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This paper evolves a framework for making sense of mathematics through perception, 
operation and reason and uses it in a specific case of trigonometry. It is based on a 
fundamental theory of how humans learn to think mathematically from early 
childhood to the frontiers of mathematical research. It is intended to be of theoretical 
value in mathematics education and of practical value for teachers and learners. The 
example of trigonometry develops from visual and symbolic relationships in specific 
right-angled triangles to circle trigonometry involving signed quantities and dynamic 
functional relationships. The data relates to student teachers preparing to teach 
secondary mathematics. 
THEORETICAL BACKGROUND 
In this paper we continue the evolution of theories of mathematical thinking in terms 
of perception, operation and reason. Similar frameworks have developed over the 
years, including that of Fischbein (1987), the first president of PME, whose theory 
considered three different approaches that he termed intuitive, algorithmic and formal 
and the second president Skemp (1979) involving perception, action and reflection. 
Each of these have elements in common with Bruner (1966) who referred to enactive, 
iconic and symbolic modes of communication where the symbolism included natural 
language and the special mathematical languages of arithmetic and logic. We 
continue the theoretical evolution by focusing on the sensori-motor foundations that 
we share with other species and the special quality of language and symbolism that is 
peculiar to Homo Sapiens. In doing so we are mindful of the evolutionary biology 
approach (e.g. Leron & Hazzan, 2008) which distinguishes the fundamental 
sensori-motor thinking that occurs in an immediate response and the deeper 
longer-term thinking that occurs in more sophisticated mathematics. 
Our research builds on the theoretical framework presented in PME 30 by Tall (2004) 
that we now interpret as formulating the long-term development of mathematical 
thinking as different individuals grow from child to adult, based on the fundamental 
foundations of human perception, operation and reason. The original framework 
focused on three distinct long-term developments of mathematical thinking. Two 
develop in school mathematics. The first is based on conceptual embodiment building 
from human perceptions and physical actions through increasingly sophisticated 
practical activity and thought experiment to imagine perfect platonic concepts within 



Chin & Tall 

  

1– 2 PME 36– 2012 

the mind. The second involves physical actions, such as counting, being symbolised 
as manipulable mental concepts in the operational symbolism of arithmetic and 
algebra. The relationships may be formulated verbally, such as the geometric 
definitions of Euclidean figures and more general ideas of congruence and parallel 
lines that lead on to Euclidean proof and the arithmetic properties of operations such 
as commutative. associative and distributive properties of arithmetic that later offer a 
basis for algebraic proof. Much later, in pure mathematics at university, these lead to 
more advanced forms of mathematical reasoning in axiomatic formalism based on 
formal set-theoretic definitions and mathematical proof. 
In subsequent years, two further elements have been incorporated. The first reflects 
the nature of the thinkable concepts that develop in all forms of mathematics 
including geometry, arithmetic and algebra, and in formal axiomatic structures. A 
crystalline concept is given a working definition as ‘a concept that has an internal 
structure of constrained relationships that cause it to have necessary properties as a 
consequence of its context’ (Tall, 2011). The second involves the effect of previous 
experience in new situations where a met-before is given a working definition as ‘a 
trace that it leaves in the mind that affects our current thinking’ (Lima & Tall 2008, 
McGowen & Tall, 2010). These experiences may be supportive in a new context 
where they continue to make sense and may be used to generalize existing knowledge 
to more general situations, or they may be problematic and impede progress. 
Problematic met-befores reflect established ideas of epistemological obstacles 
(Bachelard 1938, Brousseau, 1983), however, we now see them as part of a wider 
vision in which impediments caused by problematic met-befores complement 
supportive met-befores that encourage generalization. As in the goal-oriented theory 
of Skemp (1987), supportive and problematic aspects emotionally affect progress. 
Achieving a goal gives pleasure and continuing success encourages the learner to 
confront problems with a determination to succeed, leading to a positive cycle of 
reinforcement. Failure to achieve a goal may lead to an alternative goal, such as 
learning ‘how to do’ the mathematics to achieve alternative success such as passing 
tests. Repeated failure can lead to a downward spiral as failure leads to anxiety and 
less engagement, then less engagement leads to increasing anxiety, and so on. 
We suggest that, to make sense of mathematical thinking, the teacher should be 
aware of the changing needs of the student in new situations, to build on previous 
success and to realise that what worked before will need a new approach to make 
sense of the new situation. To do this we consider how the learner makes sense 
through perception based on fundamental conceptual embodiment and thought 
experiment, then through the coherent relationships in operational symbolism, and 
later in terms of reasoning based on definition and deduction. In school mathematics, 
reasoning develops in various forms: through practical definition and principles such 
as congruence to deduce theorems in geometry, through general principles such as 
‘doing the same thing to both sides’ in solving equations and refining ways of 
thinking by formulating observed regularities as principles such as the ‘rules of 
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arithmetic’ as a basis for algebraic proof. In university mathematics these are refined 
further into set-theoretic definitions proving theorems in an axiomatic framework. 
THE CASE OF TRIGONOMETRY 
The development of trigonometry builds from embodied practical and experimental 
experiences in drawing and construction and symbolic operations such as calculating 
the sine of an angle as ‘opposite over hypotenuse’ as a numerical quantity and then 
considering flexible relationships between lengths and trigonometric ratios. It may 
then shift to the broader context of circle trigonometry where the angle can be greater 
than 90°, sine and cosine may be interpreted dually as a ratio of lengths or as the 
horizontal and vertical components of a point on a unit circle, and lengths may now 
be signed numbers that vary as the point moves dynamically round the circle to give 
rise to the concept of trigonometric functions. By measuring the angle in radians, a 
relationship arises between the angle and the length of the arc it subtends, enabling 
further conceptual links to be made between the change in the trigonometric 
functions and their rate of change in the calculus. 
Michele Challenger’s thesis (2009) studied the teaching of trigonometry in school. 
She found that students often described the ideas as being complicated and spoke of a 
difference between two distinct forms of trigonometry, as in the following comments: 

