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In this paper wecorsider the performance aftudens on quadratic equations after
they had developed procedural methods ofvew linear equationsby shifting
symiwls using rules such afchange sides, change sigfisa & Tall, 2008.
Knowing their difficultieswvith algelvaic manipulation the teachers had focused first

on simple quadratics with only two naero termsand then on the use of the formula
which they considered as a universal method to solve all quadratic equations. The
consequence was th&ngerterm only a few students could solve a quadratic
equation usinghe formula, and further procedural embodimentas adoptedy a

minority of studentso solvean equatiorsuch asx* =9 by Opasag the power over

the other side andharging it to a rooto getthe single solutionx = 3/5 = 3. Other

than this allother methods involveproceduralsymbol manipulationpften leading

to error. While it is the duty of mathematics educators to improve student learning, it
is also a responsibility to understand why so many students end up perfé@utésg
without reasaO that lead to failure.

We discuss thiphenomenon in terms of embodied cognition in which the procedural
embodiment of symbshifting is preferred to any embodied model (such as a
balanceto represent an equatiprand the manipulation of symbdhils to have the
richer meaning proposed by theories of proeelsgct encapsulationlhis long-term
failure is is placed within a wider theoretical framework incorporating human
embodiment and symbolic manipulation.

INTRODUCTION

In this paper we consider data collected from students whdehadedprocedural

ways of solving linear equatior(kima and Tall,2008) and were nowdealing with
guadratic egations.Their responses to the solution of linear equations was described
as a Oprocedural embodin@@nin which the symbols were shifted around
accompanied by rules such as Ochange sides, change signs.O Their teachers w
concerned with the studefigifficulties and focused on teaching the students to
perform procedures that focused on being able to solve quadratic equations and tc
perform well on the testsThe syllabus specified that the students should be
introduced to three methods of solutibhy fadorization, by completing the square

and by using the quadratic formula. The teachers covered all three but moved on
quickly to the use of the formula in the belief that this would enable them to solve
any quadratic equation that would be given in a #&stwe shall see, most of the
students concerned continued to use procedyrmabsltshifting and were uable to

Lima & Tall: Three worlds and quadratic equations. 1



makesense of the solution of an equation suctxds2)(x! 3)=0.

The data collected in this study came from a collaboration inhwthie first author
worked with a group of teachers and their students who were aged 14 to 15 and hac
first studied the solution of linear equations at least two Vieafiereand quadratic
equations for at least a year. She encouragetettuherdo coopeate by developing

tests to investigate what the students remembered about the solution of linear anc
guadratic equations.

In solving linear equations, although the teachers built their apphnoacily on
Odoing the same thing to both sidéis®,studets remembered not the general
principles but the specific acts thhey performed as they sobvéhe equatiors. This
involved shifting symbols around in their imagination and on paper, submase a
term to the other s@& and change its signfima and Tall (2008)termed such
operations Oprocedural embodimentsO becays®dteduresnvolved the embodied
movement of symbolas mentalentitiesbeingmoving aroundwith additional ruls

to get the right answer.

Two specific rules dominated:
1) Ochange sidehange signsO

in which, for instancethe equation3x —1=3+ x is operated upoby shifting the 1
to the right and thg to the left anathanging signs to get:

3Ix—x=3+1
2x=4.
2) Ochange sides and put it underneathO
in which the 2 is moved over and put underneath to get
xX= 5 =2.

In an attempt to use suchles, sme students made mistak@s;luding changing
2x=4 1o
4 2
a x=4-2 b xX=— C x=—
(3) (b) x=— (© x=3

In (a) the 2 is passed over the otlsate and its sign is changed) @orrectly Oshifts
the 2 over and puts it underneattudalso Ochanges the signGhiéts the 2 over and
puts the 4 underneatiihis reveés the fragility of usingorocedural embodimentbat
may be misremembered and lead to a wider range of errors.

For instance, one student began the solution of the above edoattianging sides
in an incorrect manner to get

3x—1=3+x
3x—3x=+I1.
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Here theBbl on the left is shifted to the right to give +1, but thex 8h the right
become$Bx on the left and théft hand side reduces @ —3x. The student then
writes

0=—
0
which may involve Omoving the number O over the equals sign and putting it
underneathO. This equationnw problematic, but the studer®®move towards a
solutionO by completing the line as

0=—=0
0

to declarethe (erroneousPanswet®bezero.

Analysing all the responses, we found tmat studentexplicitly verbalised the
principle of Odoing the same operatiorboth side®(although this may have been
implicit in some solutions)instead all written solutions whether successful or not,
were written in a manner consonant vithle use oprocedural embodiments.

