Ll o

5

WHO INVENTED DIRAC’S DELTA FUNCTION?
MIKHAIL G. KATZ* AND DAVID TALL

ABSTRACT. The Dirac delta function has solid roots in 19th cen-
tury work in Fourier analysis by Cauchy and others, anticipating
Dirac’s discovery by over a century.

CONTENTS

Introduction
Dieudonné’s question
Cauchy’s delta function
Heavyside function
Conclusion

Appendix A. Cauchy’s Note XVIII
Appendix B. Cauchy’s 1827 Mémoire
Appendix C. Rival continua

Appendix D. Klein’s remarks on physics
References

1. INTRODUCTION
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The specialisation of the scientific disciplines since the 19th century
has led to a schism between the scientists’ pragmatic approaches (e.g.,
using infinitesimal arguments), on the one hand, and mathematicians’
desire for formal precision, on the other. It has been the subject of
much soul-searching, see, e.g., S.P. Novikov [18].
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In an era prior to such a schism, a key interaction between physics
and mathematics was foreshadowed in a remarkable fashion, exploit-
ing infinitesimals (see Appendix C), in Cauchy’s texts from 1827 (see
Section 3).

2. DIEUDONNE’S QUESTION

J. Liitzen [17] traces the origins of distribution theory (traditionally
attributed to S. Sobolev and L. Schwartz), in 19th century work of
Fourier, Kirchhoff, and Heaviside. For an accessible introduction to
this area, see J. Dieudonné [5].

Dieudonné is one of the most influential mathematicians of the 20th
century. A fascinating glimpse into his philosophy is provided by his
review of J. Liitzen’s book. At the outset, Dieudonné poses the key
question:

One [...] may well wonder why it took more than 30
years for distribution theory to be born, after the theory
of integration had reached maturity.

This remark is a reflection of a pervasive myth, to the effect that the
physicists invented the delta function, and the theory of distributions
legalized them after the fact many years later. Thus, M. Bunge, re-
sponding to Robinson’s lecture The metaphysics of the calculus, evoked
the physicist’s custom of

refer[ring] to the theory of distributions for the legaliza-
tion of the various delta ‘functions’ which his physical
intuition led him to introduce [21, p. 44-45]; [22, p. 553-
554).

Meanwhile, D. Laugwitz [13, p. 219] notes that probably the first ap-
pearance of the (Dirac) delta function is in the 1822 text by Fourier [6].

In his review of J. Liitzen’s book for Math Reviews, F. Smithies
notes:

Chapter 4, on early uses of generalized functions, covers
fundamental solutions of partial differential equations,
Hadamard’s “partie finie”, and many early uses of the
delta function and its derivatives, including various at-
tempts to create a rigorous theory for them.

At the end of his review, Smithies mentions Cauchy: “In spite of
the thoroughness of his coverage, [Liitzen| has missed one interesting
event—A. L. Cauchy’s anticipation of Hadamard’s ‘partie finie’ 7, but
says not a word about Cauchy’s delta functions.
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3. CAUCHY’S DELTA FUNCTION

Dieudonné’s query, mentioned at the beginning of section 2, is an-
swered by Laugwitz, who argues that objects such as delta functions
(and their potential applications) disappeared from the literature due
to the elimination of infinitesimals, in whose absence they could not be
sustained. Laugwitz notes that

Cauchy’s use of delta function methods in Fourier anal-
ysis and in the summation of divergent integrals enables
us to analyze the change of his attitude toward infinites-
imals [13, p. 232].

A function of the type generally attributed to P. Dirac (1902-1984)
was specifically described by Cauchy in 1827 in terms of infinitesi-
mals. More specifically, Cauchy uses a unit-impulse, infinitely tall,
infinitely narrow delta function, as an integral kernel. Thus, in 1827,
Cauchy used infinitesimals in his definition of a “Dirac” delta func-
tion [2, p. 188]. Here Cauchy uses infinitesimals a and e, where « is,
in modern terms, the “scale parameter” of the “Cauchy distribution”,
whereas € gives the size of the interval of integration. Cauchy wrote |2,
p. 188]:

Moreover one finds, denoting by «, € two infinitely small

numbers,

1 [ote o dpu oo
2 /a_ﬁ F(M)m = §F(a) (3.1)

(Cauchy’s 1815-1827 text is analyzed in more detail in Appendix A).
This passage from Cauchy is reflected in secondary literature (see Laug-
witz’s 1989 paper Definite values of infinite sums [13, p. 230]). The
expression
Q@

o+ (p—a)?
(for real «) is known as the Cauchy distribution in probability the-
ory. The function is called the probability density function, and the
parameter « is called the scale parameter.

