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Teaching and learning undergraduate mathematics involves the introduction of 
ways of thinking that at the same time are intended to be more precise and 
logical, yet which operate in ways that are unlike students’ previous experience. 

When we think of a vector, in school it is a quantity with magnitude and 
direction that may be visualized as an arrow, or a symbol with coordinates that 
can be acted upon by matrices. In university mathematics it is an element in an 
axiomatic vector space. 

As I reflected on this situation I realised that these three entirely different 
ways of thinking apply in general throughout the whole of mathematics (Tall 
2004, 2008). The two ways encountered in school depend on the one hand on 
our physical perception and action and dynamic thought experiments as we 
think about relationships, on the other they depend on operations that we learn 
to perform such as counting and sharing which in turn are symbolised as 
mathematical concepts such as number and fraction. 

At university, all this is turned on its head and reformulated in terms of 
axiomatic systems and formal deduction. Our previous experiences are now to 
be refined and properties are only valid if they can be proved from the axioms 
and definitions using mathematical proof. The formal approach gives a huge 
bonus. No longer do proofs depend on a particular situation: they will hold 
good in any future situation we may meet provided only that the new context 
satisfies the specific axioms and definitions. However, the new experience is 
also accompanied by mental confusion as links, previously connected in 
perception and action, now require reorganisation as formal deductions, and 
subtle implicit links from experience may be at variance with the new formal 
setting. 

Further analysis of the development of mathematical thinking reveals three 
quite different forms of thinking and development that I term conceptual 
embodiment, operational symbolism and axiomatic formalism.  These operate in 
such different ways—not only at a given point in time, but also in their long-
term development—that I called them three mental worlds of mathematics. 

Conceptual embodiment and operational symbolism develop in 
complementary ways in school mathematics in which physical operations relate 
to algebraic symbolism (Thomas, 1988). The world of conceptual embodiment 
is based on our operation as biological creatures, with gestures that convey 
meaning, perceptions of objects that recognise properties and patterns, thought 
experiments that imagine possibilities, and verbal descriptions and definitions 
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that formulate relationships and deductions as found in Euclidean geometry and 
other forms of figures and diagrams. The world of operational symbolism 
involves practising sequences of actions until we can perform them accurately 
with little conscious effort. It develops beyond the learning of procedures to 
carry out a given process (such as counting) to the concept created by that 
process (such as number). Gray and Tall (1994) formulated this flexibility by 
speaking of such symbols as ‘procepts’ that act dually as process and concept. 
The operational world of symbolism develops in a spectrum of ways from 
limited procedural learning to flexible proceptual thinking. 

The third world of axiomatic formalism builds from lists of axioms 
expressed formally through sequences of theorems proved deductively with the 
intention of building a coherent formal knowledge structure. Its major criterion 
is that relationships must in principle be deducible by formal proof. However, 
students and mathematicians interpret formalism in a variety of ways, 
depending on the links with embodiment and symbolism. Some build naturally 
on their previous experience to give meaning to definitions. For instance, the 
idea of a sequence   (sn )  tending to a limit may be seen by plotting the 
successive points   (n,sn )  and seeing that, the sequence tends to a limit L if, 
given a required error  ε > 0 , then from some value N onwards, (for  n ≥ N ) the 
terms  sn  lie between two horizontal lines  L ± ε . Others build formally by 
extracting meaning from the definition by learning to reproduce it and 
practising formal proofs until it becomes a familiar mode of operation. Both 
approaches are possible and can lead to successful formal thinking, although 
both can fail, either because the new formal ideas conflict with beliefs built 
from earlier experience or because the multi-quantified definitions are just too 
difficult to handle (Pinto, 1998, Pinto & Tall, 1999).  

The question arises as to how this framework of three worlds of mathematics 
can help us as mathematicians to encourage our students to think in successful 
mathematical ways. The framework is general. Although embodiment starts 
earlier than operational symbolism, and formalism occurs much later still, when 
all three possibilities are available at university level, the framework says 
nothing about the sequence in which teaching should occur. Indeed, in the 
learning of mathematical analysis some students clearly follow a natural 
approach based on their thought experiments and concept imagery while others 
are more comfortable working in a purely formal context. Not only is it possible 
to use embodied examples to give meaning to a formal theory, it is also possible 
to use a formal theory to highlight the essential properties in an embodied 
example. 