The majoriy of students involved haddened procedural methods whiehabled a

few to produce correct solutions but the majority either offered no solution or used
the methods ifragile ways that led to error. In this paper we consider what happened
when these students moved on to study cptand; basing our analysis within a
context of relevant research literature.

LITERATURE REVIEW

Theliteratureconsideredhere involves two distiricstrands: the specifiiterature on
linear and quadratic equationand relevant theoretical frameworks related to
embodiment and symbolism. The latter inclymlecessobject theories and embodied
cognition

Research studies on linear and quadratic equations

Lima & Tall (2008)reviewed théroad literatur@egardingthe teaching ankkarning

of linear equations. Somstudiesdiagnog studentsO mistakes.g Matz, 1980
Sleeman, 1984; Payne & Squibb, 1990; Freitas, 2@92grms of makules that
involve erroneous forms of operationathers discuss the understandistydents
have about equatisne.g. Dreyfus & Hoch, 2004)and others showtigdents from
different countriesmaking similar (if not the same) mistakes, related to their
misinterpretation ofolution techniques, and the lack of meaningiltited to the
mathematical symbols (Linchevski & Sfard, 1991; CortZs & Kavafian, 1998).
also consideredresearch studies thattemped to minimisestudensdifficulties by
using concrete modelge.g. Vlassis, 2002; Filloy & Rojano, 1989According to
Vlassis (2002),itesemodelshave been showto beeffective in helping students to
understand the equality between the two sides of an equation in simple cases, bu
they do not support more general situations in which negative eintexyer numbers
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are involved.

Research on students solving quadratic equationsmigh less extensive.
Vaiyavutjamai and Clements (2006) reported that they found little research
addressingthe cognitive challenges students encounter with quadratic equations.
Their researclon Effects of classroom instruction on studentsO understanding of
guadratic equationgnalysed written tests dnnterviews to compare the responses

of students in Thailand and Australia. They found that students could produce correct
solutions while still having serious misconceptions.

In addition, @en when students could successfully write down a solution,p&hor

AR . —bxNb -4
(1989) reported thahe O+O sign in expressions such-as 5 ac may not be
a

meaningfuly understood

Gray and Thomas (2001) reported a teaching approach to quadratic equations usini
paper and pencil and graphic calcutatd'he students were asked to plot the graph of
functions associated with the equation, and to find its solutions in various ways. They
were able to perform a range of individual tasks yet lacked the flexibility to move
easily fromone representaticio another.

Our students in this current study already have a histotgicing flexibility with
symbolmanipulationandunderstandinghe procedires to solve equationsteadof

any conceptual insight such as a balance or an oyeiadiple of Odoing the same
thing to both sides@hey move symbols around in a procedlyrambodied manner

in an attempt to simplify the equation to give a solution. As we analyse their work
with quadratic equations, we draw on the literature of embodiment and of mental
manipulation of symbols.

Theories d cognitive development

Processbject theories state thamdividuals learn byencapsulating(Dubinsky,

1991) orreifying (Sfard, 1991) a process into an object. AP@&ory (Dubinsky,
1991), states that this transformation goes fROTIONS to PROCESSESt0 OBJECTS

which are then organized BcHEMAS; reification theory (Sfard, 1991) suggests that
operational conceptions are condensed and reified into structural conceptions. Both
theories observe that encapsulation (reification) might not occur, so that students
continue only to use proceduresanipulating symbols which Sfard calls Opseudo
structural objectstbatlack flexible meaning (Linchevski & Sfard, 1991).

The erroneous solutions we observedolving linear equationsertainly involved

what Matz (1980) callednalrules. However, underiyg theserules are mental acts

of shifting symbols around in a manner that involves picking a term up and putting it
somewhere else, with an extra ingredient (such as Ochange signO) to get the corr
answer. This in turn involves a sensomtor action & moving objects, now
performed imaginatively in the mirghd the result transferred onto paper.



The term Oembodied cognitionO refers to cognitive theories that give priority to bodily
experiences as sources of conceptual meaning (Lakoff & Johnson, L1&K86ff

1987 Lakoff & Noe—ez, 2000). Lakoff and Nae—ez (2000, p. xii) stateOthanan

ideas are, to adrge extent, grounded in sensambtor experienceOrhis suggests

that mathematical reasoning, which involves human ideas, is also grounded in
sensoi-motor experience.

Lakoff and his colleagues argue that the relation between mathematical reasoning ant
bodily experiences is made by conceptual metapl@ascognitive mechanism for
allowing us to reason about one kind of thing as if it were anGtifeakdf &
Nce—ez, 2000, p;6}hey propose that it is by means of dbemetaphors that
individuals learrall mathematical concepts.