Laugwitz notes that formula (3.1) is satisfied when € > a'/? (as well
as for all positive real values of ¢ > 0). Cauchy’s formula extracts the
value of a real function F' at a real point a by integrating I’ against a
kernel given by a (Cauchy-)Dirac delta function. Furthermore, Laug-
witz documents Cauchy’s use of

an explicit delta function not contained under an inte-
gral sign [13, p. 231] [emphasis added—authors],
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contrary to a claim in Dieudonné’s text.! Such an occurrence of a delta
function in Cauchy’s work is discussed in Appendix B.
Felix Klein points out that the

naive [perceptual| methods always rise to unconscious
importance whenever in mathematical physics, mechan-
ics, or differential geometry a preliminary theorem is to
be set up. You all know that they are very serviceable
then.

On the other hand, Klein is perfectly aware of the situation on the
ground:

To be sure, the pure mathematician is not sparing of his

scorn on these occasions. When I was a student it was

said that the differential, for a physicist, was a piece of

brass which he treated as he did the rest of his apparatus

(12, p. 211].
Additional remarks by Klein, showing the importance he attached to
this vital connection, may be found in Appendix D.

4. HEAVYSIDE FUNCTION

Dieudonné’s review of Liitzen’s book is assorted with the habitual,
and near-ritual on the part of some mathematicians, expression of dis-
dain for physicists:

However, a function such as the Heavyside function on R,
equal to 1 for z > 0 and to 0 for < 0, has no weak
derivative, in spite [sic| of its very mild discontinuity;
at least this is what the mathematicians would say, but
physicists thought otherwise, since for them there was a
“derivative” 0, the Dirac “delta function” [the quotation
marks are Dieudonné’s—authors].

Dieudonné then proceeds to make the following remarkable claims:

Of course, there was before 1936 no reasonable mathe-
matical definition of these objects; but it is characteris-
tic that they were never used in bona fide computations
except under the integral sign,? giving formulas® such as

/ 5z — a)f(z) = f(a).

ISee footnote 2.

2This claim is inaccurate; see main text at footnote 1.

3Here we have simplified Dieudonné’s formula in [5, p. 377, by restricting to the
special case n = 0.
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FIGURE 4.1. Heavyside function

Are Dieudonné’s claims accurate? Dieudonné’s claim that before 1936,
delta functions occurred only under the integral sign, is contradicted
by Cauchy’s use of a delta function not contained under an integral
sign, over a hundred years earlier (see Appendix B).

Are the physicists so far off the mark, mathematically speaking? Is it
really true that there was no reasonable mathematical definition before
1936, as Dieudonné claims?

Consider the zig-zag Z C R? in the (z,y)-plane given by the union

Z=R-x {5} U ({0} x [-55]) U (R x {+5}).

thought of as the physicist’s Heavyside function, see Figure 4.1.
Now consider the graph of arctan(z) in the (z,y)-plane, and com-
press it toward the y-axis by means of a sequence of functions arctan(nzx),
1

or arctan(z/c) where v = . Their derivatives F, (z) satisfy

/ F,=m

by the fundamental theorem of calculus. In an infinitesimal-enriched
continuum (see Appendix C), we can consider an infinitesimal «v. Then
the graph

Farctan(:{:/a)
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of arctan(x/«a) is “appreciably indistinguishable” from the zigzag Z.*
Instead of attempting to differentiate the zigzag itself with the physi-
cists, we differentiate its infinitesimal approximation arctan(xz/a), and
note that we obtain precisely Cauchy’s delta function appearing in for-
mula (3.1), against which F is integrated.”

5. CONCLUSION

The customary set-theoretic framework that has become the reflexive
litmus test of mathematical rigor in most fields of modern mathematics
(with the possible exception of the field of mathematical logic) makes
it difficult to analyze Cauchy’s use of infinitesimals, and to evaluate its
significance. We will therefore use a conceptual framework proposed
by C. S. Peirce in 1897, in the context of his analysis of the concept of
continuity and continuum, which, as he felt at the time, is composed
of infinitesimal parts, see [8, p. 103]. Peirce identified three stages in
creating a novel concept:

there are three grades of clearness in our apprehensions
of the meanings of words. The first consists in the con-
nexion of the word with familiar experience. . . . The
second grade consists in the abstract definition, depend-
ing upon an analysis of just what it is that makes the
word applicable. . . . The third grade of clearness
consists in such a representation of the idea that fruit-
ful reasoning can be made to turn upon it, and that
it can be applied to the resolution of difficult practical
problems [19] (see [8, p. 87]).

