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In this paper [1], I formulate a cognitive concept that offers
a simple unifying foundation for the most sophisticated level
of development in the growth of mathematical thinking
while also having implications for mathematics at all lev-
els. It relates to my formulation of three distinct worlds of
mathematical thinking (Tall, 2004), which in turn links nat-
urally to a wide range of theories of cognitive development
[2], some of which I discuss in this article. The idea offers
common ground for all these theoretical frameworks, relat-
ing the development of human thinking to the structure of
mathematical concepts. It enables us to respond to deep
questions about the nature of mathematics itself in an essen-
tially simple, structured way.

For example, “Is mathematics discovered or is it invented?”
“Does it exist out there in some pure platonic world, or is it
constructed by the embodied mind of Homo Sapiens?” Con-
troversy over the possible responses to these questions has
continued over the years and is more than just a philosophi-
cal argument between intellectuals, for it affects all our
students in the way in which mathematics is taught and learnt.

“Is mathematics something pure and abstract that we trans-
mit to our children, or is it something that they construct for
themselves?” “Is mathematical truth to be presented as 
an abstract logical argument or does it require a meaningful
representation?” These problems have a relevance at all
stages of mathematical learning, from the explorations of 
the young child, the mathematical techniques taught in
school, open-ended problem-solving activities, the growing
sophistication in mathematics as the learner meets new sit-
uations, through to mathematical research at the frontiers of
knowledge.

We have a conundrum. Mathematics is considered by
some to be a human creation, building from sensori-motor
origins to higher levels of mathematical research (Lakoff &
Núñez, 2000). Others see mathematics as an abstract ideal,
with a truth and beauty that mere mortals only discover, 
not invent (Jaffe & Quinn, 1993). These two apparently
opposing views need not be in total conflict, as we may real-
ize by considering the nature of the common mathematics
that we share.

While each of us builds our own mental constructions, the
concepts that we develop, say in counting, one, two, three, …
with each number followed by a new number, different from
all of those that came before, the structure we obtain is essen-
tially unique. It can be formulated axiomatically as the Peano

Postulates, although such a formality is not necessary to real-
ize that just as two and three make five, taking three from
five will always leave two. Because we all work with essen-
tially the same system, the underlying structure that we
‘construct’ is the same for us all, and therefore may also be
seen as being independent of a particular individual.

This is not a phenomenon that occurs only at the highest
levels of mathematical thinking, it enters the lives of every
learner as they realize that mathematical operations are not
arbitrary, but have inevitable relationships that work in a
particular context. It occurs when a child notes a symmetry
in an isosceles triangle cut out of paper and folds it down
its middle to see that not only do the sides coincide, the base
angles are also equal. It occurs when a Brazilian street child
uses practical mathematics to sell cigarettes and give the
correct change.

In Tall (2004), I formulated the theoretical framework of
‘three worlds of mathematics’ that offers a long-term view
of conceptual development as the individual matures from
child to adult. It is based on human embodiment, building
from sensori-motor origins, developing in parallel through
sensory perceptions of shape and space on the one hand and
motor activities such as counting and sharing, leading to
arithmetic and algebra on the other. Later in development,
mathematical thinking can be transformed into a formal
mode of operation based on axiomatic definition and math-
ematical proof.

This framework reveals three quite different long-term
developments of mathematical ideas, one through refine-
ment of ideas about space and shape that are verbalized and
later transformed into various forms of geometric inference
including Euclidean proof, one through encapsulating math-
ematical processes as manipulable concepts in arithmetic
and algebra, and one that develops much later in specialist
pure mathematics from formal definitions and deducing the-
orems using mathematical proof.

Now I had three ways of developing mathematical think-
ing when I was seeking a single underlying foundation. As
I reflected on each of these, one single idea emerged that
offered the key to the long-term sophistication of mathemat-
ical thinking, to the fundamental nature of mathematics that
reveals its essential quality. It is the notion of a crystalline
concept.

This is a phenomenon that we construct as a thinkable
concept based on our human perception and action, which
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develops an increasingly sophisticated structure as we com-
press knowledge and link ideas together. It is widely found
in all mathematics and is best introduced initially in terms of
examples.