In the solution of linear equations, the studentsur studydo not use theonceptual
metaphor of a balance, they uséuactional metaphor relating to the sensarotor
shifting of symbols as objects, including additional aspects (such as Ochange sign0)
give a correct solutionThis strategyis capable of being integrated into a perfectly
coherent method of solving equatiorigtt gives correct results. Howeveif, the
procedural solution procestoes not link to my appropriateconceptual meaning, it

may be fragile and the student may begin to make errors attempting to remember the
OcorrectO rule, as happened abdie solving of 2x = 4.

Processobject theories and theories of embodied cognition are each able to give
insight into someaspectsof the thinking processes involved. Howevprpcess
object theorie focus on the shift from process to object with far less attetmion
bodily experiences in learniné\t the same timehe embodiment of Lakoff and his
colleagues does not refer explicitly ttoe compression oprocess into mental object
through encapsation.

To analyse our data in a way tludters a clearerinsightinto the meanings students

give to equations and how they understand the rules they use to solve them, we
realised tle need fora theoretical framework thantegratesembodimentwith
theories ofprocessobject encapsulation

THE THREE WORLDS OF MATHEMATICS

A theoretical franework integrating embodiment, procedgect encapsulation and
formal mathematical proof has its origins in the early nineties, with the development
of the book on OAdvanced Mathematical ThinkingO (Tall, 1991). In its last chapter,
Tall proposed the exishce of (at least) three different kinds of mathematics (ame

in Euclidean geometry) through focusing mopertiesof objectsand therelationship
between those propertiesne encapsulating processes intacaptsas in arithmetic

and algebraand the third being HilbertOs formalist view of mathematics based on set
theoretic definitions and proof. This has subsequently developed into a practical
frameworkto explain the cognitive development ofathematics of individualgom

birth to adulthood, focusing on three distinct ways of thinking that mature over the
years (e.g. Gray & Tall, 1994; Tall, 1995; Gray, Pitta, Pinto, Tall, 1999; Gray & Tall,
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2001; WatsonSpirou & Tall, 2003; Tall 2004; Tall, 2006; Tall, 2008).

The first kind of mathematics is termed Oconceptual embodiment® and refers to tr
way in whichanindividual begins by interacting with physical objects and matures
by thinking about them as thght experiments, focusing on their properties and
building up relationships. One branch gives the conceptual embodied world that
builds towards Euclidean geometry and beyond. Another branch focuses on actions
initially on physical objects, but later on ntal objects, such as counting, sharing,
adding, subtracting, multiplying. These processes are symbolised as mathematica
operations and may be compressed into thinkable concepts (procepts) such a
number, sum, product, fraction, algebraic expression,sandn. This gives a new

kind of mathematics that develops letegm through what was initially termed the
Oproceptual symbolic worly. in Tall, 2004)This incorporated the desire to build
flexible thinking with symbols as processes or manipulabjeatd, but, as we see in

this study, many students do not develop flexible ways of operation. They develop
procedural ways that involve the successsteps of a learned procedure, often
supported by an underlying procedural embodiméntis the world ofyambolism in
arithmetic and algebra is more properly defined in terms of both proceptual (flexible)
thinking and proceduralpmerations.

While some students continue to see the growth of arithmetic and algebra in a simple
flexible way, compressing sequelta@erations into flexiblenanipulable concepts
others build increasingly complicated procedurttsit are likely to become
increasingly unstable. It is the latter that is happening with most students in this
study.

The two worlds of (conceptual) embodiment and (procedural/proceptual) symbolism
interact throughout school mathematida what follows, these two developing
worlds of mathematics will be termed OembodiedO and OsymbolicO, on tl
understanding thathese terms are used with thextendedmeanings given above.
When we say Oembodied®, we mean Oconceptual embodied® and when we
OsymbolicO we me@procedural or proceptual symt®@li Oumain concern in this
study refers to the combination of procedural embodiment and procedural symbolism
that appears in the working of the students concerned.

A fuller explanation of the framework of the three worlds of mathematics can be
found in Tall (2008). In formulating this framework we attempt to remain as
consistent with variousthertheoretical frameworks as possible, even though these
frameworks may use the same terminology in different ways. For instance,
mathematics education the term OformalO is often used in a Piagetian sense (f
instance, in FischbeinOs (198weepart theory of intuitive, algorithmic and formal
approaches to mathemadicslowever, in mathematics, the term OformalQ is usually
reserved for a more sophisticated form of thinking characterised by Hilbert in terms
of axiomatic structures and thamatical proof.

