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Lesson study involves planning and revising a sequence of lessons collaboratively to 
encourage learners to construct their own understandings based on a carefully 
guided sequence of activities. Here we consider the nature of mathematics that makes 
it significantly different from other forms of knowledge and the ways in which its 
developing structure involves both building on solid foundations and also attending 
to new situations that require a rethinking of previous ideas. The emotions generated 
by these activities play a significant role in the long-term development of 
mathematical thinking. On the one hand, if the ideas do not make sense, the child can 
suffer the debilitating effects of mathematical anxiety, on the other, if the child is 
encouraged to make flexible links between ideas then this may lead to a deeper 
realization of the sophistication and aesthetic beauty of mathematics. Lesson study 
can play a vital role in enabling learners to build flexible mathematical thinking with 
a profound sense of insight and pleasure. 
INTRODUCTION 
This paper is the continuation of a development of a theoretical framework for lesson 
study begun in Japan in December 2006 as part of the APEC (Asian and Pacific 
Economic Community) study to improve the teaching and learning of mathematics 
throughout the communities (Tall, 2006). Since that time I have presented the ideas 
of lesson study to teachers in Scotland (Tall, 2008), participated in a research study in 
Holland (Verhoef & Tall, in preparation) and developed new theoretical constructs 
specifically related to the mathematical and emotional aspects of the development of 
mathematical thinking (Tall, in press, McGowen & Tall, in press). 
This leads me to the conclusion that lesson study is one of the most potent methods 
for encouraging learners to take charge of their own learning in a supportive 
environment with the teacher acting as mentor. However, lesson study has particular 
aspects that do not necessarily fit the cultural and professional experiences of 
teachers in different situations and it is helpful to reflect more deeply on the 
fundamental ideas that underpin mathematical thinking and learning. Here I put 
forward the case that lesson study would benefit from a clarification of the nature of 
the mathematics that is required of the learner and a better understanding of the 
emotional responses that affect the learner in the encounter with new knowledge. 
Learning to know and understand mathematics is linked directly to emotional 
reactions that radically affect the quality of learning. Here I will extend the 
theoretical framework of my friend and mentor, the late Richard Skemp (1979), 
whose analysis of the goals of learning are complemented by the emotions related to 
anti-goals (situations that the individual wishes to avoid). When the learner meets 
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new ideas in mathematics, they may involve some aspects that are supported by the 
learner’s previous experience and other aspects that are different and may be 
problematic. While supportive aspects (such as experiences with the general 
operations of arithmetic) may enable the learner to generalise to new situations (such 
as using the rules of arithmetic in algebra), problematic aspects (such as the idea of 
an equation as a balance) may cause conflict that impede a coherent understanding of 
new ideas (such as solving an equation involving negative quantities). 
This sheds new light onto the phenomenon of the dislike of mathematics and the 
nature of mathematical anxiety related to the learner’s feelings about unfamiliar 
mathematical ideas. It leads to practical ideas of how lesson study is particularly 
valuable for developing a personal understanding of mathematics that gives both 
power in operation and deep aesthetic pleasure in achievement. 

THE SPECIAL NATURE OF MATHEMATICS 
Mathematics involves both choice and consequence. One may choose to define a 
mathematical concept in a particular way, or to build one’s own patterns in 
mathematics. But certain consequences inevitably follow: 2+2 is 4, it is never 5. If a 
triangle in Euclidean geometry has two equal sides, then it has two equal angles. It 
cannot be otherwise. 
However, the reasons for the consequences depend on the situation. The properties of 
numbers depend on the unique mathematical structure underlying the number system 
which starts with a specific element (one) and, for each element there is a next 
element, which are all different, and only elements that occur as a ‘next element’ are 
included. From this simple structure, all the properties of arithmetic inevitably 
follow, such as the concept of prime number and the infinity of primes. 
The properties of geometry depend on other principles, such as the idea of 
congruence, which essentially involves ‘picking up’ a triangle and placing it on top of 
another to specify minimal requirements that guarantee that the two triangles are 
identical in every way (such as 3 sides; 2 sides, included angle; 2 angles, 
corresponding sides; or right angle, hypotenuse, one side). 
Different forms of geometry have differing principles. For instance, spherical 
geometry has ‘lines’ that are great circles on a sphere and the ‘angle’ between two 
‘lines’ is the angle between the tangents to the great circles. Spherical geometry has 
its corresponding theory of congruent triangles, for instance, if two triangles have two 
corresponding sides and included angle, then they are identical in all other respects. 
However, the theorem that ‘the angles of a triangle add up to 180°’ no longer holds. 
(In radians, the angles of a spherical triangle add up to π+ Δ/r2, where Δ is the area of 
the triangle and r the radius of the circle1.) The Euclidean theorem for the sum of the 
angles of a triangle depends on the idea of parallel lines and there are no parallel lines 
in spherical geometry since two great circles always intersect. 
                                         
