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Abstract: This chapter reflects on the evolution of the mathematics of change and 
variation as technology affords the possibility of conceptualising and communi-
cating ideas for a wider range of learners than the few who traditionally study the 
higher levels of the calculus. It considers the overall program of development con-
ceived by Jim Kaput, instantiated in the software SimCalc as part of a full range of 
development using technology for ‘expressing, communicating, reasoning, com-
puting, abstracting, generalising, and formalising mathematical ideas.’ The devel-
opment begins with interactive representations of dynamic real world situations 
and extends the perceptual ideas of continuity and linearity through the operation-
al symbolism of the calculus and on to the formalising power of mathematical 
analysis. It reveals that the Kaput program has the distinction that its overall 
framework contains the essence for continuing the complementary evolution of 
technology and the conceptions of mathematical change and variation. Further-
more, it envisages changes that we have, as yet, not implemented, such is the 
speed of technological change. In particular, new technology enables us not only 
to build more powerful ways of performing numerical and symbolic algorithms 
that may be represented visually and dynamically, it also provides new forms of 
input and gesture to offer an embodied, kinesthetic, and emotionally powerful ex-
perience of engaging with mathematics. This can be shared widely through fun-
damental human perception and action and can develop in the longer term through 
symbolism and human reason to the mathematical literacy required of today’s citi-
zens, the theoretical applications of mathematics essential for today’s society and 
on to the boundaries of mathematical research that takes us into the future. 
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1. The Changing Nature of Technology 

Anyone who presumes to describe the roles of technology in mathematics education faces 
challenges akin to describing a newly active volcano – the mathematical mountain is 
changing before our eyes … (Kaput, 1992, p. 515) 
 

This quote from Jim Kaput, written two decades ago, is just as apt today as it 
was then. As I began preparing this chapter, my iPad rang and my three-year old 
grandson came on line, demanding to speak to Tufty, our cat. Modern technology 
provides us with astounding ways of operating and communicating that were un-
imaginable not long ago. Yet while three-year-old children are embracing tech-
nology in a natural way, educators are having great difficulty in coming to terms 
with how to use it in teaching and learning. 

The difficulty is not hard to diagnose. The speed of change of technology is so 
much faster than the possibilities of curriculum change which, in turn, must take 
account of the rate of cultural change. Thus, while a child may pick up an iPad, 
with software carefully designed for ease of use, and discover ways to use it for 
personal benefit, the curriculum designer must take time to reflect deeply on the 
complex issues that arise in our society and change over the longer term. Kaput 
succinctly formulated his own version of the situation in the following quote from 
near the beginning of this book where I have added italics to highlight important 
aspects that will be reflected upon in this chapter. 

While our universe of experience can be apprehended and organized in many ways—
through the arts, the humanities, the physical and social sciences—important aspects of 
our experience can be approached through systematic study of patterns. In addition, 
mathematics embodies languages for expressing, communicating, reasoning, computing, 
abstracting, generalising, and formalising—all extending the limited powers of the human 
mind. Finally, mathematics embodies systematic forms of reasoning and argument to help 
establish the certainty, generality, and reliability of our mathematical assertions. We take 
as a starting point that all of these aspects of mathematics change over time, and that they 
are especially sensitive to the media and representation systems in which they are 
instantiated. (Kaput & Roschelle, 2012, this volume, p. xxx) 

Having written a calculus text (Fleming & Kaput, 1979), Kaput went on to rail 
against the standard approaches to algebra and calculus that had the effect of 
steadily reducing the number of individuals that make sense of the subject, seek-
ing instead a natural way to allow the wider population to gain the insight neces-
sary for them to function as citizens with full democratic rights and access to 
knowledge. He saw this through the full development of ‘expressing, communi-
cating, reasoning, computing, abstracting, generalising and formalising’ but he al-
so realized that these aspects change and ‘are especially sensitive to the media and 
representations in which they are instantiated.’ 

This applies not only to the technology that we use and develop, but also to our 
own personal development based on our previous experiences in life that may 
support or hinder our grasp of new ideas. I will illustrate this fundamental issue by 
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recalling a difference of vision that occurred between Jim Kaput and myself that I 
now see in terms of his own insightful vision of the changing nature of technology 
as ‘the mathematical mountain is changing before our eyes.’ 