In outline, the thresvorld model is represented in figure 1 as cognitive growth



begins in the bottom left hand corner with the cimkéracting with the environment,
building increasingly sophisticated descriptions and definitions upwards until
reaching an embodied form of proofachcterised by Euclidean geometry.
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Figure t The three worlds of mathematics

Embodied actions such as counting operate in a combination of embodiment and
symbolism which may shift over to the encapsulation of symbolic entities such as
number. On the rigkhand side, increasingly sophisticated encapsulation of process
into mental object gives various successive forms of number: whole numbers,
fractions, signed numbers, rationals, real numbers and so on and generalisec
arithmetic processes give rise to d&geand a symbolic form of proof based on the
specifiedOrules of arithmefx

The formal world is characterised by making deductions from definitions, in at least
three different ways, as embodied formal in Euclidean geometry based on definitions
of figures and principles such as congruence and parallel lines, as symbolic formal in
algebra based on the rules of arithmetic and as axiomatic formal based- on set
theoretic definitions and mathematical prd®bme forms of proof blend together two

or more formsfor instance, spherical geometry is a blend of embodiroespace

and the symbolism of spherical trigonometry.

This frameworkis in keeping with theviewpoint d the Advanced Mathematical
Thinking Group of PME (Tall, 1991), in which formal ideas introduced in school
mathematics may function as a transition to the full axiomatic formalism of
university pure mathematics. It also brings the use of the term OfolwsaiGothat

% The International Group for tHesychology of Mathematics Education
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of Fischbein (1987)which incorporates embodied, symbolic and axiomatic formal
aspects.

In this study we see that the development of algebraic solofiequations could be
basedormally onthe principle of Odoing the same thing to both Side®wever, few

of the students involved use such a principle, instead they base their solutions of
equations on embodied actions shifting symbols around, wlditianal aspects to
produce the desired answer.

What studentshave met before

In considering the development from linear to quadratic equations, we need to
examine how theearlier learning impacts on the later experiendesl (2008)
introduced the term OmmdforeO to descriti® mental structure we have now as a
result of experiences we have met befole.@der to cope with an unfamiliar task,
different metbefores may be blended together (Tall, 2008; Lima & T0I08).
However, such a blending cdead totwo quite different effectsThere may be
aspects of the blend that give increased power from putting new ideas together,
giving great pleasure to the learner. On ttlteeohand, there may be aspects that do
not fit together neatly that cause anxiety and confusion. Thus blending can offer both
a positive advantage and a negative impediment, yielding a broad spectrum of
possible performance from those building powerfdaisl with pleasure, through

those who struggle to cope with the conflict, to those who can make no sense of the
situation at all.

Fauconnier and Turner (2002) focus mainly on the positive side of blending that
leads to creativity and continual developmefinew mathematical ideas. However,
the blending of old experience that does not fit has long been known as an
epistemological obstacle (Bachelard, 1938). The notion of-Qefee0 therefore
includes bothaspects that are supportive and also aspedtari@roblematic.

The transition from arithmetic to algebra involves both embodied and symbolic met
befores. Symbolic mdiefores come from familiarity of the operationsamithmetic

and a sense of the generalized operations of arithmetic that are symbolized in algebre
Problematic aspects arise from various sources, such as theefoet that an
arithmetic expression is always a cue to calculate an answer, while anaelgebr
expression cannot give an answer unless the numerical values of the variables ar:
known (the Olack of closureO obstacle, Collis, 1978). Anothdrefost is the
experience that the equals sign involves an expression on the left to be evaluated t
give an answer on the riglias observed by Kieran, 198 Embodied mebefores

may arise from the use of physical or mental representations, such as the notion o
balance to represent an equatidvhile the notion of a balance is often initially
helpful, it may becomeproblematiovhen dealing with equations with negative terms
that no longer fit the specific embodimelttwas this effect that was noted by Vlassis
when the balance idea was generally helpful in the first stages of sigualeams but
became problematic as the equations became more complex.



In this study we will see the influence of supportive and problematidoafetes as
students shift from linear equations that already have problematic aspects to quadratic
equations tht introduce new features.

THE RESEARCH STUDY

The data presented in this paper is pad @dctoral study (Lima, 2007), developed at
PUC/SPB (Brazil) and the University of Warwick (UK). The research arfseen a
combined study with the first author sharing ideas with a group of-duggbol
teachers whose objective was to examine their current teaching practiseskto
ways to improve their teachinghe researcheencouragedhe teacherso carry out
their own ideas and shared in the design of research instruments and the collection o
data.The datacamefrom 80 high school students three groupsone of 32 14/ear
olds, one of 28 1¥earolds, both from a public schoal the city of Guarulhos/SP;
and one group of 20 Iyearolds from a private school in S<o Paulo/SH of them
had already been taught how to solve lineguationsat least two years before this
research took placand quadratic equatioas least one gar beforehis research.