The “three grades” can therefore be summarized as

(1) familiarity through experience;
(2) abstract definition aimed at applications;
(3) fruitful reasoning “made to turn” upon it, with applications.

“In modern notation, this relation would be expressed by the fact that the stan-
dard part “st” of the graph I'yictan(z/q) 95 the zigzag:

st (Farctan(w/a)) =ZC RQ-

Here the internal function arctan(z/«) is the mathematical counterpart of the physi-
cist’s Heavyside function. Of course, Cauchy did not have the notion of a standard
part function, to express the idea that an error term is infinitesimal. Instead, he
used the expression sensiblement nulle (sensibly nothing), see [13, p. 231].

SGiorello [7], Lighstone and Wong [15], and later Péraire [20] have developed
this theme further. Yamashita [26] provides a bibliography of articles dealing with
non-standard delta functions.
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To apply Peirce’s framework to Cauchy’s notion of infinitesimal, we
note that grade (1) is captured in Cauchy’s description of continuity
of a function in terms of “varying by imperceptible degrees”. Such a
turn of phrase occurs both in his letter to Coriolis of 1837, and in his
1853 text [4, p. 35].° At Grade (2), Cauchy describes infinitesimals as
generated by null sequences (see [1]), and defines continuity in terms of
an infinitesimal z-increment resulting in an infinitesimal change in .
Finally, at stage (3), Cauchy fruitfully applies the crystallized notion
of infinitesimal both in Fourier analysis and in evaluation of singular
integrals, by means of a “Dirac” delta function defined in terms of a
(Cauchy) distribution with an infinitesimal scaling parameter.

It emerges that, contrary to Dieudonné’s claim, Cauchy did have a
reasonable mathematical definition of a, Dirac, delta function. What
was lacking is an explicit formalisation of an infinitesimal-enriched con-
tinuum where Cauchy’s definition could be made operative.

APPENDIX A. CAucHY’S NoTE XVIII

Cauchy’s lengthy work Théorie de la propagation des ondes a la sur-
face d’un fluide pesant d’une profondeur indéfinie was written in 1815.
The manuscript was published in 1827 as a 300-page text, with a num-
ber of additional Notes at the end. The running title used throughout
is Mémoire sur la théorie des ondes.

Note XVIII, entitled Sur les intégrales définies singulieres et les
valeurs principales des integrales indeterminées, starts on page 288.
Cauchy recalls the notion of a singular definite integral, describing it
in terms of an integrand that becomes “infinite or indeterminate”. He
continues by denoting by ¢ an “infinitely small number” (note Cauchy’s
use of term “number” rather than “quantity”), and by a, b two positive
constants. On page 289, after choosing an additional “infinitely small
number” a, Cauchy writes down the integral

1 [ote adu T
- Flu)—2* g
5| P = 5@

(already reproduced as formula (3.1) above), which he denotes by (2).
Cauchy proceeds to point out that, since the integrand of his equa-
tion (2) is sensiblement égale a zéro [essentially equal to zero] for all
values of u qui ne sont pas trés rapprochées de a [which are not too

6Note that both Cauchy’s original French “par degrés insensibles”, and its cor-
rect English translation “by imperceptible degrees”, are etymologically related to
sensory perception.
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close to al, it follows that the integrals appearing in his earlier Note VI
reduce to singular integrals determined by his equation (2).

Note XVIII then proceeds to discuss principal values and to offer
alternative derivations of a number of earlier results, and is concluded
on page 299.

APPENDIX B. CAUCHY’S 1827 Mémoire

An additional occurrence of a delta function occurs in Cauchy’s
brief 1827 text Mémoire sur les développements des fonctions en séries
périodiques [3]. The text contains an (a priori doomed) attempt to
prove the convergence of Fourier series under the sole assumption of
continuity. What concerns us here is his, correct, use of infinitesimals
at a certain stage in the argument. Cauchy opens his mémoire with a
discussion of the importance of what are known today as Fourier series,
in a large number of problems of mathematical physics [3, p. 12]. On
page 13, Cauchy denotes by & un nombre infiniment petit [an infinitely
small number]|, and lets # = 1 —¢, and lets x be between 0 and a = 27.
On page 14, he points out that the expression

1

1
e g Taew 4 (B.1)

(his notation is slightly different) “will be essentially zero, except when
differs very little from z”. Note that the expression (B.1) appearing
on Cauchy’s page 14, does not occur under the integral sign (it was
exploited as a kernel in the last formula on the previous page 13).

