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THE TENSION BETWEEN 
INTUITIVE INFINITESIMALS AND 

FORMAL MATHEMATICAL ANALYSIS 
Abstract: we discuss the repercussions of the development of infinitesimal 
calculus into modern analysis, beginning with viewpoints expressed in the 
nineteenth and twentieth centuries and relating them to the natural cognitive 
development of mathematical thinking and imaginative visual interpretations 
of axiomatic proof. 
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1. Klein’s reflections on “mystical schemes” in the calculus 
Infinitesimal calculus is a dead metaphor. In countless courses of instruction 
around the globe, students register for courses in “infinitesimal calculus” only 
to find themselves being trained to perform epsilontic multiple-quantifier 
logical stunts, or else being told briefly about “the rigorous approach” to limits, 
promptly followed by instructions not to worry about it. 

Anticipating the problem as early as 1908, Felix Klein reflected upon the 
success of a calculus textbook dealing in “mystical schemes”, namely 

the textbook by Lübsen [...] which appeared first in 1855 and which had for a 
long time an extraordinary influence among a large part of the public [...] 
Lübsen defined the differential quotient first by means of the limit notion; but 
along side of this he placed [...] what he considered to be the true 
infinitesimal calculus—a mystical scheme of operating with infinitely small 
quantities [...] And then follows an English quotation: “An infinitesimal is the 
spirit of a departed quantity” [6, p. 216-217]. 

In his visionary way, Klein adds: 
The reason why such reflections could so long hold their place [alongside] 
the mathematically rigorous method of limits, must be sought probably in the 
widely felt need of penetrating beyond the abstract logical formulation of the 
method of limits to the intrinsic nature of continuous magnitudes, and of 
forming more definite images of them than were supplied by emphasis solely 
upon the psychological moment which determined the concept of limit [6, p. 
217]. 

2. Interesting infinitesimals lead to contradictions 
In the closing months of World War II, the teenage Peter Roquette’s calculus 
teacher at Königsberg was an old lady trained in the old school, the regular 
teacher having been drafted into action. Roquette reminisces in the following 
terms: 

I still remember the sight of her standing in front of the blackboard w[h]ere 
she had drawn a wonderfully smooth parabola, inserting a secant and telling 
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us that Δy/Δx is its slope, until finally she convinced us that the slope of the 
tangent is dy/dx where dx is infinitesimally small and dy accordingly [14, p. 
186]. 

Roquette recalls his youthful reaction: 
This, I admit, impressed me deeply. Until then our school Math had consisted 
largely of Euclidean geometry, with so many problems of constructing 
triangles from some given data. This was o.k. but in the long run that stuff 
did not strike me as more than boring exercises. But now, with those 
infinitesimals, Math seemed to have more interesting things in stock than I 
had met so far [14, p. 186]. 

But then at the university a few years later, 
we were told to my disappointment that my Math teacher had not been up to 
date after all.We were warned to beware of infinitesimals since they do not 
exist, and in any case they lead to contradictions. Instead, although one 
writes dy/dx […], this does not really mean a quotient of two entities, but it 
should be interpreted as a symbolic notation only, namely the limit of the 
quotient Δy/Δx. I survived this disappointment too [14, p. 186-187]. 

Then, some decades later, the old lady turned out not to have been so far off 
the mark: 

when I learned about Robinson’s infinitesimals [12], my early school day 
experiences came to my mind again and I wondered whether that lady 
teacher had not been so wrong after all. The discussion with Abraham 
Robinson kindled my interest and I wished to know more about it. Some time 
later there arose the opportunity to invite him to visit us in Germany where 
he gave lectures on his ideas, first in Tübingen and later in Heidelberg, after I 
had moved there [14, p. 187]. 

The results of the ensuing collaboration were reported in [13] and [15]. 
Roquette mentions an infinitesimal calculus textbook published as late as 

1912, the year of the last edition of L. Kiepert [5]. He speculates [14, p. 192] 
that his old lady teacher may have been trained using Kiepert’s textbook. 