2. A Challenging Difference and a Resolution Using Technology 

Over the years Jim Kaput and I met in various parts of the world to share ideas. 
Though our goals in building from personal experiences to increasingly sophisti-
cated ideas were broadly consistent, our own personal developments caused us to 
focus on different aspects. His experience with the ‘big three’ representations us-
ing expressions, graphs, and tables saw him focusing on ways of making links be-
tween them using technology. 

He found the particular technology of ‘pointing and clicking’ a mouse could 
quickly draw a curve graphically to represent a real life story to give a new foun-
dation for these fundamental ideas of the calculus prior to the use of expressions 
or tables. It encourages a much more general notion of function than is possible in 
traditional calculus, which essentially focuses on the symbolic manipulation of 
regular expressions using the ‘rules of calculus’ to derive the rate of change or to 
integrate to find the growth of a changing quantity. 

My concern was more elemental. I wanted to ‘see’ and ‘feel’ change in a hu-
man sense through drawing a graph by the dynamic continuous movement of a 
finger or the use of a pencil. 

We also differed in the extent of our vision. Jim focused on the wider demo-
cratic and social issues and had no desire to follow through to the formal devel-
opment of traditional mathematical analysis, which he saw as the province of a 
privileged few. I wished to understand the full journey through the human devel-
opment of mathematics itself, from the early experiences of the child to its eventu-
al formalization and on to the frontiers of mathematical research. I also wished to 
develop a framework that predicted and explained why students followed such dif-
ferent paths of development in mathematics where the traditional curriculum 
seemed to steadily deny access to more and more learners. 

Jim’s use of ‘pointing and clicking’ gave him a notion of ‘piecewise linear’ 
graphs which could be described precisely, based on his own formal experience of 
mathematics, such as calculating a piecewise linear approximation to the area un-
der a curve. My own very different experience, included teaching non-standard 
analysis to undergraduates who had already met standard analysis, where I could 
prove a formal theorem that ‘a differentiable function’, when ‘locally magnified 
by an infinite scaling factor’, would ‘look like a straight line’ (Tall, 1981, 2009). 

Both of us were imprisoned in our own cultural experiences, which proved to 
be obstacles in our attempts to communicate our ideas to each other. I saw his 
piecewise linear functions as a fine mathematical idea that was well-known to 
mathematicians and worked well for calculating areas. Yet, for me, it had the flaw 
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in calculating derivatives that the graph of its rate of change consisted of discrete 
horizontal line segments (Fig, xxx, p. xxx). Thus his vision took natural ‘continu-
ous’ change and represented its ‘rate of change’ in a form that is certainly not 
‘continuous’ in any intuitive human sense. 

Meanwhile my idea of ‘infinite magnification’ of an ‘infinitesimal’ part of a 
graph flew against current trends in mathematical analysis where infinitesimals 
were seen to be an aberration of the past that had been replaced by the inscrutable 
but mathematically sound notion of the epsilon-delta definition of a limit. Even 
though I produced software that allowed the user to magnify graphs on the screen 
to see what is termed ‘local straightness’, my insights were seen as an interesting 
starting point to a calculus industry that remained wedded to its traditional devel-
opment based on an ‘intuitive’ version of the formal limit concept with technology 
‘added on.’ 

On reflection, I can now see how both our visions may be explained in terms of 
his general theoretical perspective and how the changing technology has affected 
conceptions that are ‘especially sensitive to the media and representations in 
which they are instantiated.’ 

In chapter xxx (Burke et al. 2012, this book), the long history of SimCalc has 
shown how theoretical ideas have to be adapted to fit with the changing technolo-
gy, just as the technology changes to fit new ideas. Theoretical frameworks and 
technological innovations co-evolve (Hegedus & Moreno-Armello, 2012, this 
book). 

The iPad, which appeared only in 2010, was initially misunderstood with deri-
sory comments from the cognoscenti such as Bill Gates who declared ‘It’s a nice 
reader, but there’s nothing on the iPad I look at and say, “Oh, I wish Microsoft 
had done it.”’ (Gates, 2010). 