In the wicer study, there were three data collections, each one administered by the
class teacher in a lesson lasting 100 minutes. The first invited the students to
construct a concept map of their knowledge of equations, the second was a
guestionnaire and the thisglas an equatierolving task. After an initial analysis of
data,twenty students were selected for interviews, conducted by the researcher, in the
presence of an observer, and tape recorded for further andfsibese twenty
students 14 were female ah6 were maleThey were not chosen by gender, but by
the kind of work they presenteB including either typical mistakes or correct
answers. In the interviews, we wished to investigate why students performed as they
did. In particular, they were asked to explain what kind of symbol manipulation they
had performed and why they believed it was a proper way to prolcettds paper,

we focus specifically on the work students performed when they had to solve
guadratic equations. (Detailed analyses of other parts of the study can be found in
Lima & Tall, 2006a; Lima & Tall, 2006b; Lima, 2007; Lima & Tall, 2008.)

Teaching quadratic equations

The teachers in thistigly reported that they werdeeply concerned about the
difficulties their students had encountered with linear equations but had to move on
to keep up with the syllabus. They therefore decided that two specific objectives were
necessary. Firstthat the gneral idea P solving quadratic equations should be
addressed by considering simple examples. Then, in the knowledge that the student
already had considerable difficulties in manipulating algebra, that they should focus
on the method most likely to givgeiccess in the examination.

In general, theeachers in the studgportedthatstudents were taugttiree symbolic
methods of solving quadratic equations

% The PontificalCatholicUniversity of o Paula



1) Factorizing the expression into two linear factors and using the principle that if
the product is zero, then one of the factors must be zero.

2) Completing the square for the given quadratic

3) Manipulating the equation to get a quadratic expression equal to zero and
solving a general quadratic ax’+bx+c=0 using the formd
1 bxAb’! dac
2a '
Teachers in Brazil are expected to teachha#e symbolidorms of solving quadratic
equations mentioned abovelowever, to simplify thecomplexity, knowing the
difficulties already experienced by the pupilse teachers decided that the general

method of using the formula would work iall casesand so this wald be
emphasizedMethod (1) was used tmainly to solve equationsnvolving just two

terms,such asx®* =4 or x*! 3x =0. Method (2) was shown, but not emphasized.

X

Thetwo-termequationx® = 4 can be solved diregtby taking the square root

N

and thereforex=+2.
The seconequatiormay be factorised as
x(x—3)=0

to see thaby substitutingx =0 or x =3 then tle equation is satisfie In this way,

the solution of the equation involved a calculation as usual, to calculate the left hand
side by substituting numeric values for the varialbdecheck that the equation is
satisfied.The idea that the product of twactors can only be zero if one of the
factors is zero was considered, but the method of factorization in general was not
emphasized because theachers were aware of the stud@ntifficulties with
algebraic manipulation. In general, the teachers focused on the use of the formula tha
they believedvould work in all cases.

As in their previous handling of linear equations, thedehts focused on the specific
operations that they used to solve the equations, rather than any general principles
The emphasis on the use of the formula in preference to other method=padsd

by al5year old in interview, saying:

OWhen | looked at many of those [quadratic equations], | thought of the quadratic
formula, 1 donOt know why. It ¢dibe wrong, | donOt know, but thatOs what 1Ove thought.
Because the other teacher that | had, she has always said like Olook, when you see this |
quadratic equation], you have to think of the formulad. (...) | remember that the teacher
said that the formla needs a squared [unknownjith the [coefficient] a, then
[coefficient] b together with the unknown, and then a number by itself.O

In general, eveaftertheseteacherdadoffered practice in solving specific quadratic
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equations, we will see that tlmerall impression formed by most students is the
dominance of the formula.

Tasks with quadratic equations

The data used to investigate the studentsO conceptions of quadratic equations car
from two instrumentsan equatiorsolving tak, with fourequations

3°—1=0:r"-=r=2:a*-2a-3=0; m*=9
anda questionnairéhatincluded two quadratic equations:
t*=2t=0; (y=3)(y-2)=0.

The questionnaire also included a requestetspond to the solution dhe final
guadratic equation agven by an imaginary student OJohnO:

To solve the equatiotix — 3)(x — 2) = 0 for real numbers, John answered in a sir
line that:

Or=30rx=20

Is his answer corre2tAnalyse and commeant JohnOs answer.

Figure2: JohnOs Problem (question 8 of the questionnaire).

Interviews with selected students gave additional personal comments on how they
interpreted the tasks and their solutions, which gave insights into legwrtight be
thinking. The next section considers data regarding the six equations and OJohn(
problemO.