3. Courant and infinitesimals “devoid of meaning” 
Kiepert and other infinitesimal textbooks seem to have been edged out of the 
market by Courant’s textbook [3]. Courant set the tone for the attitude 
prevailing at the time, when he described infinitesimals as “devoid of any clear 
meaning” and “naive befogging” [3, p. 81], as well as “incompatible with the 
clarity of ideas demanded in mathematics”, “entirely meaningless”, “fog which 
hung round the foundations”, and a “hazy idea” [3, p. 101], while 
acknowledging Leibniz’s masterly use of them: 

In the early days of the differential calculus even Leibnitz1 himself was 
capable of combining these vague mystical ideas with a thoroughly clear 

                                                 
1 In English speaking countries, the German name ‘Leibniz’ is often transliterated to ‘Leibnitz’ to represent the 
sound rather than the original spelling. 
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understanding of the limiting process. It is true that this fog which hung 
round the foundations of the new science did not prevent Leibnitz or his great 
successors from finding the right path [3, p. 101]. 

How is it that they were in a position to find the right path? The Russian 
mathematician and historian Medvedev asks the million dollar question: 

If infinitely small and infinitely large magnitudes are regarded as inconsistent 
notions, how could they serve as a basis for the construction of so 
[magnificent] an edifice of one of the most important mathematical 
disciplines? [9, 10]. 

4. Vygodskiĭ: from biped back to quadruped? 
In a 1931 letter [8] to the mathematician Vygodskiĭ, Luzin presents a hilarious 
account of the reception of Vygodskiĭ’s infinitesimal calculus textbook in 
Soviet Russia. Vygodskiĭ dared to exploit actual infinitesimals. Luzin 
describes the reactions that ensued, in the following terms: 

I heard talk in Moscow about the restoration of the phlogiston2 theory in 
science and charges of decadence [8, p. 68]. 

A modern reader may need to be reminded that in Stalinist Russia, a charge of 
bourgeois decadence was not to be trifled with, and could lead to a lengthy 
term in Siberian bestiaria or worse. The defenders of ideological (and 
decidedly secular) purity did not stop at invocations of phlogiston: 

In Leningrad [...] I heard talk to the effect that while Darwin [traced] the path 
of man’s evolution from quadruped to biped, efforts are underway in 
mathematics to reverse this course [8, p. 68]. 

In a show of solidarity with Vygodskiĭ, Luzin proceeds to endorse a viewpoint 
strikingly similar to Cauchy’s 1821 text [1] (which was apparently unavailable 
to Luzin): 

Unlike my colleagues, I think that an attempt to reconsider the idea of an 
infinitesimal as a variable finite quantity is fully scientific, and that the 
proposal to replace variable infinitesimals by fixed ones, far from having 
purely pedagogical significance, has in its favor something immeasurably 
deeper, and that this idea is growing roots in modern analysis [8, p. 68]. 

Luzin notes that 
the idea of the actually infinitely small has certain deep roots in the mind [8, 
p. 68].3 

In a possible allusion to despotic pre-revolutionary Russia of his student years, 
Luzin notes: 

                                                 
2 Phlogiston was once thought to be a fire-like element contained within combustible bodies, and released 
during combustion, but became incommensurable 250 years ago. 
3 Lakoff & Núñez [7] would certainly agree. 
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The theory of limits entered my mind mechanically and crudely, not in a 
refined way but rather in a forced, police-like manner [8, p. 70]. 

The stark choice between Weierstrassian limits and infinitesimals came in 
Luzin’s sophomore year: 

When the professors announced that dy/dx is the limit of a ratio, I thought: 
“What a bore! Strange and incomprehensible. No! They won’t fool me: it’s 
simply the ratio of infinitesimals, nothing else.” [8, p.70.] 

Luzin’s appropriately sophomoric attempt to construct a simpler version of 
Weierstrass’s nowhere differentiable curve, by means of a diagonal “saw” 
(with numerous “steps” climbing along the diagonal of a square, see Figure 1) 
with infinitely many infinitesimal teeth, was patiently rebuffed by Professor 
Boleslav Kornelievich Mlodzeevskiĭ4 (whom we later refer to as M.) on the 
grounds that “the actually infinite does not exist”. 

1

1  
Figure 1. Luzin’s saw 

Unfazed, Luzin pursued M., after M.’s lecture on Cantor’s cardinalities and  ℵ0 . 
Luzin thought that 

These are complete contradictions: in analysis they say that every number is 
finite and modestly pass over in silence points at infinity on straight lines. In 
geometry, on the contrary, they keep on talking about points at infinity and 
deduce marvelous things.5 A week ago, Boleslav Kornelievich cut me short 
by explaining that the actually infinite does not exist’. And now he does it 
himself! [8, p. 72.] 