The framework can be better understood by reflecting on specific cases. 
Consider, for example the notion of continuity. Embodiment clearly gives 
powerful insights that can be used to motivate symbolic relationships and 
formal definitions. For instance, the dynamic idea of natural continuity arises 
from the physical drawing of a graph with a ‘continuous’ stroke of the pencil 
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remaining on the paper and leaving a continuous trace. While this is often 
considered to be an ‘intuitive’ notion of continuity that lacks a formal 
definition, it is also possible to envisage the graph as a stroke of a pencil which 
covers the theoretical graph with a stripe of height ±ε. If a small portion of the 
graph is stretched horizontally, while maintaining the vertical height, the graph 
will ‘pull flat’ in the sense that, for some δ > 0, then for any x between   x0 − δ  
and   x0 + δ , the value of   f (x)  will lie between   f (x0 ) − ε  and   f (x0 ) + ε . (Tall, 
2009.) In this way it is possible to have a natural transition from embodied 
continuity to the formal definition in mathematical analysis, which may help a 
natural learner but may be unnecessary for a formal learner. 

Elementary calculus is highly amenable to a natural approach that links 
together visual insight and symbolic manipulation without introducing formal 
epsilon-delta definitions. Using computer technology to magnify graphs reveals 
the property that many continuous graphs visibly approximate to a straight line 
under high magnification. Such a graph is said to be ‘locally straight’. The slope 
of a locally straight graph can be seen by highly magnifying a portion of a 
graph to visualize it as essentially straight and to measure its slope. This gives a 
natural distinction between continuity of a graph drawn with a pencil or with 
pixels on a graphic display (which will ‘pull flat’) and differentiability (which 
involve graphs that are ‘locally straight’). It enables students to visualize non-
differentiability (with ‘corners’ having different left and right derivatives, or 
even functions that are so wrinkled that they do not look straight no matter how 
much they are magnified) and to realise that most continuous functions are not 
differentiable (Tall, 2009). Such an approach, although based on visual and 
symbolic techniques only, gives far greater insight into the meaning of the 
notions of continuity and differentiability. 

Furthermore, for a locally straight function, the Leibniz notation   dy / dx  
may be interpreted as a quotient of the components of the tangent vector, as 
originally conceived by Leibniz himself. In such an interpretation, dx and dy 
can be called differentials, representing the components of the tangent vector up 
to a scalar multiple. Now a first-order differential equation is just that: it 
formulates the direction of the tangent in which the differentials are the 
components dx and dy. 

Software can be programmed to build up the numerical slope of a graph 
dynamically by shifting along and computing   ( f (x + h) − f (x)) / h  for variable 
x and fixed h. This can be drawn as a practical slope function that stabilizes on a 
visible graph on screen for small values of h, revealing the stabilized graph as 
the derivative. The embodied action of looking along a graph, imagining its 
changing slope operates on a visual object, (the graph of f) and gives a new 
object (the stabilized graph Df). For instance, if   f (x) = sin x , then looking at 
the changing slope along the graph gives   Df (x) = cos x . The symbol D is here 
an embodied operator that means ‘look along the graph and see its slope 
function Df). 
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Focusing on a specific point x, gives the equation 

  
Df (x) = dy

dx
 

where   Df (x)  is the value of the function produced by the operation D 
calculated at x and dx and dy are differentials (components of the tangent). This 
leads to the natural idea of blending of the two meanings by writing 

  
dy
dx

=
d( f (x))

dx
=

d
dx

f (x)  

and allowing the symbol   d / dx  to be interchanged with the operation D. 
This approach is a quite different from that suggested by the APOS theory of 

Dubinsky (e.g. Asiala et al., 1996), which speaks of focusing on a process, here 
the limit process   limh→0 ( f (x + h) − f (x)) / h , and encapsulating it as an object. 
Fundamentally, operating on an object to construct a visible object is far more 
elementary than encapsulating a process to give an as yet unknown object. 
Research results speak for themselves: the visual approach is highly successful 
(Tall, 1986) whereas the APOS view, programming functions symbolically to 
compute a practical derivative that is to be encapsulated as a symbolic object 
proves to be far more elusive (Cottril et al. 1996). 