Now in its third iteration, the iPad boasts a ‘retinal display’ so that what one 
sees on the screen held at a comfortable distance is at the maximum level of accu-
racy that can be seen by the receptors on the human retina.  

The iPad also offers radical new modes of operation. One of these is to draw a 
graph with a movement of a finger, another is to control the display of an already 
drawn graph (which has an appropriate method of computation, such as a function 
formula) to picture it at any desired scale. 

The drawing of a graph with a finger on the current iPad lacks precision, alt-
hough it might be possible to draw a graph more accurately with a yet-to-be de-
signed combination of enactive finger pointing and more precise action using a 
pen or mouse. This idea, favored by Bill Gates, exists on Wacom Bamboo tablets 
and is beginning to appear on touch screens. But even here, the precision of draw-
ing is limited to that of a retinal display and graphs need to be imagined as being 
suitably smooth for it to have a continuously changing derivative. 

Adobe Illustrator, using a mouse or tablet interface on a computer, already has 
the facility for drawing a graph with a pencil and then to select another tool to 
smooth parts of the graph (Figure 1). 
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Figure 1. Smoothing a graph. 

I can see Jim in my imagination now, as he would turn up at a conference in 
the 80s and 90s to show the latest software, such as Excel in its earlier 
incarnations, that allowed him to imagine linking together symbolism and 
visualization in creative ways. Only now he might be looking at the iPad, drawing 
not with a point and click mouse, but with a finger, or with a more accurate pen, 
and then smooth out the graph he had drawn. He might also organize his input to 
touch specific points on the graph to type their actual values, or touch a part of the 
curve between specific points to input a formula. He might smooth the graph as in 
Illustrator, so that it became locally straight, or if he wished, he could use 
techniques already existing in Illustrator to draw a corner with different left and 
right tangents. 

Such software would enable the learner to use a finger or pointer to draw a 
suitably accurate representation of a suitably smooth graph, and to ‘crystallize’ it 
(in the sense of Moreno-Armella & Hegedus, 2012, in this book) from a dynamic 
movement into a static picture where now its rate of change could again be dy-
namically continuous. 

Visually a differentiable function is ‘locally straight’ in the sense that, if the 
graph through a point where the function is differentiable is magnified, it will 
successively look less and less curved until, under high magnification, its graph 
looks like a straight line (Tall, 1985). We already have multi-touch technology 
such as the iPad where the user can touch the screen with finger and thumb and 
move them apart to cause the screen to be magnified. If this is programmed to 
keep the horizontal and vertical scales the same, then the slope of the curve can be 
seen under high magnification as the slope of a highly magnified segment that is 
visually a straight line. If two windows are available, one to show the graph and 
another to show the magnified part of the graph, it is possible to trace the finger 
along the graph and see the changing slope of the magnified part. 

On the other hand, if the program offers a separate facility to stretch the graph 
horizontally and not vertically, then a continuous graph will ‘pull flat’ as I have 
long advocated (Tall, 1986, 2009, 2012). In this way, continuity and differentiabil-
ity have simple interpretations in terms of different kinds of change of scale. 

smooth

(i): Point and click (ii): Smooth
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3. The Evolution of Ideas Using Technology 

This single example of different views of a complex issue illustrates a pro-
found fundamental aspect of the evolution of ideas. As mere mortals we can only 
focus on a small number of factors and the differing ways in which we do so af-
fect, and are affected by, the development of technology. It is not enough just to 
reflect on the nature of the changing technology or on the nature of mathematics 
as we see it at the time and on children’s growing conceptions and misconcep-
tions. We need also be confident enough to reflect on the validity of our own ideas 
as our cultures evolve and technology changes. 