5. Luzin and his infinitesimal saw 
Encouraged by his Cantorian insight, Luzin confronted M., this time armed 
with a diagonal saw with what he claimed were countably many teeth. M., 
patiently, countered with the claim that Luzin’s saw is merely 
                                                 
4 Mlodzeevskiĭ, who brought the ideas of Hilbert and Klein from Göttingen to Moscow and was the first 
professor in Moscow to lecture on set theory and the theory of functions. 
5 Possibly an allusion to projective geometry. 
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verbal but not real... it is not genuine. [8, p. 73.] 

Luzin countered by asking whether 
the Weierstrass curve, is it genuine or logical?6 [8, p. 73.] 

At this point, M., beginning to lose patience, proceeded to contain Luzin’s 
diagonal saw in a highly eccentric ellipse with tiny minor half-axis ε, and 
pointed out that as ε becomes small, the ellipse shrinks down to the diagonal. 
No room for teeth! Not ready to give up, Luzin responded: 

This is indeed so if ε is finite, but if ε is infinitely small... [8, p. 74.] 

M.’s “storm of indignation” fell far short of what would one day become the 
post-revolutionary phlogiston/biped rhetoric: 

I am talking to you for half an hour about limits and not about your actually 
infinitely small which don’t exist in reality. I prove this in my course. Attend 
it— although for the time being I don’t advise you to do so—and you will be 
convinced of this... [8, p. 74.] 

Still unconvinced, Luzin launched into a long soliloquy about filling a cone 
with gypsum (plaster used for casts), about mathematical idealisation of 
chemical processes, and how, after removing the cast from the cone, 

we find out that we have not a cone but rather a solid, actually infinitely 
small... [8, p. 73.] 

This was to be Luzin’s final comment in that particular conversation. M.’s last 
suggestion, before stalking away, was that Luzin 

should bring him a jar of that kind of gypsum. [8, p. 76.] 

The remarkable conclusion of this exchange occurred some years later, when 
student Luzin attended a meeting of the mathematical society on Pfaff 
equations and sat at the back, unobserved by the professors, with M. sitting 
further forward. As the speaker adroitly manipulated numerous quantities of 
the form dx, δf, etc. on the blackboard, M., unaware of Luzin’s presence, 
remarked to his neighbor: 

I have always thought that the symbols for exact differentials are special 
symbols. Look at how he works with them! In his hands they are simply 
constant numbers: he adds, subtracts, multiplies, substitutes, and transforms 
them. One can completely forget their origin and operate with them as if they 
were constant infinitely smalls. [8, p. 77.] 

He continued, saying: 
it is not at all a hopeless attempt, in the spirit of Hilbert,7 to axiomatically... 
[8, p. 77.] 

                                                 
6 An allusion to Weierstrass’s example of a continuous but nowhere diferentiable function  
7 Hilbert exploited non-Archimedean extension of the reals at about the turn of the century in proving the 
independence of his axioms of geometry; M. was apparently aware of such a development. 
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but stopped when the speaker was disturbed by the conversation. At this point, 
Luzin recalled in his letter to Vygodskiĭ that, “A storm erupted in my mind”: 

So that’s what it is! They teach us, kids, one thing, and they, the grown ups, 
talk differently to one another. This means that, in fact, to judge by their 
conversations, things are not so absolutely determined. [8, p. 78.] 

With hindsight we know they are not. Luzin continues: 
I looked at them with blazing eyes. I don’t know what happened, maybe my 
stool squeaked … M. suddenly turned around, saw my blazing stare, leaned 
towards [his neighbor] and said something to him in a low voice. The latter 
replied in an equally low voice and they [both] fell silent. [8, p. 78.] 

As a professional mathematician, Luzin fully understood the need for 
formalism, but contrasted this with the need for understanding: 

I look at the burning question of the foundations of infinitesimal analysis 
without sorrow, anger, or irritation. What Weierstrass-Cantor did was very 
good. That’s the way it had to be done. But whether this corresponds to what 
is in the depths of our consciousness is a very different question. I cannot but 
see a stark contradiction between the intuitively clear fundamental formulas 
of the integral calculus and the incomparably artificial and complex work of 
their “justification” and their “proofs”. [8, p. 80.] 

We will return to the dialogue between Luzin and Professor M. in Section 10. 

6. Human thought processes and infinitesimals 
Luzin clearly identifies the schism between infinitesimals that seem to make 
intuitive sense, on the one hand, and the formal definition of limit that gives a 
sound basis for mathematical analysis, on the other. Once the real numbers 
have been formally constructed as a complete ordered field, it can be proved 
that there is no room for infinitesimals in the real number system, so their use 
was widely condemned. And yet ideas of arbitrarily small quantities continue 
to be useful in thinking about the calculus because they arise from the natural 
way in which the brain thinks about variables that become arbitrarily small. 