There is a clear distinction between a natural approach to elementary 
calculus and a formal approach to mathematical analysis. Elementary calculus 
blends together experiences in embodiment and symbolism without entering the 
complicated formal world of mathematical analysis that is characterised by the 
multi-quantified epsilon-delta definition of limit. 

Notice that I am not saying that one approach should be privileged over 
another. It is not a question of whether one should teach the formal definition of 
limit or not, it is a question of the objective of the particular course and its 
appropriateness for the current development of the learner. 

If the objective is to give insight into the calculus as an operational system in 
applications in which the Leibniz notation plays its part, then a locally straight 
approach gives both human meaning and operational symbolism. If the 
objective is to develop logical mathematical analysis (preferably as a course 
that follows elementary calculus), then the handling of multi-quantified 
definitions is part of the toolkit required for rigorous mathematical thinking. 
The most important aspect is to decide upon the aims of the course and not to 
inflict formal subtleties on students who are better served by a meaningful 
blend of embodiment and symbolism. 

The three worlds of mathematics each offer their own distinct advantages: 
• embodiment gives a basis of human meaning that can be 

translated into flexible symbolism, 
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• symbolism offers a powerful tool for suitably accurate 
computation and precise symbolic solutions, 

• formalism offers precise logical deduction that will operate in 
any context where the axioms and definitions are satisfied. 

Consider, for example, the manipulation of multi-quantified statements. 
Embodiment will allow thought experiments to think about how to negate such 
a statement, to allow one to realise that to prove that a universal statement is not 
true, one only needs a single counter-example and that to prove an existence 
statement is not true requires a universal statement of its falsehood. 

Symbolism translates these statements into ¬∀ ≡ ∃¬  and ¬∃ ≡ ∀¬ . In this 
way the definition of continuity of a function f at a point x on a domain D can 
be written as 

  ∀ε > 0 ∃δ > 0 ∀y ∈D x − y < δ ⇒ f (x) − f ( y) < ε( )  

and its negation can be found by placing the negation symbol in front and 
passing it successively over each quantifier, swapping one to the other to get 

  ∃ε > 0 ∀δ > 0 ∃y ∈D x − y < δ  and f (x) − f ( y) ≥ ε( ) . 

This symbolic manipulation is easier to handle than thinking through the full 
embodiment of the meaning all at once. It enables a more compressed form of 
thinking that is supportive in building formal proofs. 

What is essential in learning, is to build on the previous experience of the 
students to enable them to make personal sense of the new constructs. 

In the case of vectors, a vector also has three different meanings: as a 
geometric quantity with magnitude and direction, as an algebraic entity written 
as a column vector and as an element in a formal vector space. As a geometric 
quantity, it can be represented as a physical action, say as a translation of an 
object such as a triangle on the surface of a flat table. A given point A on the 
object will be shifted by a translation to a point B and represented as the shift 
  AB
 

 from a starting point to a finishing point in which any two such arrows will 
all have the same magnitude and direction. The translation can therefore be 
represented by a single arrow of given magnitude and direction that can be 
placed anywhere to represent the start and end of the shift of a particular point. 
This gives an embodied arrow of given magnitude and direction that represents 
the translation. Again we start with an object on the table and a process of 
translating it to represent the translation as an embodied object, the free vector. 
Representing the composite of two translations, one after another, the result is 
represented by the unique free vector that has the same effect. This conception 
of a free vector then has a meaning that translates naturally to the triangle law 
or the parallelogram law. 

A scalar multiple of a translation can be imagined as retaining the direction 
but multiplying the magnitude by the scalar (or reversing the direction if the 
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scalar is negative). This applies to free vectors by multiplying the magnitude of 
the vector by the scalar in the same way. 

The symbolic representation of a vector arises naturally through the solution 
of a system of linear equations in n variables. For n = 1, 2, 3, such equations can 
be represented in 1, 2, or 3 dimensional space. The symbolic techniques 
naturally extend to n variables and, even if the ideas are no longer easily 
visualised in higher dimensions, they can be represented by coordinate vectors 
with n components with transformations represented by matrices. 