In an earlier chapter, Harel has characterized Kaput’s work on the mathematics 
of change and variation as follows: 

In all, Kaput’s work on the mathematics of change and variation may be viewed as a 
research program—a program for which Kaput paved the foundations and offered a path 
for progress. Such a program can be characterized as one that pays a serious attention to: 
equity, quantitative meaning, gradual development (from elementary school onward), 
advanced-technology-based curriculum that is grounded in classroom context, and 
consistent epistemology. (Harel 2012, this volume, p. xxx) 

This formulates what he terms ‘the Kaputian program’ as a broader research 
enterprise focusing on the mathematics of change and variation. It must be taken 
in conjunction with Kaput’s ideas expressed earlier that seek to address the whole 
framework of building powerful mathematical ideas developing from the child’s 
personal experience through modes of ‘expressing, communicating, reasoning, 
computing, abstracting, generalising, and formalizing – all extending the limited 
powers of the human mind.’ 

Kaput’s reference to the limited powers of the human mind applies not just to 
the children we teach or to the politicians who set the legal agenda for the mathe-
matics curriculum, they also apply to us ‘experts’ and to Kaput himself. The 
amazing feature of his program is that it contains within it a vision that foresees 
the need to modify and evolve our own theories, even his own. 

His program operates at two levels: the specific level of how we plan and de-
liver the curriculum using technological facilities such as SimCalc and the meta-
level in which we constantly refresh and evolve the ways in which we think about 
how individuals make sense of mathematics. 

Kaput’s theory is a grand design, much bigger than the specifics of SimCalc. 
Though the implementation of SimCalc is vast in terms of the number of research 
studies that have been devoted to it and it focuses on issues beyond the mathemat-
ical content alone, in practice it has so far concentrated on a new vision of school 
algebra and the early development of mathematical variability and change. 

Kaput crucially extends his vision of mathematics in school saying ‘finally, 
mathematics embodies systematic forms of reasoning and argument to help estab-
lish the certainty, generality, and reliability of our mathematical assertions.’ This 
potent vision extends his program through to the frontiers of mathematical think-
ing at the highest levels of mathematical research. 
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4. Extending the Kaputian Program 

In the 1990s, the Advanced Mathematical Thinking group of PME worked to-
gether to extend mathematics education to the formal mathematics experienced at 
university in which Harel & Kaput (1991) extended ideas to more formal aspects 
of functions and calculus. In particular, they distinguished between the pointwise, 
local and global aspects of the calculus. Formal mathematics focuses initially on 
the limit concept at a specific point involving local behavior near that point and 
then extends definitions of continuity and differentiability by varying that point 
over the whole domain, leading to further formal distinctions between pointwise 
continuity and uniform continuity over an interval. 

An embodied approach works locally and dynamically, shifting a finger over 
an interval in time and space as the moving finger leaves a trace of the underlying 
variation. It does not build from a technical definition of continuity at a single 
point to then apply this pointwise definition to every individual point over an in-
terval. Dynamic continuity is a single gestalt, shifting attention along an interval 
as dynamically changing quantities vary together. It is peculiarly well-suited to the 
use of dynamic interactive technology. 

Reflecting on many aspects of learning over many years with the help of col-
leagues and students has led me to extend childhood experiences of perception and 
action to ideas of advanced mathematical thinking as used at a more formal level 
(Tall, et al., 2001; Tall, 2006). This builds on human perceptions and actions and 
their consequences in terms of symbolism and proof. It is based on the conceptual 
embodiment of our perception and action where our actions—such as counting, 
measuring, adding, subtracting, evaluating, differentiating, integrating—may be 
symbolised and compressed into operational symbolism and then formalised in 
various ways. Formal thinking is expressed in terms of definitions and deductions. 

However, as Kaput says insightfully, ‘mathematics embodies systematic forms 
of reasoning and argument’ and the forms of reasoning are different in different 
contexts. They may be verbal expressions of embodied principles in Euclidean ge-
ometry (such as congruence which embodies the idea of placing one triangle pre-
cisely on top of another, or parallel lines where a line is shifted dynamically main-
taining corresponding angles and related properties such as those of alternate 
angles). The principles may be based on observed regularities of arithmetic that 
are formulated as ‘rules’ to act as a basis for algebraic proof. Later they may be re-
formulated once more in terms of set-theoretic definitions of axiomatic systems 
and reasoning in terms of formal proof. 