I hate trigonometry. There is just so much to remember: all the diagrams and formulas. I 
never know which one to use. 
Are we talking about triangle trigonometry or circle trigonometry here? 
I used to understand it when it was just triangles but now I don’t know where to start. 
What is sine exactly? I thought I knew but now it is so confusing. 

This suggests two distinct contexts for trigonometry in school: 
(i) triangle trigonometry involving problems related to the relationship between the 

sides and angles of specific right-angled triangles using trigonometric ratios. 
(ii) circle trigonometry involving variable angles of any size at the centre of a circle, 

with trigonometric ratios involving signed numbers and the properties of 
trigonometric functions. 

In our study of students in teacher training prior to entering teaching, we found that 
they also responded at a third level, relating to their later undergraduate study: 

(iii) analytic trigonometry involving trigonometric functions expressed as power series 
and the use of complex numbers to relate exponential and trigonometric functions. 

This more sophisticated viewpoint could easily affect the way in which the students as 
future teachers viewed the teaching and learning of their pupils unless they developed an 
awareness of the way in which the pupil’s knowledge structures affected their learning. 
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EXPERIMENTAL DATA AND ITS ANALYSIS 
Our data was collected in a questionnaire given to post-graduate students preparing to 
teach mathematics at secondary school level. Its purpose was to gain an initial picture 
of how the respondents make sense of trigonometry. Here we only have space to 
consider selected responses to three of eight questions by three students. 
Respondent A is a male PGCE student with a first class mathematics degree. To the 
first question ‘Describe   sin x  in your own words’, he responded: 

 
Figure 1: Respondent A, Question 1 

He said (the name of) a Taylor expansion and drew a graph. His immediate reaction 
was therefore a combination of analytic and circle trigonometry (levels (ii) and (iii)).  
Respondent B is a female PGCE student with a 2(i) bachelor degree in physics with 
previous employment as a medical physicist. Her response for Item 1 is as follows: 

 
Figure 2: Respondent B, Question 1 

This response is level (i), in particular, it describes sin x as the ratio of the lengths 
focusing on the first stage of compression from operation to symbolic concept.  
Respondent C is a female PGCE student with a 2(ii) degree in mathematics. She 
offered a verbal relational description with little detail. 

 
Figure 3: Respondent C, Question 1 

This response operates at levels (ii) and (iii), speaking of sinx as a function defined 
for a real number, and refers to wider links involving complex numbers. 
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These brief remarks do not reveal the full extent of the students’ knowledge. 
However, other responses clarify a broader picture. 
Item 3 of the questionnaire asked “What is the value of sin 270°? Explain why it is 
this value.” Respondent A gave the following response: 

 
Figure 4: Respondent A, Question 3 

First, the student clearly sees that sin 270° is –1. Yet his reasoning suggests that 
‘when 3π/2 is substituted into the Taylor expansion, the terms end up being zero 
except for one term.’ This is patently untrue if the actual number is substituted as the 
later terms would be clearly non-zero. So he must, in some way, have in mind a 

series such as that for   cos x  where x = 0 and 
  
cos0 = 1− x2

2!
+ x4

4!
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2!
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− ....  