Mathematical thinking takes place in the human brain where signals take a 
few milliseconds to pass between neurons to build up a mental conception. 
Depending on the connections made it takes around a fortieth of a second to 
see an object and to recognize it. This process continues in time, and we are 
able to connect together our perceptions and actions as they change 
dynamically. It happens naturally when drawing a graph with a continuous 
stroke of a pencil, or looking along a graph to see its changing slope ([19], 
[4]).8 The natural concept of continuity emerges as a dynamic sense of 
movement over an interval of time and space and certainly not as a formal 
definition of a limit at a point. In the same way, when we consider a potentially 
infinite sequence of values 
                                                 
8 This analysis by Tall and Katz, developed in [19], is built on Donald’s notion of three 
levels of consciousness in [4].  
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  x1 ,   x2 ,..., xn ,... 

it is natural for us to imagine not just the distinct numerical values, but to think 
of the nth term  xn  as a dynamically changing entity. Empirical evidence shows 
how both learners and expert mathematicians imagine such a variable entity to 
be ‘arbitrarily small’ (see Cornu [2]). Infinitesimal concepts therefore arise 
naturally in human thought, causing a conflict between the natural thought 
processes of learners and the formal modes of proof of mathematical analysis. 

While mathematicians may learn to share their formal approach and use it 
with great success, the transition from intuitive mathematics full of imaginative 
ideas to formal mathematics based on formal definitions and logical step-by-
step deduction presents significant difficulties for many learners (see Pinto & 
Tall [11], Weber [22]). 

7. A new synthesis of intuition and formalism 
Foundational disputes among mathematicians are frequently formulated in 
purely mathematical terms. However, mathematicians involved in such 
disputes are not always effective in addressing the transition from intuition to 
rigour that may be so diffcult for learners. Yet the formal approach to 
mathematics formulated by Hilbert does not ask what the structures are, only 
what their properties are and what can be deduced from these properties. From 
this viewpoint, what matters is not what infinitesimals are, but how they 
behave. An infinitesimal ε is a (non-zero) element of an ordered field K where 
 −r < ε < r  for all positive rational numbers r. If K is an ordered extension field 
of the real field   , then an infinitesimal will satisfy  −r < ε < r  for all positive 
real numbers r. 

Infinitesimals cannot fit into the real number system itself, for if ε is a 
quantity where   0 < ε < r  for all positive real numbers r, then ε cannot be real, 
for then   r =

1
2 ε  is also real and smaller than ε. However, this does not rule out 

the possibility that an infinitesimal may be an element of an ordered field K 
which is an ordered extension of . 

In this case, any element k in an ordered extension field K of  is either 
infinite (meaning  k > r  for all   r ∈ , or else  k < r  for all   r ∈ ), or it is finite 
(meaning it lies between two real numbers  a < k < b ). It is straightforward to 
prove that a finite element k is precisely of the form  c + ε  where c is real and ε 
is either zero or infinitesimal.9 

For any finite element k, its ‘standard part’ is by definition the unique 
   c ∈,  written c = st(k), such that  k = c + ε  where ε is infinitesimal or zero. 

                                                 
9 We provide a brief proof. Let    S = {x ∈ | x < k} , then S is nonempty since it contains a, 
and is bounded above by   b ∈ , so S has a least upper bound c, and then the difference 
 ε = k − c  can be shown to be infinitesimal. 
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Figure 2. A helpful sliding vertical line 

As an example, consider the field (x) of rational functions in an indeterminate 
x. This field is an extension of the real numbers. The field can be ordered, by 
defining a rational function f to be ‘positive’ if it is positive in some open 
interval (0, a) for some positive real number a. A rational function, in this 
sense, is either zero, ‘positive’, or else  − f  is ‘positive’. 

The ordered field has a visual representation as graphs in the plane. For any 
positive real number k, the rational functions  y = k ,  y = x ,   y = x2  are ordered 
in the relation   0 < x2 < x < k . 

By drawing the vertical line x = v, the three rational functions meet the line 
in three points k, v, v2, where the point k is constant as v varies, but v and v2 are 
variable, see Figure 2. 