Choices and consequences in mathematics
In mathematics we can make choices. The Egyptians chose
to represent whole numbers with icons for 1, 10, 100

and so on; the Babylonians made marks on clay
tablets in base 60; the Greeks used the 24 letters of their
alphabet, plus three phoenician letters to give 27 symbols for
the numbers 1 to 9, 10 to 90 (in tens) and 100 to 900 (in hun-
dreds); the Romans used a different system with symbols in
fives and tens, (I, V, X, L, C, D, M); Mayans worked in base
20, the Chinese and the Hindus developed base ten systems,
with the Hindu-Arabic numerals becoming the chosen sys-
tem in modern western civilizations.

Each civilization introduced not only different notations
but also different ways of computation—such as the method
of duplication for multiplication and division in ancient
Egypt, or the various forms of abacus in many countries
around the world.

However, despite this variety of choice, when it comes to
arithmetic, whatever system of representation is used, the
arithmetic is always the same. Two and two always makes
four. No one can choose the result to be five. 

The flexible properties of numbers and arithmetic are
enshrined in the notion of procept (Gray & Tall, 1994), which
recognizes that the symbols operate dually as process and con-
cept in precise ways. It is not just that 2 + 2 is 4, but that if 2
is taken from 4 then 2 remains. The number 4 is also  3 + 1 and
1 + 3, or 2 x 2, or 8 divided by 2. As we make mental calcula-
tions, to calculate 8 and 6, a child may know that  8 + 2 is 10
and that 2 from 6 is 4, so 8 + 6 is 10 + 4 which is 14. This
tight knowledge structure is known as a procept. It connects
together arithmetic relationships in a precise manner that is a
consequence of the natural relationships between numbers.

The notion of procept is our first example of a crystalline
concept. A crystalline concept may be given a working def-
inition as “a concept that has an internal structure of
constrained relationships that cause it to have necessary
properties as a consequence of its context.” Flexible arith-
metic is powerful because of the internal crystalline
structures within and between number concepts.

Making choices in various realms of endeavor
The choices made in mathematics are different from choices
in other forms of human activity. For instance a Japanese
Haiku consists of three lines with 5 syllables, 7 syllables and
5 syllables. It is a framework designed to give a certain bal-
ance and shape to a poem that is euphonious but arbitrary.

An American blues format consists of 12 bars with a spe-
cific chord sequence underlying music that is endlessly
varied at the choice of the performer. A popular song has a
chorus of 32 bars where the first, second and final set of 8
bars have similar formats and the third set (the “middle
eight”) is a contrasting melodic idea. But that does not stop
creative people doing something different, especially when
there is an established convention that is expected and some-
thing different is sensed as intriguing and creative.

A waltz is an elegant three beats in a bar, but Tchaikovsky
wrote a flowing waltz movement in his Fifth Symphony
with a flexible five-beat rhythm of two beats plus three. Pop-
ular music regularly uses four beats in a bar, but Dave
Brubeck’s Take Five sounds innovative with its rhythmic
groups of five. The Beatles All You Need Is Love has its basic
four-beat rhythm interpolated with extra phrases with a dif-
ferent rhythmic pattern. Hungarian folk dancing has intricate
rhythmic groupings that feature in the music of Bartók.

Art changes over the years as painting techniques are
developed from essentially flat representations to a three-
dimensional sense using parallel lines meeting in a
vanishing point.  Perspective changed in the modern works
of Picasso painting new images with simultaneous views
from different directions.

Poetry, music and art demand fresh approaches as creative
individuals invent new ways that break old rules. Mathe-
matics too invents new ways of working that break old rules.
The limited solutions of algebraic equations representing
lengths and areas are transformed into a wider context
allowing negative or complex solutions. The Euclidean
notion of parallelism is complemented by the non-euclid-
ean geometries of Bolya and Lobachevsky. The dynamic
concepts of continuous variation in calculus are transformed
into the epsilon-delta logical approach in analysis. Infini-
tesimals are banned by Cantor and yet are later validated in
the non-standard analysis of Robinson.

Each of these involves a new way of conceiving ideas in a
new context. At each stage the new way of thinking evolves
its own crystalline structure of inevitable relationships.
Mathematicians may choose what they wish to study and
how they formulate their ideas, but they then discover that
the new context entails implications that follow inexorably
from their assumptions.

Christopher Zeeman, who proved new theorems about
concepts in higher dimensions, including his theorem on
unknotting spheres in five dimensions was asked whether he
thought that mathematics was discovered or invented. He
replied:

Both. Sometimes you invent it; sometimes you discover
it. You have to invent maths to get a solution to a prob-
lem but, in the process, I often discover a whole lot
more which I didn’t expect. (Arnot, 2005, pp. 20-21)

As research mathematicians shift to work in a new context,
the nature of the concepts they consider may take on differ-
ent forms, but those forms follow from the axiomatic
framework of definitions and theorems.