This framework has been applied to SimCalc by Lima, Healy & Campos 
(2012) in this text, interpreting SimCalc as relating real life activities to the math-
ematical worlds of conceptual embodiment of dynamic graphical representations 
Reasoning is verbalised and communicated in terms of conceptual embodiment 
and operational symbolism, but not yet in terms of axiomatic formalism. 
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Their analysis includes a significant new reflection on what happens as learn-
ers encounter new contexts where their previous experience in terms of ideas that 
they have ‘met before’ may be supportive or problematic. Using the terminology 
of Lima & Tall (2008) and McGowen & Tall (2010), supportive ‘met-befores’ en-
courage generalization while problematic met-befores impede the learner in mak-
ing sense of the new situation. 

This is coupled with an analysis of emotional reactions using the goal-oriented 
theory of Skemp (1979), where previous success can increase confidence and en-
courage students to meet conflict with a determination to overcome difficulties 
and seek the pleasure of making sense. Alternatively, problematic aspects may 
lead either to a desire to satisfy external requirements to learn procedures to pass 
examinations, or worse, to a spiral in which failure leads to avoidance of doing 
mathematics which in turn leads to more failure and increasing anxiety (Baroody 
& Costlick 1998). This link between cognitive success or failure and emotional 
pleasure or anxiety sheds new light on the nature of the long-term decrease of the 
number of  learners who make sense of mathematics until only a small proportion 
end up even attempting to succeed in the more sophisticated ideas of the calculus. 

It gives a broader view of the whole enterprise of mathematical thinking con-
sonant with Kaput’s program for understanding ‘Mathematical Change and Varia-
tion’. It suggests that technology may be used to give insight into dynamically 
continuous change through crystallizing the rate of change graphically based on 
the idea of changing slope built on the notion of local straightness. This may then 
be expressed symbolically not only in terms of algebraic expressions but more im-
portantly in terms of local linearity which has the potential to develop formally in 
terms of the traditional definition of limit. It also offers a new vision of the limit 
concept consistent with the Kaput program which can be constructed from mean-
ingful experiences of conceptual embodiment and operational symbolism. 

Modern technology enhances human abilities to make sense of dynamic 
change through the interactive ability to physically control the variability of mo-
tion crystallized as manipulable representations of graphs. It also has the internal 
capacity to process expressions numerically and symbolically to enable the learner 
to see the effects of their actions and to share their ideas through human and tech-
nological interaction. However, although technology can be used to compute nu-
merically, manipulate symbolically and represent ideas visually, so that it offers 
the human mind possibilities for future developments, it does not yet have the hu-
man capacity to imagine new conceptions and to create new theories. It is there-
fore important to recognize those aspects that can be supported by technology and 
those which humans need to develop by using their own mental facilities. 

My own personal view is that we need to understand more about how individ-
ual human thinkers build mathematical ideas in increasingly sophisticated contexts 
and how their interpretation of new contexts is affected by fundamentally different 
emotional reactions to supportive and problematic changes in meaning. In addition 
we need to consider these changes not only in terms of the children’s own learning 
but also in ourselves as teachers, mathematics educators and theory builders. 
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5. Building on the Confidence of Success 

The transition to new ways of thinking needs to take into account the emotion-
al reactions that feed back into learners’ attitudes which can develop cycles of 
success encouraging more determination to solve new problems or of failure 
building anxieties that impede future development. This suggests the need to take 
account of the success of student’s thinking processes at one level and to use the 
confidence that it generates in one situation to be able to realize what is necessary 
to succeed in new situations. 

One possibility in the mathematics of variation and change is to build from the 
confidence in using piecewise linear physical drawing in SimCalc to shift to the 
use of a locally straight approach to develop more sophisticated levels of insight in 
the calculus.  

However, the successive changes of meaning—from distances varying in time 
to the change of distance with respect to time (velocity), then velocity changing in 
time (acceleration) and acceleration changing in time (jerk)—gives a succession of 
different meanings that may impede the generality of the mathematics of change. 
For instance, in the case of simple harmonic motion, the distance is x = sin t,  ve-
locity is cost , acceleration is −sin t  and ‘jerk’ is –cost . In what sense can the 
smooth trigonometric function −cost  be considered a ‘jerk’? 