Skemp (1979) distinguishes between conceptual links (C-links) and associative links 
(A-links). This link is clearly associative, for it does not work computationally. This 
relates clearly to the dual processing theory reported in Leron & Hazzan (2008) 
where the immediate response operates at an intuitive, non-analytic level. 
Respondent B replied as follows: 

 
Figure 5: Respondent B, Question 3 

Initially the student sees that  sin270° = sin− 90° = −1  using the graph as in the 
previous question (not shown here). However, when attempting to draw the angle 
turning anti-clockwise through 270°, the first attempt has the opposite side o clearly 
drawn downward but is scribbled out because the angle is not the right size. When it 
is redrawn with the correct angle 270°, the radius is now vertical, with the (unsigned) 
hypotenuse h drawn over the (signed) opposite side o, so there is no longer a visible 
triangle as occurs at level (i). This becomes problematic at level (ii) and is solved 
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ingeniously by the student drawing separate lines for o and h in a manner that is clear 
but is not the expected picture that occurs as the radius moves around the circle. 
Respondent C drew the sine graph and read the value from it as follows: 

 
Figure 6: Respondent C, Question 3 

Essentially this is an intuitive embodied response operating graphically at level (ii).  
Item 5 of the questionnaire asks “Explain why  sinθ  can never equal 2.” 
Respondent A replied: 

 
Figure 7: Respondent A, Question 5 

Again he responded with immediate associative links between the function as a 
Taylor series and its behaviour as a function at level (iii) and level (ii) with the 
conceptual links not yet reflected upon. As we considered the situation, we realised 
that we too could not give an immediate analytic response involving the Taylor series 
without switching to the visual representation of the graph. 
Respondent B made sense of the question by working at level (i) using the 
observation that the hypotenuse is the longest side of a right-angled triangle. 

 
Figure 8: Respondent B, Question 5 

Respondent C simply wrote an inequality without further comment. 

 
Figure 9: Respondent C, Question 5 
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Comparing this with the student’s previous responses in figures 3 and 6, reveals a 
level (ii) response from a student who has also responded at levels (ii) and (iii). 
These immediate responses tell a story. Student (A) with a first class degree refers to 
analytic ideas such as power series at level (iii) and circle trigonometry at level (ii) 
with analytically faulty associative links between them. Student (B) with an upper 2nd 
degree and practical experience responds by combining level (i) triangle trigonometry 
and level (ii) circle geometry with a good grasp of both yet with a minor problem in 
visualising what happens when the angle is 270°. Student (C) with a lower 2nd 
mathematics degree operates visually at level (ii) with indications of possible links at 
level (iii). 
This reveals the distance that all three student teachers need to travel to become 
sensitive to the issues that will arise in their classrooms. The much deeper question is 
whether we as mathematics educators, and others involved in mathematics teaching 
as teachers or curriculum designers, are explicitly aware of this phenomenon.  
REFLECTIONS AND FUTURE DEVELOPMENTS 
All around the world there is concern about raising standards, about competing in a 
global market place faced by problems of long-term availability of natural resources, 
economic crises and global warming. A broad understanding of the underlying 
mathematics is essential in quantifying these problems both by politicians and 
citizens. Yet governments seek to measure success through testing and teachers are 
tested by the success of their pupils on these tests. The problem is formulated 
succinctly in the acronym WYTIWIG: What You Test Is What You Get (Burkhardt, 
1987). The problem may be that what we are not focused on the major goal of 
helping students to make sense of mathematics, instead so much teaching focuses on 
the lesser goal of procedural success on tests. The theory of supportive and 
problematic met-befores reveals this only as a partial success in the spectrum from 
mathematical sense-making to alienation in terms of mathematics anxiety. 
We hypothesise that what is important is making sense of mathematics, and that this 
essentially requires the teacher, as mentor, to be aware of the needs of the student, 
encouraging learners to cope with changes of meaning by building confidence in 
earlier successes and making sense of problematic aspects in new contexts. Such 
developments are partially achieved through encouraging learners to voice and reflect 
on their own knowledge, for instance in Japanese Lesson Study (Isoda et al, 2007; 
Ong et al, 2010). A major factor, as we see it, is whether we can develop confidence 
in ourselves as theorists and teachers, to think deeply about making sense in 
mathematics, so that we may encourage learners to have confidence in their own 
sense-making and use that confidence to complement the power of supportive 
experience to have the determination to make sense of problematic new ideas. 
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