The formal representation of a vector is quite different. A vector space is 
specified as an additive abelian group V with the action of a field of scalars F 
which satisfies appropriate axioms. Such vectors now no longer have magnitude 
or direction, but by introducing the notion of linear independence and spanning 
set, a structure theorem may be proved to show that any finite dimensional 
vector space over F is isomorphic to a space  F n  represented as n-dimensional 
coordinates. In the case of n = 2 or 3 and   F =   gives an embodiment of the 
vector space almost like   2  or   3 . I say ‘almost’ because the vectors in the 
vector space do not yet have a conception of magnitude or direction. To do this, 
one needs to add an inner product to enable one to specify lengths and angles. 

The problem for the teacher and the student is to be aware what assumptions 
are being made. Are vector spaces being studied formally based only on 
deductions from axioms or naturally, based on experiences of perceptions and 
actions in two and three-dimensional real space? The choice is up to the 
teacher, but it needs to be explicit. 

A natural approach would involve beginning from conceptions that are 
familiar: solving linear equations in one, two and three variables and 
generalizing them to n variables, which involves essentially the same symbolic 
solution technique although no longer visualizable in higher dimensional space. 
A formal approach would begin by abstracting the axioms for a vector space 
and writing down the list of axioms, and eventually proving a structure theorem 
from the axioms that vectors in a finite dimensional vector space can be 
represented by coordinate vectors with n components. Of course, if natural 
learners are presented with a formal approach, then the initial theorems and 
proofs may make little sense and the course may only come alive for them 
when the structure theorem for finite dimensional vector spaces has been 
proved and they are asked to solve linear equations operationally using 
symbolic vectors.  

The same can be said for other topic areas, for instance, groups studied as 
embodied operations of actions on figures with symmetry, or symbolic 
operations as permutations of n elements prior to a formal axiomatic approach. 

Formally, the various lecture courses, be they in analysis, vector space 
theory, group theory, or whatever, often begin with a formal axiomatic structure 
and formal deductions. Part of the way through the course a structure theorem is 
proven to give the axiomatic system a structure that can be embodied in a 
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manner now based deductively on the axioms with an operational symbolism 
that can be used solve problems symbolically. 

For instance, in analysis, the axioms for a complete ordered field identify it 
uniquely up to isomorphism, allowing it to be visualised as a real line and 
symbolised as infinite decimals. In vector space theory, a finite dimensional 
vector space over F is isomorphic to  F n , allowing it to be symbolised as n-
tuples and embodied in   2  or   3 . In group theory, a finite group is isomorphic 
to a subgroup of permutations. 

The roles played by embodiment, symbolism and formalism are very 
different and the teacher has to make it explicitly clear what approach is being 
taken. Is the course to be a formal course that requires formal deduction from 
axioms? This may be built entirely formally until structure theorems give it 
forms of embodiment and symbolism based on those axioms. Is it a formal 
course to be constructed naturally to enable students to give meaning to formal 
definitions through a range of examples? Or is the course intended to develop 
the necessary symbolic algorithms to enable the ideas to be used in specific 
applications, with examples relevant to the area of application? 

My own view is that it would help students enormously to gain an insight 
into the strategy, which many lecturers use implicitly but is rarely made 
explicit. That is that formal mathematics clarifies issues by specifying explicit 
axioms that are the ‘rules of the game’ and formal proofs deduced using these 
rules are proven once and for all in any situation where the rules are satisfied. 
The initial deductions from the rules are often quite technical and form a barrier 
for many students. But once a structure theorem has been proved, the 
techniques developed are now proven to work in all situations, whether known 
now or to be encountered in the future. This formal foundation is a gift worth 
having and it can be acquired by the formal thinker who deduces only from the 
axioms using formal proof, or by the natural thinker who sees the generalities 
bringing together many experiences that give meanings to the formalities. 

An understanding of three different approaches to mathematics would be 
invaluable, made explicit both to teachers and to students to be aware of the 
different objectives of mathematical thinking, consisting of: 

• ideas based on human perceptions and actions with thought 
experiments to suggest what might be true, 

• operations based on actions that give subtle mathematical 
processes to express and solve problems symbolically, 

and 
• formal axioms, definitions and proof that give a coherent 

framework of mathematics, supporting perception and operation 
with an underlying formal structure that applies in any situation 
where the axioms and definitions hold. 
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