DATA COLLECTION

A total of 68students gave their answeosthe equatiossolving sk and/7 students
respondedio the questionnairedue to absencesnothe day each instrument was
administered. From an analysis of all the instrumemis,main findings ar¢hat the
students mainly interpretl an equation as a calculation, building on their previous
experience working with numbers. For instaneben asked, Owhat is an equation?O

in the questionnaire, 36 out of 77 studg@f®%)answered thaDit is a calculation in
mathematics@r some equivalent response. Less than half the students mentioned the
unknown. Instead, the responses often focusetherequals sign interpreted as a
signal to perform a calculatiotonsistent with their earlier experience of the use of
the equals sign in calculations in arithmetic

Specifically, in the equatiorsolving task and the two quadratics in the questionpaire
not one student completed the square or used factorization even in the case of
equationst*! 2t=0 or 3%! | =0. Fifteen students (22%%olved the equation

m® =9 to find the solutionbut only one (of three students who used the formula)
consideredthe negative solutiorin total 18 student$23%) used the formula in at
least one of the six equatioriom either instrumentApart from the useof the
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formula and the solution af? =9 by transforming it tom=+9, all other methods

involved an erroneous stratedy translate the quadratic ontsome kind of linear
equation.

Further evidence that the students took the formulahas Orighd way to solve
quadraticsarises in theesponseto QohnOBRroblem@Figure 2). Thirty students out
of 77 (39%) claimed thahis solution was corrécThree(4%) mentioned the formula
saying thing like OHe must have used the quadratic formula in his miEte@en
students(14%) declared thaDJohn didnOt solve the equafi@ssentiallyObecaus
he did not use the formula.Bour studentg5%) used the formula to solve the
equation and compared the result with Jolsofdgion One of these used the formula
incorrectly and obtained different values from John, insisting Yblahwas wrong
(Figure3).

//@
( -R) - (x-2)

XL 2x *3x -2 = R 5

X% By -G = O QAht | donOt know, but | think th

y L+ 5] John'ls wrong anql | think that v
O 520 4 .-G o way is right; | said my way, nc
b9 sig4=49 x==6 | my results, ok?0
C 6 -5% ‘+<
—_— »n
b: "\0\// oZ'l X = Q>

Figure3: A studentOs use of quadratic formand his comments about it

Apart from the use of the quadratic formula, everyttem strategyused by the
studentsattempted taelate back to their earlier experiences with linear equations, by
somehow converting the equation irddinear form. Nine student§l3%) simply

replacedn’, »* or a® respectiely bym, r anda, and then solved the equation as if it
were linear. Othersised the exponent of the squared term to square its coefficient

(Figure4), and nine studenid.3%) replacedm” by 2m, often with an intermediate

calculation that suggests” repregnts Otwo lots ofi© orr@andmO, which becomes
2m (Figure 5)
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Figure4: Multiplying the Figure5: m’ taken as the sami
coefficient by the power as?2m

In solving theequationm® =9, several students responded as shown in Figjuire
interview one of these students explain@the power two passes to the other side as
a square root.OIn this explanation, the student makes it clear that there is a
movement of the exponent and a transformation in the power for a squai@ tbet.
interview, neither this studentnor any othementiored the possibility of another
(negative) root.

SO
'\(\(\:_O;\-
\w:&

Figure6: Passing the exponent to the other side square root

Satisfactory esponsesto QohnOs proble@n(Flgure 2) may also be regarded as
involving movement of symbolghis time to OputO numerical values for the variable
OintoO the equatioRour students(5%) (three in the questionnaire and one during
interview) said that John is rigldbecause putting=3 or x=2 gives the number
zeroQ while another two substitudesachvalue in the equation (Figui@.

(2-3).(2-2)=0  (2-3).(3-2)=0
=4 , 0 =0 0.4 =0
=0 =0

Figure7: Replacing values forin the equation.

One of those performing the substitution explained in interview:

Student: To see if the swver is right, | have put 3 here [in the place of x] to see what
result | would get, and then another calculation with 2.
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Interviewer:Why have you put 3 in place of x, and then 2 in place of x?

Student: Because here it says that x is equal to 3 scs B xthen | replace the number to
see what | get.

Interviewer:And what happens if the result is the same as the one in the equation?
Student: If it is zero, then x is 3.

Not onestudent said that JohnOs answer is coseceferring tothe principle that
guarantees that when a product is zero, one of the factors must be zero. Instead, son
responses explicitly focused d¢ime need to carry out the calculatiom test whether

the solution could badjudged correct:

Of he guesses that, as it edsiaero, x should be 3 or 2, it is wrong. But maybe, he is
very clever, calculated in his mind, and supposed that this is the a@swer.

or

Q donOt know, but | think it is wrong because he didnOt do the calculation, he just pu
the results that were by tisede of xO

DATA ANALYSIS

The data show that, although theteachersaid thatat some stagthey hadshowed
methods other than the use of the formula to solve some quadratic equations, none ¢
these methodwere evident in the studentsO responsesitfeerthe questionnairer

the equatiorsolving task It was not expected that students would complete the
square to solve a quadéquation, since thieachergave it a low priorityand also
becauseof the complexity it involvesHowever, it was expected that for equations

t?1 2t=0 and 3/*! /=0 students would factare the expressiorand use the
algebraic principle that if a product is zero, than one of the faistaeso.