In Euclidean geometry, the relationship between concepts
is formulated through Euclidean proof. Constructions that
focus on certain aspects necessarily imply others. For
instance, if two straight lines in a plane never meet, then
other properties necessarily follow: corresponding angles
where a line cuts the two parallels are equal, alternate angles
are equal, and interior angles add up to 180°. This leads to a
relational view of these concepts as the various properties
are seen to be related to each other (see Figure 1).

These various meanings for parallelism have an even
more sophisticated meaning. The four given properties of
parallel lines are all equivalent. Any one could be taken as
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the basic definition and then the others all follow. A higher
level of thinking is then possible. Not only are these prop-
erties equivalent, they are simply different aspects of the
same underlying crystalline concept: the concept of paral-
lel lines in Euclidean geometry.

The same sequence of development in meaning occurs
with other geometric concepts such as triangles, squares,
rectangles, polygons, circles, spheres, polyhedra and so on.
Children sense these as whole gestalts with various simul-
taneous properties. They learn to draw figures by freehand,
describe their properties and begin to construct more precise
figures using ruler and compass. A construction of a figure,
such as an isosceles triangle with two equal sides, necessar-
ily has other properties; for instance it will have two equal
angles and be symmetric about an axis through the vertex
meeting the base at right angles. Ideas such as congruent
triangles can be verbalized and used to show that if figures
have certain properties, then other properties must follow.
Some properties may be seen to be equivalent and then the
whole thing may crystallize into a pure abstraction in the
form of a platonic object.

Alternative possibilities occur in other geometries. The
concept of “parallelism” is not relevant in projective geom-
etry where two distinct lines always meet in a single point,
so there are no parallel lines. In spherical geometry, a “line”
is a great circle that offers the shortest distance between two
points. In the absence of parallelism, other familiar concepts
of Euclidean geometry no longer hold. For instance, the
notion that the sum of the angles of a triangle is 180° is no
longer true for spherical triangles (made up with three great
circles) where the sum of the angles in radians equals

where Δ is the area of the triangle and r the radius
of the sphere.

This underpins the idea that a crystalline structure
depends on the context. In different kinds of geometry the
mathematical concepts have a specific structure with infer-
ential links that are context-dependent.

Crystalline concepts throughout mathematics
We have now seen crystalline concepts as procepts in arith-
metic and platonic objects in geometry with structure
dependent on the context. The same occurs in axiomatic for-
mal mathematics where a mathematician may choose to
define an axiomatic system to have whatever axioms are
desired, but then the consequences of those definitions fol-
low from the context specified by those axioms.

The choices for axioms are not entirely arbitrary. One
might, if one had nothing better to do, propose a new
axiomatic system by choosing at random, say a certain num-
ber of axioms from the list of axioms for an ordered field.
However, the theorems that one might prove may or may not
have any wider value. Axiomatic systems are chosen more
usually to reflect a particular area of interest, to select appro-
priate properties as a foundational list from which other

properties may be deduced and connected together in a
coherent knowledge structure based on the selected defini-
tions and mathematical proof. For this reason, axiomatic
systems that are chosen for study invariably incorporate a
crystalline structure of deduced relationships.

Often the particular axioms chosen will involve flexibility in
choice. For example, in the context of an ordered field, the
axiom of completeness may be defined in various equivalent
ways, by declaring that “an increasing sequence bounded
above has a limit less than or equal to any upper bound”, “a
decreasing sequence bounded below has a limit greater than
or equal to any lower bound”, “a non-empty set bounded above
has a least upper bound”’ “a non-empty set bounded below has
a greatest lower bound’, “a cauchy sequence has a limit”.

All of these equivalent axioms are instances of the same
underlying concept. Furthermore, not only are these differ-
ent expressions of completeness equivalent within the
context of an ordered field, the concept of complete ordered
field is itself crystalline. Any two axiomatic systems satis-
fying the axioms for a complete ordered field are
isomorphic. In other words, they may be conceived as a sin-
gle underlying crystalline concept. This leads to more
powerful ways of thinking at a higher level, so that, in mak-
ing deductions, one does not need to always refer back to a
specific axiom, but may use any equivalent form instead.
At this higher level of thinking, mathematics is not only
more complex, it is also becomes more simple in operation.

