the extent to which introductory, 
intermediate, and college algebra students could demonstrate understanding of 
and ability to apply both concepts and skills in different contexts. Prior to 
instruction on a new unit, students completed questionnaires dealing with 
related concepts and skills on topics addressed in that unit. Analysis of students’ 
responses provided additional evidence of students’ inability to utilize 
knowledge and skills learned in one context in a different situation. Differences 
in the percent of correct responses to related questions on a given topic/concept 
revealed little or no conceptual understanding and a superficial degree of 
students' fragmented knowledge.  

Though the percent of correct student responses to a given question varied 
from section to section and course to course, the lack of robust, connected 
understanding was common among all students participating in the study and 
revealed the shallowness of their understanding of elementary algebra concepts 
and skills. Students had a much better understanding of the relationship between 
slopes of parallel lines than they did of perpendicular lines. The added 
complexity of dealing with the minus symbol in front of the multiplicative 
inverse of m1 when dealing with perpendicular lines is another instance of the 
problematic met-before of the minus symbol as an underlying cause 
contributing to student errors. Eight-two of 114 college algebra students (72%) 
identified m1 = m2 as the relationship between slopes of parallel lines, but only 
41% (47/114) correctly identified m2 = –1/ m1 as the relationship of slopes of 
perpendicular lines. Fewer students (38%) were able to write the equation of a 
line perpendicular to a specified line through a given point and only 31% 
students answered both questions correctly. Forty percent (29/71) of 
introductory algebra students correctly identified the relationship between 
slopes of parallel lines correctly and 41% (29/71) identified the relationship 
between slopes of perpendicular lines.  

The problematic met-before of the minus symbol continues to be an 
underlying cause of errors when students encounter quadratics. Asked to 
evaluate the function y = x2 – 5x + 3 for x = –3, 28 of 127 intermediate algebra 
students (22%) correctly evaluated it. However, when (t–2) is substituted for x, 
only 7% evaluated the function correctly. Their inability to correctly interpret 
the minus symbol given the different meanings of the minus symbol continues. 
Some students believe that they have “used up” the negative sign. One student, 
after writing y = –32 –3(–3) + 5, explained: “I have to do parentheses first.” 
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Beneath his initial work of –32 –3(–3) + 5, he wrote 9 + 5. Pointing at the first 
term, –32, he said, “Now I have to do this but I can’t remember if it’s negative 
nine or just nine. I never can remember which to use.” He wrote down –9 and 
stopped. “There’s no sign in front of this (pointing at 9 + 5), so I need to 
multiply,” and wrote: –9(14) = 136. 

Translating between symbolic and graphic representations was another area 
in which many students demonstrated inflexibility. Given y = x2 + 2x – 35, 50 of 
54 (93%) intermediate algebra students were able to determine its factors but 
asked to identify the factors of a quadratic given the graph and view window, 
only 52% (28/54) could do so, and even fewer, 26% (14/54) could solve the 
equation 3x2 + 8x = –5.  

One of the teachers who participated in the formative assessment project 
described what she had learned about her college algebra students when 
analyzing their responses to related questions:  

I see more clearly how my students view concepts and how well they really 
understand concepts. They could answer questions from one direction, but not 
from another. Many students have very fragmented knowledge. The project has 
shown me that although many of my students can “do” the mathematics, their 
fragile grasp of the language of mathematics doesn’t allow them to know 
WHAT to do WHEN. They say things like, “ I know how to do that. I just 
didn’t know I was supposed to do it here. 

Analysis of related questions on the topics of linear equations/slope, linear 
systems, and linear inequalities provided more evidence of her students’ 
fragmented learning and failure to utilize knowledge and skills learned in one 
context in a different situation. She observed: 

Few students had a robust knowledge of any given topic. In every section 
there were great differences in what students knew coming into the course. 
Most students lacked clear understanding of distinctions between slope, 
coefficients and intercepts. For some students, the intercept is a number, not a 
point (ordered pair). For others, the x- and y- intercepts were the x- and y- 
coefficients. Still other students thought the slope was an ordered pair, 
i.e.,(numerator, denominator), not a ratio. And finally there were those who 
thought the slope was an intercept. 

A large percentage of the College algebra students had a very fragile 
knowledge of linear functions. They could substitute values for m and b to get 
the equations of a line in slope-intercept form but given the graph of a line only 
1 in five could determine whether m and b were positive or negative. They 
could state that slope is “rise over run” and “b is the y-intercept, but were unable 
to use that knowledge to select the correct graph of the line. They thought the x- 
and y-intercepts were coefficients and could not choose the correct equation of a 
line in standard form when the graph is given. I did not expect to face this 
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problem with College Algebra students. The formative assessment project 
helped me recognize the problem. 

She identified the problematic minus symbol met-before as an underlying 
cause of student errors in the class. 

Students did not distinguish context when interpreting the different meanings 
of the “–“ symbol as subtraction, or the unary operation of “taking the opposite” 
(additive inverse). They used the subtraction operation of a linear factor as the 
sign of the zero. 

Using the visual image of a function machine with two inputs to represent a 
binary operation and a function machine with one input to represent a unary 
operation helped students notice context and interpret the “–“ symbol correctly. 
I started saying “subtract the zero” and writing (x – ZERO), which resulted in a 
significant improvement in students’ ability to write the factored form of a 
polynomial correctly. 

Conclusion 
Changing what students value and how they view learning mathematics are 
frequently much harder challenges than teaching them mathematical procedures 
and application of formulas. If we are to change the severely procedural 
orientation to mathematics focused on ‘correct answers’ students have learned 
to value above all, curriculum materials must offer an alternative approach to 
learning algebra for students who have taken one or more pre-college courses 
(introductory, intermediate, college algebra) previously—in high school or at 
college—and have failed to place into a college-level mathematics course. 
Setting expectations for growth in flexible thinking at the beginning of a course 
plays a major role in determining how students grow mathematically.  

Instructors need to reflect on their own met-befores and consider not only 
supportive met-befores viewed as pre-requisites for learning new mathematics 
but also problematic met-befores that impede learning and cause mathematical 
dysfunction. It may be helpful to look at problematic met-befores in a positive 
light, giving students confidence in their prior knowledge. Acknowledging how 
a met-before operated satisfactorily in an earlier context and finding positive 
new ways of addressing the changed situation, provides opportunities to 
encourage students to develop new ways of working in a new context. 
Mathematics educators and teachers at all levels need to acknowledge the 
difficulties that learners experience in their mathematics classes as a result of 
inflexible ways of thinking, difficulties interpreting ambiguous notation and the 
need to cope with changing contexts, with the resulting fragmentation of 
strategies. They need to recognize the met-befores that underlie the 
fragmentation of strategies that occurs as a result of initial perceptions, 
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inappropriate categorization, and retrieval of inappropriate schemas leading to 
the divergence of performance, that arises from the differences in the students’ 
development of flexible thinking. This should all be taken into account when 
planning instructional tasks that encourage students not only to build their 
confidence through success but also to address the underlying causes of their 
difficulties. 

The nature of each and every student’s long-term development in new 
situations—as the complication of new ideas and the problematic nature of 
earlier experience cause difficulties—is one that needs to be addressed not just 
in handling college students’ remedial problems, but throughout the whole 
curriculum that has led to these difficulties at successive stages, causing 
disaffection for so many rather than the pleasure of seeking to make sense of 
mathematics at every stage of development. 
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