The concept of rate of change itself may be better served by the rate of change 
of a locally straight graph that may be seen by looking along the graph to see the 
derivative. If the derivative is again locally straight then the process may be re-
peated for higher derivatives as long as they are also locally straight. 

This extends the Kaput program to local straightness in functions of a single 
variable. This can be generalized to ‘local flatness’ of a function of many variables 
to deal with  multi-dimensional calculus, and the same ideas extend to integration, 
differential equations, partial derivatives, so that the relationship between continu-
ity and local straightness is the foundation of the whole of calculus at all levels 
(Tall, 1985, 1986, 1989, 2009, 2012). 

In the historical vision of the calculus, curves were imagined as polygons with 
an infinite number of infinitesimal sides. But unlike Kaput, who focused on the fi-
nite version of this idea using polygonal curves, I imagined a dynamic version un-
der arbitrary magnification, where I see locally straight curves as looking straight 
everywhere when highly magnified. Unlike the original vision of such great math-
ematicians as Barrow, Newton and Leibniz who saw curves with infinitesimal 
sides and corners that turned through an infinitesimal angle, I encourage today’s 
learners to use technology to see a differentiable function to look straight under 
high magnification everywhere, with no corners. 

This is the resolution of a three and a half century conundrum that is now ra-
tionalized in the embodied vision of modern technology. It also happens, by 
chance, that, going back in history to my own PhD supervisor, and then to his su-
pervisor, and back to mentors of mentors before PhDs were invented, I am one of 
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thousands of mathematicians alive today who can trace his ancestry back 14 gen-
erations to Sir Isaac Newton and one further generation to Barrow, who also in-
spired Leibniz. This is a tenuous link, but it is gratifying to see the vision of the 
originators of the calculus as a simple dynamic idea that can be democratically 
shared with the wider population in our technological society. 

Building on the dynamic idea of a continuous function that can be drawn with 
da stroke of a pencil on a sheet of paper, it is simple to translate the embodied idea 
of continuity to the formal epsilon-delta definition and vice-versa, to show that us-
ing a pencil whose point makes a mark covering a square of side length 2ε  it is 
possible to draw a formally continuous function f from a point (a, f (a))  to another 
point (b, f (b)) as a (thick) dynamic pencil line that covers the graph of the theoret-
ical function. (Full details are given in Tall, 2012.) 

 
Figure 2. Drawing a continuous graph. 

Starting with a continuous function, it may be integrated to give a locally 
straight area function whose derivative is continuous. Integrating a second time 
gives a function that is differentiable twice with a second derivative that is contin-
uous. Integrating n times gives a function that can be differentiated n times to give 
a function that is continuous. If we define a Cn  function to be a function whose 
nth derivative is continuous, then we see a continuous function as the case n = 0 at 
the root of a whole hierarchy of increasingly smooth functions. At the apex we 
may see C∞  functions that are infinitely differentiable. A simple case is a poly-
nomial that may be differentiated as often as desired and this suggests a generali-
zation from polynomials to power series. 

However, as in Kaput’s program, we need to develop ‘systematic forms of rea-
soning and argument to help establish the certainty, generality, and reliability of 
our mathematical assertions.’ Contrary to the natural expectation that infinitely 
differentiable functions are expressible as power series, we find that there are 
counter-examples. For instance, the function f (x) = e−1/x

2

 where we take f (0) = 0  
has graph that is so very flat at the origin that all its higher derivatives are zero, so 
that the power series associated with it is zero while the function itself is not. To 
be able to cope with such ideas requires a systematic form of reasoning that estab-
lishes the reliability of our assertions with clearly defined assumptions. It is for 
this reason that the calculus requires extension to more formal systematic modes 
of thinking such as those in mathematical analysis. 

While this level of operation is certainly not necessary for the majority of the 
population, it is essential that we who think about the full range of the mathemat-
ics of change and variation encourage teachers in Science, Technology, Engineer-
ing and Mathematics (STEM) to have a fundamental grasp of  the bigger picture. 