This did not happenThereis a range of possible reasofw this The teacher
strongly emphasized the use bétformula as a general method to sa@wg type of
guadrati¢ it was the last method to be taugimd practicegandwastherefore fresher

in the mind. Meanwhile, in general, the otherethods are more complicated. To get
an answer, it is quickesnd easieto quote the formula rather than go through the
steps to complete the squafée method of factorizing to get a product equal to zero
only works in simple cases and involves subtle algebraic manipuldtie.main
exception to this general principle wghen the equation is given as a product, say
(x=3)(x-2)=0, where the use of the formula requiras initial algebraic

manipulation to get it into the forrax® + bx+c=0.

Even te procedural use of the formula to solve the eguaproved to be too
difficult for most studentsOf the 18 students who tried to use the formula, only
seven were successful in solving at leastafit@e sixequatiors. In general, een the
use of thdormula was unsuccessful.

Overall, the data reveals that, lmilding on an essentially procedural approach to
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linear equationsa small numbeof students had some success using the formula,
few added an additional procedural embodiment to sofve k by shifting the

power of 2 to the other side where it became a square rootﬂg&. All other
attempted solutions were either incomplete or used erroneous methods to rewrite the
equation as a linear equation.

This experiment reveals the degeneration of procedural embodiments amongst this
group of students abeirprocedural ruleall apart.

ORGANIZING A THEORETICAL FRAMEWOR K

It may appear thathe data collectedh this studyrelates to the APOS theory of
Dubinsky (1994), but only in the sensetthtze studentsO actions and processes were
not encapsulated as objects, rather they were manipulated as GpsetaialO
entities in the sense of Sfard and Linchevski (1994 data in this study goes
beyond a single failure to encapsulate procedsgibly in linearequationgo reveal

a further deterioration at the next stage when solving quadratic equations.

The embodied theory of Lakoff 987 alsohas some relevance two distinct ways:
the conceptualembodiment of an equatioas a balance supports simple linear
equations but fails to extend to more subtle cagee negative quantities do not fit
the simple modelinstead the students build opceduralembodiment that relates
to how they think about their actioms terms of nentally moving symbols around
and adding a touch of magic to get the right anssueh achanging signs, putting
symbols underneathgr switching powers to rootsThis method of procedural
embodiment involves using an array of different rules in diffecemtexts thator
many studentprove to be complicatesihd liable to error.

Theories of processbject encapsulation only operate here in the sense that the
required encapsulatiaioes not occuand the students operate in what Sfard terms a
Opseudstructural®O manner. In this study, virtually all the students operated in this
way. Thus formulating the development in terms of APOS theory only operates in a
reduced érm in which Actions may possibly be seen as Processes, but not Objects.
For this reason we see the importance in seeing the symbolic world of arithmetic and
algebra having apectrumof interpretations. At one end of the spectrum is a flexible
compressedorm of mathematics in which algebraic expressions caméstally
compressed andianipulated fluently as mental conceptd the other isa more
complicatedprocedural form of mathematics in which the stuaery operates using
what Skemp called Oruleghwut reasonO.

The distinction between instrumental understandamgl relational understanding
(Skemp, 1976) andbetween conceptual and procedural learning (Hiebert &
Carpenter, 1992)aslong established this phenomenon. Dubinsky and his colleagues
(for instance, Dubinsky & Harel, 1992) show thatlegé students often reach, at
best, a process level of meaning for the function concept rather than as an object at
higher level (e.g. in a space of functionSudents who are measured on successive
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standards throughout their school lives are likeljotms on what they need tio to
get through examinations, rather than to undeistwhat the concepts are about,
intimating that procedural operations may be desired to pass the test.

In arithmetic, Gray and Tall (1994) formulated the Oproceptual dividech some
children continued to use procedural counting methods which limited their
performance while others used the symbolism more flexibly and were able to develop
ways of generating new relationships from known fdctgur study withlinear and
guadratic equationsye have a corresponding phenomenon in algebra whese of
thesestudentgemain fixed in procedural methods ofgodn.

In a world whereOsuccessO is measured in terms of knowing what to do in
examinationsthis data suggestshat simply teaching students what to do and getting
them to practice techniques may give unstable knowledge structures at one stage thze
fail even more seriously at the next.