Relationships with other theoretical frame-
works
The term “crystalline” first arose in a conversation with
Anna Sfard in my home in 1990, as we discussed her use of
the term “condensation” to refer to the ability to deal with a
given process in terms of input/output without necessarily
considering its component steps (Sfard, 1991). I suggested
that the metaphor of “condensation” changes a gas into a liq-
uid that could be put in a container and poured. I put forward
the idea that this metaphor could be extended to speak of
“crystallization” into a solid object that could be manipu-
lated. At the time, there were already competing terms for
the process of transforming mental processes into objects,
including “reification” (Sfard, 1991) and “encapsulation”
(Dubinsky, 1991), so a further term was hardly welcome.

I now use the term “crystalline” with a far wider mean-
ing than the encapsulation of a process as an object, just as
Dubinsky (Czarnocha et al., 1999) recognized that, in his
APOS theory, an object could be encapsulated not only from
a process, but also from a schema. More generally, I see the
term “crystalline” to apply to a mathematical context that
constrains a particular knowledge structure to have neces-
sary properties that can be determined from the situation. It
does not need to be the result of an encapsulation of a
process: it can be any coherent situation in which the struc-
ture of relationships is entailed by the context. In particular,
it applies to the nature of a mathematical structure in any of
the three worlds of mathematics, be it the categorization of a
specific object or relationship in geometry, the computa-
tional and manipulative relationships in arithmetic and
algebra, or the defined concepts of formal mathematics.

Figure 1. Equivalent properties of parallel lines.
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The relationship of the three worlds of mathematics to var-
ious other theoretical frameworks has already been intimated
in an earlier article in For the Learning of Mathematics (Tall,
2004). While process-object encapsulation theories are
related to the development of the proceptual symbolic world
of arithmetic, algebra and subsequent symbolic develop-
ments, my own personal development in thinking of the
conceptual embodied world of space, shape and thought
experiment was inspired by the work of van Hiele (1986).

Subsequent research (e.g., Gutiérrez et al., 1991) has
shown that the van Hiele levels are not a discrete sequence of
developmental stages, but this does not invalidate the broad
sweep of van Hiele’s theory as the child becomes engaged
with increasingly sophisticated ways of thinking, from ini-
tial recognition of shapes, through verbal descriptions of
properties, definitions and practical constructions, then on to
Euclidean proof. Van Hiele goes on to a higher level of
rigour, which relates within the three-world model to a shift
to the axiomatic formal world, while other more advanced
forms of geometry, such as spherical geometry and projective
geometry can be performed by construction either in embod-
iment, symbolism or a blend of both without necessarily
being reformulated in terms of axioms and definitions.

The SOLO Taxonomy of Biggs and Collis (1982) started
out as framework to judge the Structure of the Observed
Learned Outcomes, in which responses to assessment are
seen to be unistructural (one aspect), multistructural (several
aspects), relational (aspects related together), extended
abstract (a single coherent whole). This development is seen
to occur in a sequence of stages (sensori-motor, ikonic, con-
crete symbolic, formal, post-formal) after the fashion of
Piaget and Bruner, but differing in certain details. Further-
more, each cycle was claimed to develop through successive
unistructural, multistructural, relational (UMR) levels before
leading to the extended abstract level that becomes the foun-
dation for the next stage.

Pegg and Tall (2005) reorganized the SOLO framework in
which the UMR cycle applied not to each stage, but more
directly to the developing meaning of individual concepts.
From this viewpoint, the construction of crystalline concepts
fits in a system of increasingly sophisticated knowledge
including:

• a unistructural situation in which ideas are sensed
as single wholes with observed properties that may
be sensed but may not as yet be verbalized or con-
nected,

• a multistructural situation in which many different
aspects are described and occur simultaneously,

• a relational structure in which these aspects begin
to be related one to another, 

• an equivalence where two-way relationships reveal
the same general structure expressed in different
ways,

and

• a crystalline concept where all these equivalent
ideas are seen as different aspects of the same
underlying conceptual entity.

For instance, in Euclidean geometry, the van Hiele levels
follow this pattern as an overall arch, with level one (per-
ception) seeing figures as a gestalt wholes, level two
(description) describing properties of individual figures that
occur at the same time, then level three (definition) intro-
duces verbal definitions that enable figures to be constructed
by ruler and compass constructions and level four (Euclid-
ean proof) proves theorems that are built into a coherent
framework. At an even higher level, the figures may be con-
ceived as platonic objects that have many properties all of
which are interrelated by Euclidean proof.