�J
�I

�J
�J

pencil point
over a square
side-length 2J

pencil drawn continuously
over curve

using a finer pencilfiner
pencil point



11 

 

6. Views of Calculus Appropriate to the Needs of the Individual 

Kaput’s view of democracy in terms of making sense of mathematics for the 
wider community can now be seen in its widest sense, to take account of how in-
dividuals play diverse roles in society, each offering his or her own contributions 
to make the whole so much greater than the sum of its parts. In my new book, 
How Humans Learn to Think Mathematically (Tall, forthcoming), I study the de-
velopment of mathematical thinking as individuals mature from new-born children 
to adults in a wide spectrum of differing ways. This mathematical development 
builds from perception and action, through the use of symbolism and natural lan-
guage, to successively more sophisticated forms of mathematical thinking. 

In school, mathematics is seen as a blend of what I term conceptual embodi-
ment involving the static and dynamic physical and mental pictures of objects and 
their properties, and operational symbolism, which begins with actions on objects 
such as counting, measuring and sharing that are encapsulated into thinkable ob-
jects such as whole numbers and generalized as fractions, negatives, decimals, ra-
tionals and irrationals, real and complex numbers, and the generalized arithmetic 
of algebra. For a small minority, there is a development in university to the axio-
matic formalism of formal definition and proof. 

At every stage there is a divergence in performance in different individuals as 
some aspects of previous personal experience feature as supportive met-befores in 
generalizing to a new situation, while other aspects are problematic met-befores 
that impede conceptual development (Tall, forthcoming, chapter 3). 

As human perceptions and operations become more sophisticated through the 
development of human reasoning, I use van Hiele’s (1986) ideas to see mathemat-
ics developing broadly through levels of recognition, description, definition and 
deduction. I see this more as a broad development that encourages children to 
make sense of mathematics in a meaningful way, rather than performing a micro-
analysis of various levels to be used in assessment that often provokes teachers to 
to teach to the test. Broadly speaking, over time, I suggest that three major stages 
of mathematics occur that I term practical mathematics, theoretical mathematics 
and formal mathematics (Tall, forthcoming, chapter 1). 

Practical mathematics occurs in the geometry of space and shape, through 
recognition and description of visual and spatial concepts.  In arithmetic it occurs 
through the practical activities of number and measurement, including the recog-
nition and description of properties of arithmetic of whole numbers, fractions, 
decimals, and negative numbers (which may be introduced in a practical fashion, 
before or after fractions). 

Theoretical mathematics occurs in geometry with the introduction of defini-
tions of figures and their practical constructions using a straight edge and a pair of 
compasses to draw lines and circles. It continues with the deduction of theorems in 
Euclidean geometry. In arithmetic, the shift to theoretical mathematics occurs as 
observed properties of arithmetic are used in the definition of properties of whole 
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numbers such as even, odd, prime, composite and the deduction of theorems such 
as the fact that there is an infinity of primes and that every whole number is ex-
pressed uniquely as a product of primes. In algebra, the ‘rules of arithmetic’ are 
used as definitions leading to the deduction of various algebraic identities using an 
algebraic form of proof. 

The calculus blends together both embodiment and symbolism in a theoretical 
approach based on local straightness. It builds on embodiment and symbolism 
through the perception and recognition of the dynamic changing slope of a graph 
and the description of the slope function to see the slope functions of x2 , x3 , xn , 
sin x , cos x  (with angles in radians), and to look at the graphs of 2x  and 3x  to see 
that they are both increasing graphs with similar slope functions and that as the pa-
rameter a in the function y = ax varies between 2 and 3, there may be a numerical 
value of e between 2 and 3 so that the derivative of ex  is again ex . By approxi-
mating ex  as a long polynomial A + Bx +Cx2 + ...  it is not only possible to find 
the coefficients but to put x = 1 to calculate e to, say, ten decimal places by hand 
or using a simple spreadsheet program. This gives a sense of the idea of a slope 
function in a range of different examples and also introduces the idea of approxi-
mating a function by a power series. 