A further representation can be obtained by imagining the field (ε) as 
points on a number line. Clearly infinitesimals are not visible to the naked eye. 
However, the map    m :(ε)→ (ε)  given by 

  
m(x) = x − c

ε
 

maps c to 0 and  c + ε  to 1, thus separating out the images of c and  c + ε . 
Following this map by taking the standard part of the image (whenever the 
image is finite), we obtain    st(m(x)) ∈  (Figure 3). 

 
Figure 3. Visualizing points that differ by an infinitesimal: resolving infinite closeness 
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This gives a map to the real numbers which distinguishes the images of the 
points c and  c + ε . 

If we imagine such a line as an enhancement of the vertical y-axis, then this 
allows the axis to be imagined as a vertical line with all the elements of (x) 
placed upon it, where now   (0,c + ε)  is a fixed point at an infinitesimal distance 
ε from the real number   (0,c) . The point   (0,c + ε)  is indistinguishable from 
  (0,c)  to the human eye, but it can be distinguished by magnifying the line 
using the map    m :(ε)→ (ε)  on the second coordinate and taking the 
standard part to see a real picture. In this way, we can now imagine the vertical 
y-axis to be a line with fixed infinitesimals that, in a thought experiment, 
represent the ‘final’ position of the variable points on the vertical line x = v. 

This gives four isomorphic representations of an ordered field consisting of 
rational functions in a single element: 

(a) The symbolic system (x) of rational functions in an indeterminate x; 

(b) The graphical system (x) of graphs of rational functions in a 
variable x; 

(c) The system (v) of points on a line where some are constants (the 
real numbers) and other quantities are variable points determined by 
where a rational function in x meets the line x = v. These include 
infinitesimals such as v and v2, and infinite elements such as 1/v. 

(d) The elements in the ordered field (ε) where ε is an infinitesimal, 
which may be represented as fixed points on an extended number line 
that may be revealed by an appropriate magnification. 

In formal terms, all these systems have isomorphic structures that represent the 
same underlying axiomatic structure: rational functions in a single 
indeterminate (or variable) with real coefficients. As representations they have 
very different meanings, for instance, (c) has ‘variable’ infinitesimals and (d) 
has fixed infinitesimals, but as formal structures they are isomorphic. To 
favour one over another is a matter of choice rather than a matter of the 
underlying formal structure. 

8. Extending functions beyond the real numbers 
To be able to perform the process of differentiation using infinitesimal 
increments, one needs to be able to extend a given real function f from its 
definition at a real value x to a nearby value x + ε where ε is an infinitesimal. 
One can then attempt to define the derivative as 

  
′f (x) = st f (x + ε) − f (x)

ε
⎛
⎝⎜

⎞
⎠⎟

 

For example, if   f (x) = x2 , then   ′f (x) = st(2x + ε) = 2x . 
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If f is a rational function, it is easy to substitute x + ε for x in the extension 
field (ε) and compute the value of the function using algebra. However, more 
general functions such as   sin x  or  ex  cannot be extended in this field. 
Meanwhile, both extensions are possible in the field of series ((ε)) in an 
infinitesimal ε, which allow a finite number of terms in 1/ε, of the form 

  a−Nε
−N +…+ a −1ε

−1 + a0 + a1ε +…+ anε
n +…  

These form an ordered field in which ε is an infinitesimal and can be used to 
extend any function expressible as a power series to a function   f (x + ε) . This 
field was called the supperreals by Tall [17]. This is sufficient to deal with 
analytic functions (given by power series), which is essentially strong enough 
for combinations of standard functions in the calculus, but not for general 
functions in mathematical analysis. 

The more general problem is to extend every real function f to take on 
values in an extension field with infinitesimals. 

We could begin by working with all sequences of real numbers   (xn )  and 
then operate with them term by term. Then a sequence such as (1, 2, 3, ...) 
might be considered as an infinite number and its inverse would be 
 (1, 1

2 , 1
3 ,…)  which would be an infinitesimal. The constant sequence 

(k, k, k, …) for any  k ∈  could then be identified with k, to let us embed  in 
the set of all such sequences. The problem is that such a system does not 
operate as an ordered field. For instance, even though we we might like to 
think of the sequence (1, 2, 3, ...) as being bigger than any real number k, its 
initial terms might be less than k and the nth term would only exceed k once 
 n > k . 

The first step towards equivalence would be to say that two sequences (an), 
(bn) are equivalent if they are equal for all but a finite number of terms. If we 
denoted the equivalence class containing (an) by [an], then we would have 
[an] = [bn] if and only if an = bn for all but a finite number of n. 