The datas consistent with a broader interpretation of embodiment and symbolism as
represented in the threeorld model of mathematical development. There are two
distinct forms of embodiment, ong the embodiment of perception, as involved in
the conceptual embodiment of figures in geomeingd mental thought experiments
such as imagining an equation as a badnetween the two sidethe otheris the
embodiment of action, as se&m the operations of arithmetic becoming number
concepts and the possibility of the operations being conceived less flexibly as
procedural embodiment shifting symbols.

The formal aspects observed in this study do not relate to the explicit use of the laws
of arithmetic to manipulate symbols. They do not even relate to the general solution
of equations by Odoing the safmied to both sidesO. Instead specific rules are used
based on the sensarnotor shifting of symbols, with additional aspects to get the
correct answer such as:

1) for addition or subtraction: change sides, change signs:

e.g.3x—2=2x+8 becanes X =2+ 8 + 2.

2) for multiplication or division: change sides, put it underneath, or move it from
the bottom and put it on the other side on top:

4
e.g.2x =4 becomest = 5

Those procedural embodiments arevnmetbefores in these students work when
they move to solvequadratic equationsAs they are used to such kind of
embodiments, they develdpo further procedural embodimentooth of whichare
inadequate

3) for a square power: moveto the other side and change it to a root

e.g.x’ =9 becomex = V9, revealing only one root.
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4) tomodify thesquaregpowerof the unknowrto see the equatn in linear form

e.g.i 3I°B=0 becomes =0 (by squaring the coeffiction) or3lB1=0 (by
simply forgetting the power), both of which are erroneous.

The data reveals theeverelimitations in this procedural approach. The analysis of
the relationship between practical embodiments (such as a balance to model ar
equation) and symbolic algebreeveal the problems of shdadrm learning
experiences that work with simple examples but edrirf longterm development of

more sophisticated meaning.

DISCUSSION AND CONCLUSIONS

This paper ha investigatedhow an understanding of linear equatioimgsed on
procedural embodimengdfect students@ork with quadratic equations

We find that in the case of linear equationset participants in this studyiddnot

build on embodied models, such as a balance, they do not encapsulateepasess
mental objec, nor do theyuse formal principles such as Odo the same thing to both
sidesO. Instead of a conceptual embodiment underlying the symbolisiving s
equations such as a balancéhey develop a procedural embodiment of symbol
shifting in the mind and on paper @nove toward@gettmg an answer. The
procedural embodiments in linear equatiamgolving Ochange sideshange signO
and Opass theefficient over the other side and put it benéatire extended with a
new procedural embodiment to Omthepower over the other side and change it to

a rooDIn using the latter procedure, they invariably found only the positive root.

The teachers in this study are aware of the general nature of student difficulty, so they
re-adjusedtheir goals to teach those aspects of linear and quadratic equations that, tc
them, seem to be the easiest andrtfust general. This is a natural goal to seek a
level of success appropriate for students who are already finding algebra difficult. An
approach that seeks positive advances is a widely used tactic to encourage students
succeed. However, this positiveew needs to be balanced by the negative side: the
metbefores that cause the students frustration, then anbdating to a switch to the

goal of seekinguccessn being able to carry out the procedures necessary to pass the
examination.Here we have data that shows that such a strategy enabled a small
number of students to be ablesmve specific quastic equations, but did not help

in general to encouga students to construct flexible meanings in algebra.

In considering the cognitive development of arithmetic, Gray and Tall (1994)
formulated the notion of Othe proceptual divideO betwmse tstudents who
successfully developed flexible relationships between symbols operating dually as
process or concend those who remained locked in the use of lengthy counting
procedures.Those who develop a flexible proceptual knowledge structure in
arithmetic have a powerful generative engine to derive new facts from known facts
while those who operate inproceduralmanner have longer sequences of operations
to perform that make arithmetic even more difficult for those who are already
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struggling. Tls research reveals a continuation of the proceptual divide into algebra
where most of the students concerned do not develop a flexible proceptual use of
symbolism that would make algebraic manipulation fluent and simple, instead they
use procedural methedhat have little conceptual meaning that is fragile and-error
prone. We hypothesize that the difficulties that occur widely in algebra are an
extension of the proceptual divide between those who develop flexible proceptual
meaning in arithmeticand thosewho remain focused on lengthy procedural
operations. Proceptual flexibility is the foundation of algebra as generalized
arithmeticand gives meaning tdhe flexible manipulation of algebraic symbolism.
Without a meaningful flexibility in arithmetican agroach that focuses on
procedural learning may leads hereto the use oprocedural embodimenshifting
symbols in a mannéhat maybefragile andproneto error.
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