However, to be able to compute the derivatives of composite functions such as 
ex sin(x2 ) , which quickly becomes too complicated to guess by just looking, it be-
comes necessary to give a more coherent theoretical definition of the limit concept 
to be able to develop the rules of differentiation to be able to compute derivatives 
symbolically (Tall, 2012). This definition of a derivative may be formulated in a 
simply way as the stabilized picture of the practical derivative ( f (x + h)− f (x)) / h  
through the variable point x and for small values of h, as h is taken increasingly 
small.  

It is therefore possible to have a theoretical approach to the calculus that does 
not introduce the concept of limit until it is seen by the learner to be a necessary 
construct to make sense of computing derivatives. 

While the vast majority of the population can make sense of a practical ap-
proach to the calculus, as found in SimCalc or in a subsequent development, those 
who need mathematics in technical applications may be well-served by a theoreti-
cal approach to calculus and only the small minority who need to make sense of 
mathematical analysis may require a formal approach. 

The precise nature of practical and theoretical approaches will change as the 
available technology evolves and affords new ways of making sense of the dy-
namic notions of continuity and the mathematics of change and variation. SimCalc 
is a pioneering beginning that has evolved as the technology has evolved. But 
where will it go in future? 

Is it not time for a vision that builds on the evolution of ideas over the millen-
nia and the use of dynamic interactive technology to see and sense the ideas of the 
local rate of change and of dynamic growth building from human perception and 
action to the frontiers of mathematical research? 
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The framework presented here, as an extension of the Kaput program, encom-
passes the full range of mathematical development while addressing the wider is-
sues of individual freedom and democracy. It encourages the whole population to 
gain access to the practical mathematics required for mathematical literacy in a 
democratic society, for those requiring a more technical approach to build a theo-
retical form of mathematics of use in applications, and for the pure mathematician 
to retain any unyielding belief in the necessity of formal mathematics.  

It builds on the vision of Jim Kaput to reveal the potential to move into the fu-
ture, to take advantage of new technologies that give the learner a natural dynamic 
interface to manipulate enactive imagery and to communicate ideas socially using 
new technological modes of representation and communication. 

7. Reflections 

Looking back on this chapter in particular and this book as a whole, I have 
chosen to consider the bigger picture of the Kaput program that is instantiated in 
the SimCalc program from which a much wider evolution of mathematical change 
and variation may grow. In using the framework of Kaput to review the practicali-
ties of SimCalc and suggesting new developments for the future, I trust that the 
reader will not think that I fail to show respect to his memory. 

On the contrary, it is the very robustness of the overall Kaput program that en-
ables reflective criticism to encourage us to evolve from current ideas into a future 
as yet unknown. I affirm that much of my own development has benefited from 
his profound insights. Indeed, every paper of his that I have read—whether I un-
derstood or agreed with everything he said at the time—has contained quotable 
pearls of wisdom that have profoundly affected my own personal development. 

Jim Kaput was the first person to alert me clearly to the active volcano of tech-
nology where the mathematical mountain is changing before our eyes. He first 
made me aware of the relevancy of different symbol systems, though, at the time, 
I did not fully understand his ideas with any clarity. He was also prescient in the 
way that he saw even his own insights would need to change as ideas evolve. His 
profound overall program contains within it the elements for this necessary evolu-
tion. 

In practice he developed SimCalc software to represent ideas in the mathemat-
ics of variability and change and to give democratic access to profound mathemat-
ical ideas not expressible within the standard curriculum. His program also ex-
tended beyond his remit for working with multiple representations of change and 
variability, to move on to ‘systematic forms of reasoning and argument to help es-
tablish the certainty, generality, and reliability of our mathematical assertions.’ 

It is appropriate at this point to close this chapter, and the whole book, with 
Jim Kaput’s own vision, as follows: 
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We see new technologies creating a possibility to reconnect mathematical representations 
and concepts to directly perceived phenomena, as well as to strengthen students’ 
understanding of connections among different forms of mathematical representation. By 
starting from more familiar antecedents, such as graphs and motion, both in kinesthetic 
and cybernetic form, and developing towards more compact and formal mathematical 
representations, we see an opportunity to create a new path of access to mathematics that 
has too often remained the province of a narrow elite. (Kaput & Roschelle, 2012, this 
volume, p. xxx.) 
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