This would give us a surprisingly good beginning to the problem, for if we 
let ω be the equivalence class of (1, 2, 3, ...), then we would have  ω > k  for 
any real number k because all but a finite number of its terms are greater than k 
(by identifying k with the sequence (k, k, k, …)). 

Furthermore  ω +1 would be (2, 3, ...), giving a situation in which every 
term of (2, 3, ...) is 1 bigger than the corresponding term of (1, 2, ...), so 
 ω +1>ω , unlike cardinal infinities, where  ℵ0 +1=ℵ0 . The term ω2 would be 
far bigger, 1/ω (the sequence  (1, 1

2 , 1
3 ,…) ) would be infinitesimal and 1/ω2 

would be a smaller infinitesimal still. We would even have a natural extension 
of a set D to the larger set *D consisting of all equivalence classes [xn] where 
  xn ∈  and any function    f : D →   can be extended to    f : *D →   by 
defining f([xn]) to be the equivalence class [f(xn)]. 

We still need to do more. As well as dealing with sequences that nicely tend 
to a limit, we need to deal with every sequence of real numbers, no matter how 
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it is defined. For instance, the sequence (0, 1, 0, 1, 0,...) equals 0 on the set O of 
odd numbers, but equals 1 on the set E of even numbers. We need to assign it 
to an appropriate equivalence class. If we make the decision focusing on the 
odd numbers, it will be equivalent to 0, but if we make a decision focusing on 
the even numbers, it will be equivalent to 1. The consequence is that to define 
the equivalence relation fully, we must make a choice. 

Making such a choice may seem strange at first, but it is only a technical 
device to make a decision in all cases so that we decide that every [xn] 
represents a specific finite or infinite quantity. Since the set of terms in the 
sequence (xn) is infinite, then at least one of the following three possibilities 
must hold: 
 (i) there is an infinite subsequence tending to −∞ . 
 (ii) there is an infinite subsequence tending to +∞ . 
 (iii) for some    A, B ∈ ,where A < B, there is an infinite number of terms 

between A and B. 
All three possibilities may occur, as in the case of the sequence (an) given 

by  (−1,2, 1
3 ,−4,5, 1

6 ,…) , where  an = −n  for   n = 3N − 2 ,  an = n  for 
  n = 3N −1, and   an = 1

n  for   n = 3N , as N increases through 1, 2, ... . 
In general, if case (i) holds, then we may choose [an] to be negative infinite 

by taking the decision set to be the set of n for which a subsequence of terms 
tends to −∞ . (In the example, the decision set (1, 4, 7, ...) gives   [an ] = −ω . In 
case (ii), we may choose [an] to be positive infinite. (In the example, the 
decision set (2, 5, 8, ...) gives   [an ] =ω . In case (iii), the terms have a 
subsequence tending to a finite number L where  A ≤ L ≤ B  and we may choose 
to make the decision on the set related to this subsequence, which gives [an] 
equal to L plus an infinitesimal. (In the example, the decision set is (3, 6, 9, ...), 
L = 0 and [an] is the infinitesimal 1/ ω.) 

The major problem is to choose all the decision sets in such a way that all 
the choices can be made in a consistent manner. 

9. Making a serious choice 
To make a coherent decision in all possible cases requires us to formulate a full 
collection of decision sets and say that a property P(x) is true for a sequence 
x = (xn) if P(xn) is true for all n in a particular decision set. If S is chosen to be a 
decision set, we will say that S is decisive. 

First, we stipulate that a finite set cannot be decisive, while every cofinite 
set S (a set consisting of the whole of  except for a finite number of elements) 
is necessarily decisive: 
 (0) If S is finite, then S is not decisive. 
 (1) If  \ S is finite, then S is decisive. 
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Next, if we decide that P(x) is true because P(xn) is true for all n in a decision 
set S, then it may also be true in a larger set T. For the sake of coherence, T 
should also be chosen to be decisive: 
 (2) If S is decisive and   S ⊂ T ⊂  , then T is also decisive. 
We further require that 
 (3) If S and T are decisive then  S ∩T  is decisive. 
Thus, the intersection of a pair of decisive sets should be decisive, as well. A 
collection of sets satisfying (0)–(3) is a filter on . It is relatively easy to 
construct a filter step by step. Just start with property (1) to include all subsets 
of  whose complements are finite. Then, if any new set U is added, so must 
all sets of natural numbers that contain U, and any intersection of U with a 
subset already in the filter. For example, if we start with the sets required by 
(1) and add the set E of all even numbers, then we need to include any set 
containing the even numbers, as well as any subset of these sets formed by 
omitting a finite number of elements. The new set of sets now satisfies (0)–(3) 
and so it is again a filter. 