I do not find the idea of straight-jacketing conceptual
development as a sequence of discrete stages that must be
taught in sequential order to be very helpful. Human learn-
ing is more complex than that. The natural development of
the brain over time involves making new mental links as
successful neural connections are strengthened and previ-
ously disparate ideas are connected together to resonate in
more stable structures. This means that, even though one
may not insist on a rigid sequence of discrete stages, there
is an underlying neurological development in the brain of
each of us that offers the possibility of increasingly com-
pressed and connected knowledge structures.

In this way, it is possible to see a broad spectrum of devel-
opment of a structure of knowledge where a unistructural
conception involves a broad sense of a structure as a whole,
which may result in the reporting of some isolated property
in a test. A multistructural conception involves a range of
properties that can be described but are not yet linked
together. As these properties begin to be distinguished and
verbalized, they can be used to describe situations in an
increasingly relational manner. As I see it, the final extended
abstract development expressed in the SOLO taxonomy can
now be seen to grow out of the relational stage, first where
two-way relationships lead to the recognition of equivalent
concepts in which specific instances are seen as different
examples of the same general concept. There is then the pos-
sibility of a more compressed stage in which these
equivalences are seen to represent an underlying crystalline
structure, be it a platonic figure, a procept or a formally
defined concept.

In my own approach to learning (for instance in a “sensi-
ble approach to calculus”, Tall, 1985, 2010), rather than an
APOS approach in which the derivative is seen as the limit
of encapsulating a process as an object, I see a global
embodied view of the graph and use the human sense of
moving the eye along the graph to see the changing slope
and record its value as a new graph. To do this I first intro-
duce the idea of a locally straight function f as one which,
when its graph is magnified, looks less curved until, at suit-
ably high magnification, it continues to look straight and so
has a specific numeric slope                               which, for
small values of h stabilises to be seen as the slope function.
I denote the slope function of f as Df, where the D is the
operation of looking along the graph to see the stabilized
slope graph. This starts with an object — the graph of a
(locally straight) function ƒ — and produces a new object,
the graph of Df. The problem now is not to prove that the
new object ‘exists’ as it can be seen, embodied as an object
on a visual display. The problem is to compute it numerically

( f (x + h)� f (x))/h
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f (x) = x2

  Df (x) = 2x
�  2x + h
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as accurately as desired or, better still, symbolically as a
formula. For instance, if I look along the graph of                  ,
then the slope function has the formula              and for small
values of h, it stabilizes on the slope function                   .

The important thing here is not the search for an elusive
philosophical limit concept that is only potentially realizable
as a potentially infinite limiting process, but as an imagina-
tive mental object—the rate of change of the function f
drawn as Df. 

More generally, I see mathematical activity operating at
many different levels, in different cultures, at different levels
of sophistication. In introducing the term “crystalline con-
cept”, I seek common ground that has relevance across a
wide range of theories.

Relationship with other theories
My original submission for this paper was interpreted by one
reviewer as being “driven by an idea of universalizing truth
where mathematical statements refer to something absolute
— a substantialist idea of mathematics […] written within
the well-known rhetoric of formalizing epistemologies that
recent works in anthropology, sociocultural approaches, and
ethnomathematics have proven as partial and biased.” This
reviewer is welcome to express a personal opinion of my
purpose; however, this opinion also carries its own form of
bias and misconstrues my intentions.

My personal experiences come from being a mathematician
who became interested in how people think mathematically
and who has worked with children and students of all ages in
a vast range of situations and cultures around the world. I
care very much about how individuals in different circum-
stances work to make sense of mathematics. I see locally held
opinions expressed strongly that have a compelling sense of
validity. These include the use of a particular context of prac-
tical mathematics that works in a given situation.

I do not personally hold a Platonist view of mathematics
as being independent of human thought, because I can see
how Platonism arises naturally from human thought
processes as the child matures in imagination by focusing on
particular properties of space and shape, to imagine concepts
such as points with position but no size, or lines as length
without breadth. I see regular mathematical ideas building
naturally from sensori-motor foundations with its dual func-
tion of making sense of perceptions through conceptual
embodiment and learning to build operations out of motor
skills such as counting and manipulating symbols to con-
struct more compressed forms of mathematical thinking.
Later I see new forms of mathematics based on linguistic
skills and logical forms of argument that develop new ideas
that are no longer the same as the “natural” ideas of our 
perceptions and actions, yet remain based in human mathe-
matical thought.