Cauchy then sets u = x + iw and concludes that the integral will be
essentially reduced to

= 1
f(x)'/—?w (1+iw+1—iw) dw =2mf(x)

(Cauchy writes a for 2m).

APPENDIX C. RIVAL CONTINUA
A Leibnizian definition of the derivative as the infinitesimal quotient
Ay
Az’
whose logical weakness was criticized by Berkeley, was modified by
A. Robinson by exploiting a map called the standard part, denoted “st”,
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B-continuum

st

A-continuum

FicUure C.1. Taking standard part
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FiGure C.2. Zooming in on infinitesimal €

from the finite part of a B-continuum, to the A-continuum, as illus-
trated in Figure C.1.7

We illustrate the construction by means of an infinite-resolution mi-
croscope in Figure C.2.

We will denote such a B-continuum by the new symbol ”:R We
will also denote its finite part, by

Rew ={z € R: |z| < 00}.

The map “st” sends each finite point x € R, to the real point st(z) € R
infinitely close to x:

[]R<oo

lst

R

"In the context of the hyperreal extension of the real numbers, the map “st” sends
each finite point z to the real point st(z) € R infinitely close to . In other words,
the map “st” collapses the cluster of points infinitely close to a real number x, back
to x.
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Robinson’s answer to Berkeley’s logical criticism (see D. Sherry [23]) is
to define the derivative as
Ay
t .

instead of Ay/Az. For an accessible introduction to the hyperreals,
see H. J. Keisler [10, 11].%

In addition, one can modify the map from [R_.,, to R using an
arbitrary linear map f(z) = ax + b where a,b € R, to ‘reveal’ not
only distinctions between points that are an infinitesimal distance apart
(e.g., points a and a + €) using the map *=%, but also the ability to
‘see’ in a finite real picture the distinction between any two points a, a’,
where a — @’ is finite, infinitesimal or infinite. This can be done using

the map
xr—a
= st
m(z) =s <a’—a)

defined on the ‘field of view’ including a and a’, where the image m(x)
is finite. Thus the entire B-continuum [R can be seen with detail of a
given order of infinitesimal or infinity, with points differing by a lower
order being represented as identical after applying “st”, and points
differing by a higher order being too far off to be visible. This allows
one to visualize both asymptotic behaviour and infinitesimal behaviour,
see Tall [24, 25].

APPENDIX D. KLEIN’S REMARKS ON PHYSICS

Here we present Klein’s discussion of infinitesimal oscillations of the
pendulum in [12; p. 187]. Klein presents the derivation of the pendulum
law by pointing out that

it follows from the fundamental laws of mechanics that

the motion of the pendulum is determined by the equa-

ion Lo — g
tion oz = 7sina.

Here g is the gravitational constant, while ¢ is the length of the thread
by which the pendulum is suspended, and ¢ is the angle of deviation
from the normal. Klein continues:

8Note that both the term “hyper-real field”, and an ultrapower construction
thereof, are due to E. Hewitt in 1948, see [9, p. 74]. The transfer principle allowing
one to extend every first-order real statement to the hyperreals, is due to J. Los in
1955, see [16]. Thus, the Hewitt-Lo$ framework allows one to work in a B-continuum
satisfying the transfer principle. More advanced properties of the hyperreals such
as saturation were proved later, see Keisler [11] for a historical outline. A helpful
“semicolon” notation for presenting an extended decimal expansion of a hyperreal
was described by A. H. Lightstone [14].
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For small amplitudes we may replace sin ¢ by ¢ without

serious error. This gives for the so called infinitely small

oscillation of the pendulum C;Tf = 2¢.

Klein proceeds to write down the general solution ¢ = Ccos /2 (t—ty),
and points out that the duration of a complete oscillation, i.e., the pe-
riod T' = 27 \/W , is independent of the amplitude C'. Reflecting upon
the teaching practices at the time, Klein muses over the incongruity of

1]

[5]

[6]
[7]

8]
[9]
[10]

[11]

[12]

the curious phenomenon that one and the same teacher,
during one hour, the one devoted to mathematics, makes
the very highest demands as to the logical exactness
of all conclusions. In his judgment [...] his demands
are not satisfied by the infinitesimal calculus. In the
next hour, however, that devoted to physics, he accepts
the most questionable conclusions and makes the most
daring applications of infinitesimals [12, p. 187].
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