The serious problem comes with expanding such a filter to satisfy the 
following additional requirement: 
 (4) For each subset S of , one of the two sets S and \S must be 

decisive. 
This requires an infinite number of decisions to be made and seems impossible 
for a human being to accomplish in a finite lifetime. But that does not mean 
that we cannot imagine it happening. 

A filter satisfying properties (1)–(4) is called a (nonprincipal) ultrafilter.  
(Axiom (4) now renders (0) redundant as it follows from a combination of 

(1) and (4).) 
The existence of such an ultrafilter is guaranteed by the axiom of choice, 

see Tarski [20]. The choice is not unique. For example, if we choose the odd 
numbers to be decisive, then for a = [1, 0, 1, 0, ...] and b = [0, 1, 0, 1, ...] we 
have a > b and, if not, then by condition (4), the set of even numbers is 
decisive and we have b > a. 

The set of equivalence classes is denoted by * and is called a field of 
hyperreal numbers.10 The properties (1)–(4) guarantee properties that might be 
expected. For instance, comparing the element ω = [1, 2, …,  n, …] with 
k = [k, k, …, k, …] gives n > k for all but a finite number of n, so by property 
(1), we have ω > k for all real numbers k and hence ω is infinite. Similarly 1/ω 

                                                 
10 We say a field of hyperreals, rather than the field of hyperreals, because different choices 
are possible. If one assumes that the continuum hypothesis is true, then our ultrapower 
construction produces a unique ordered field up to isomorphism. 
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is a positive infinitesimal because 0 < 1/n < k for all n > 1/k for any positive 
real number k. 

Such a system of hyperreals together with the extension of any subset D to 
the subset 

   *D = {[xn ]∈* | xn ∈D}  

gives an extended map    f : *D → *  defined by   f ([xn ]) = [ f (xn )]. 

10. Looking closely at Luzin’s saw 
Returning to the earlier difference of opinion between Luzin and Professor M., 
we now see that M. is correct in declaring that infinitesimals cannot be 
perceived nor made out of gypsum at their original size. However, the 
subsequent development of mathematical theory shows that he rejects the 
possibility of allowing students to give infinitesimals a mathematical meaning 
that can be perceived not only in imagination but also in a physical picture. 

Let us imagine a finite sawtooth with n equal steps from (0, 0) to (1, 1) as in 
Figure 4. 

1

1

!

 

Figure 4. Luzin’s finite saw, parametrised as     n : [0,1] → 2  

This can be parametrised as 

    n :[0,1]→ 2  
by tracing along it with a finger in time t from 0 to 1 in which, for k = 0, ..., 
  n −1, the kth step begins at the point (t, t) at t = k/n, moves up to   (t,t +

1
n )  and 

then to   (t +
1
n ,t + 1

n )  at time   t +
1
n . 

The graph of     n (t)  for 0 ≤ t ≤ 1 is the nth finite Luzin saw drawn in the 
coordinate plane. His saw with infinitesimal teeth may be conceived as   N  for 
infinite    N ∈* . This is quite natural in   *2 , but as Luzin envisaged it, he 
thought of N as being a countable set, and N cannot be an infinite cardinal, 
because an infinite cardinal does not have an inverse 1/N. However, this does 
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not mean he cannot imagine infinitesimal quantities in an extension field, only 
that there is still work to be done to formulate a formally coherent structure 
(such as the hyperreals). 

Professor M. is correct in asserting that the limit of    ( n )  is the straight line 
joining (0, 0) to (1, 1). However, the graph of   N  in the extended   *2 -plane 
has an infinite number N of saw-teeth. The kth sawtooth (where k may now be 
finite or infinite) starts at (t, t) for t = k/N, moves up to   (t,t +

1
N )  and then to 

  (t +
1
N ,t + 1

N )  at time   t +
1
N . 

When we magnify by the factor N pointing at   ( X ,Y )  where  X = k
N , 

 Y = k
N , we get a map    m :*2 → *2 in the form 

  m(x, y) = (N (x − X ), N ( y − Y )) . 

which gives 

  m( X ,Y ) = (0,0) , and 
  
m( X + 1

N ,Y + 1
N ) = (1,1)  

so that the sides of the saw-tooth of size 1/N are magnified to unit lengths, 
giving the picture in Figure 5. 