Underlying any mathematics, in any situation, are struc-
tures that arise which operate in ways that are a consequence
of the context. As soon as anyone begins to see a pattern or
a necessary consequence of a mathematical situation, they
are beginning to sense an underlying structure, perhaps one
that is not yet even articulated.

I remember very clearly a lecture given by John Mason
in which he expressed a beautiful idea that continues to res-

onate in my mind not just as a phrase but as the intention of
his sincerity of expression to describe a precise but elusive
idea. He spoke of a learner, before being able even to artic-
ulate an idea, having “a sense of a concept”. He invested
the word ‘sense’ with powerful emotion expressing a pro-
found awareness of the possibilities in the situation.

I do not believe that the notion of a crystalline concept is
something that only occurs at stratospheric heights of pla-
tonic existence. I do hypothesize that anywhere that an
individual has a sense of properties that are constrained by a
given situation then they are experiencing an awareness of
the underlying patterns and consequences of mathematics. It
is this deeper structure that I term a crystalline concept that
“has an internal structure of constrained relationships that
cause it to have necessary properties as a consequence of
its context.”

One may ask if the underlying product is crystalline (hav-
ing certain platonic properties) or crystallized (through the
thinker constructing the concept in the mind). Here we
return to the dilemma as to whether mathematics is invented
or discovered.

The response of the practical mathematician, Christopher
Zeeman, reveals a pragmatic solution: some aspects are
invented to be able to formulate and study a particular prob-
lem and then other aspects are discovered because of the
crystalline nature of mathematics. It is therefore both crys-
tallized by the individual and shared as a crystalline concept
by appropriately sophisticated members of a particular com-
munity, be they expert mathematicians or young children
exploring a sense of pattern.

Reflections
In this journey we see ideas generated from perceptions of
the complications of our real world, through the unistruc-
tural gestalt observations of sensual ideas, the multi-
structural observations of situations with many properties, a
relational stage of forging links between properties, then a
stage of equivalence in which different instances are seen
as having the same general properties and finally, mathe-
matical thinkers arrive at crystalline concepts that seem to
have a perfection of their own. These concepts are related
to their context, be it in Euclidean or non-euclidean geome-
try, be it in arithmetic or algebra, or in the formal mathe-
matics of axiomatic definition and deduction, or in any other
aspect of mathematical endeavor.

What is essential seems to be that each of us goes through
a process of maturation in which perceptions and actions
are formulated in increasingly sophisticated ways that are
partly chosen by us to study and then have a crystalline
structure dictated by the context. The strong inferential links
in crystalline concepts give mathematics its pristine clarity
and inevitability.

At the same time, with the compression of complicated
structures into concepts as single entities, thinking processes
are essentially simplified to give subtle, rich, thinkable con-
cepts that can be easily manipulated in the mind using the
wealth of flexible relationships in the particular context. For
individuals who can focus on the underlying simplicity, math-
ematics becomes more powerful and more connected. For
individuals who remain with the detail without compression,
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it can soon become increasingly complicated and even
impossible to grasp its increasingly disparate aspects.

For those of us who teach mathematics to learners,
whether we see it as our purpose to introduce them to the
wonders of mathematics or to inspire them to discover math-
ematics by their own efforts, we surely need to encourage
them to think in ways that gives them power in operation
and pleasure in success.

This involves not only being aware of their current devel-
opment and how they might profit by exploring new ideas in
ways that are appropriate for them at the time, but also to
seek a broader understanding of the crystalline structures of
mathematics itself.

Notes
1. This paper was stimulated by the discussion in the preparation of a chap-
ter on the cognitive development of proof (Tall et al., to appear). I wish to
thank my co-authors for their contributions: Boris Koichu, Walter Whiteley
(who provoked the idea of crystalline concept through his analysis of the
concept of isosceles triangle), Margo Kondrieteva, Ying-Hao Cheng and
Oleksiy Yevdokimov.
2. Such theories include those of Piaget (1970), Bruner (1966), Dienes
(1960), Fischbein (1987), the SOLO Taxonomy of Biggs and Collis (1982),
theories of process-object encapsulation found in the work of Dubinsky
(Dubinsky & MacDonald, 2001), Sfard (1991), Gray and Tall (1994), the
van Hiele levels in geometry (Van Hiele, 1986), the embodied linguistic
theory of Lakoff and Núñez (2000), advanced mathematical thinking (Tall,
1991), and the nature of mathematical research (e.g. MacLane, 1994).
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