!
!

!

!
!

m X Y( , )

m X N Y N( , )1 1

( , )X Y

"

 
Figure 5. Luzin’s infinitesimal saw 

This reveals that the original line seen through perceptual human eyes (without 
magnification) does indeed look like M.’s diagonal line and, from M.’s 
viewpoint seeing only points in , the limit of the finite saw-teeth    ( n ) is 
indeed just the diagonal line. In the ‘real’ world of Cantor, with only the 
complete ordered field , Luzin would have to work a little harder to give an 
everywhere continuous nowhere differentiable curve. Rather than work with 
the luzin sawteeth along the diagonal, let us look look at a sawtooth along the 
real line to get the first saw-tooth 

   
s1(x) =

x      for 0 ≤ x ≤ 1
2

1− x for 1
2 ≤ x ≤ 1

⎧
⎨
⎩⎪

, s(n + x) = s(x)  for x ∈ . 
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And then define successive saw-teeth as 

  sn (x) = s1(2n−1 x) / 2n−1 . 

These give successive teeth half the size of each previous one (figure 6). This 
variant of Luzin’s finite saw-teeth has limit zero as n increases: 

  
lim
n→∞

sn (x) = 0 , 

to give a straight line, just as M. declared it would be (Figure 6). 

… limit

… 

s1 s2 s3 s4

 
Figure 6: The real limit of Luzin’s sawteeth using M.’s mathematical analysis 

However, if we add together the saw-teeth to get 

  
bl(x) = lim

n→∞
sn (x)

k=1

n∑ , 

then we get the blancmange function [18], identified by Takagi [16] in 1903, 
re-invented and generalized by van der Waerden [21] in 1930. This function is 
everywhere continuous and nowhere differentiable (Figure 7). 

!!!

"#$%&%'!( !()!* !()!*)!+ !()!*)!+)!,

 
Figure 7: The real limit adding Luzin’s sawteeth 

to give a real continuous, non-differentiable function 

The moral here is that the context in which one is working affects the nature of 
the mathematics. If one works in a context that only allows a complete ordered 
field , then M. is totally vindicated, along with Cantor and the mathematical 
culture of standard analysis. However, in the broader context of formal 
mathematics in extension fields of , infinitesimals must occur. Here the 
intuition of Luzin can be formally defined in an extended system (that he did 
not have at the time) in which the graph of   N  has infinitesimal steps as he 
suggested. Furthermore, these steps can be represented in a physical drawing 
using a formally defined magnification, for all to see. 

11. Conclusion 
The approach outlined here allows the handling of sequences tending to zero or 
to infinity to be conceived in terms of infinitesimal and infinite quantities in a 
formal manner that is consonant with intuitive ideas of infinitesimals and 
infinite numbers in the calculus. The construction requires standard set theory 
together with the axiom of choice. Adjoining the axiom of choice does not 
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introduce any contradictions in the sense that if standard set theory is 
consistent, so is the system when the axiom of choice is added. 

While Professor M. and his modern counterparts believe that they are 
protecting the purity of mathematics by telling students that ‘the actual infinity 
does not exist’, this denies their students’ right to imagine infinitesimal and 
infinite quantities in their mind’s eye and to link their intuitive vision at some 
stage to a full formal approach. 

Ideas of infinitesimals being generated by ‘variables that tend to zero’ were 
introduced by Cauchy and offer a meaning that is still used in applications 
today. Likewise ‘variables that can be arbitrarily small’ evoke a natural sense 
of dynamic limit processes appropriate for the calculus that can later be 
transformed either to standard arguments in mathematical analysis or 
infinitesimal methods based on the hyperreals. Meanwhile, as we saw in the 
structure theorem for any ordered extension field K of   , any such field can be 
imagined as an enriched number line with fixed infinitesimals that can be 
distinguished using a visual picture of a formal magnification. Moreover, the 
conceptions of infinitesimals as variables or as fixed quantities are different 
representations of the same underlying concept because any ordered field 
extension can be visualized as an enriched number line and magnified to see its 
infinitesimal quantities. 

Most modern mathematicians now admit the axiom of choice, in the 
knowledge that it offers theoretical power without introducing contradictions 
that did not exist before. Is it not time to allow infinitesimal conceptions to be 
acknowledged in their rightful place, both in our fertile mathematical 
imagination and in the power of formal mathematics, enriched by the axiom of 
choice? 
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