1 See the endnote for an outline proof. 
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One of the essential understandings that we need in the teaching of mathematics in 
general and in lesson study in particular is a clear conceptual idea of the underlying 
reasons for mathematical relationships. Do you know why the theorems of Euclidean 
geometry are ‘true’? I confess that, only two years ago, I believed that it was all 
related to the fundamental idea of congruence. I was wrong. There are other 
principles involved (such as the notion of parallel lines and their properties). These 
principles (as yet not clearly formulated by mathematics educators, certainly not in a 
way that satisfies me personally) are peculiar to Euclidean plane geometry and 
different geometries have different underlying principles. It is beholden to us as 
mathematical educators and teachers to be consciously aware of the fundamental 
underpinnings of mathematical concepts. 
Crystalline concepts in mathematics 
As I reflected on the underlying ideas in mathematics, I realised that mathematics is 
based on fundamental principles that are more structured than other areas of 
endeavour. In poetry, music and art, we have choices that we can make to mould our 
creations to our will. There are often underlying expectations of form and content, 
but when this expected form is broken in an aesthetic manner it gives true pleasure in 
its novelty be it an unexpected phrase in poetry, a change in harmony in music, or a 
new painting by Pablo Picasso or Salvador Dali. In mathematics, we can choose what 
we wish to study, even formulate our own axiomatic systems, but when that choice is 
made, the consequences are inevitable. 
As we learn to count, we observe regularities. The number of elements in a collection 
is the same whichever way we count it. The sum of 4+3 is always 7 and if we take 4 
away from 7 we are left with 3. In Gray & Tall (1994) we captured this structure by 
introducing the notion of procept which expresses the underlying idea that different 
procedures can yield the same concept, so that symbols representing different 
processes such as 4+3, 2+5, 14÷2 can be interchanged because they all represent the 
same number 7. 
This is my first example of a crystalline concept. In Tall (in press) I formulated a 
working definition for a crystalline concept as ‘a concept that has an internal 
structure of constrained relationships that cause it to have necessary properties as a 
consequence of its context.’ Flexible arithmetic is powerful because of the internal 
crystalline structures within and between number concepts. 
In the same way, in Euclidean geometry, various crystalline concepts can be 
identified. The most obvious kind of crystalline concept is the notion of a platonic 
figure such as a circle, a square or a tetrahedron. Each of these has a specific structure 
whose properties are bound together by Euclidean proof. Consider, for example, the 
particular notion of an isosceles triangle. This may be defined as a triangle with 
(precisely) two equal sides. It also has, of necessity, precisely two equal angles, and if 
one constructs the perpendicular bisector of the base, this will pass through the 
vertex, or if one bisects the vertex angle, the constructed line meets the base in the 
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midpoint at right angles. All of these properties are related to the broader idea that the 
triangle has a symmetry in the line that bisects the vertex angle and passes through 
the midpoint of the base at right angles. 

 
While these various properties can all be deduced from the definition of an isosceles 
triangle as having two equal sides, it is also possible to take any one of the above 
properties as the definition and deduce the other properties from it. Not only are these 
properties all equivalent (in the context of Euclidean geometry), they are essentially 
the same underlying property, expressed in different ways. It is this peculiar quality 
that makes the notion of isosceles triangle a crystalline concept: it has an underlying 
crystalline structure that causes it to have specific interrelated properties. 
In formal mathematics one also has crystalline concepts. Consider, for example, the 
axiomatization of the real numbers as a complete ordered field. There are twelve 
axioms for arithmetic and order that constrain it to be an ordered field and the 
additional axiom of completeness. The concept of completeness can be formulated in 
a number of different, but equivalent, ways, such as ‘any non-empty set bounded 
above has a least upper bound’, ‘any non-empty set bounded below has a greatest 
lower bound’, ‘any increasing sequence bounded above tends to a limit not exceeding 
an upper bound’. ‘any decreasing sequence bounded below tends to a limit not less 
than any lower bound’, ‘a cauchy sequence converges to a real limit’, and so on. 
Although we may formulate the notion of a complete ordered field in a number of 
different (equivalent) ways, underlying the notion of complete ordered field is a 
crystalline concept that simultaneously has all the properties that can be deduced 
from any axiomatic formulation. Furthermore we can prove a theorem that a 
complete ordered field can be represented visually as points on a number line and 
symbolically as infinite decimals with the usual operations of arithmetic. In this way, 
the formal definition gives rise to both visual and symbolic methods of operation. 
Each of these examples of crystalline concept operates in its own context and we 
need to realise that, as the context changes, the concepts themselves may take on new 
forms. 
For instance, if the child begins with counting whole numbers, one, two, three, …, 
then each number is followed immediately by a specific next number and there are no 
numbers in between. This is an essential aspect of number in the context of counting. 
It is part of the crystalline concept of whole number and whole number arithmetic. 
There are other aspects that the learner may become aware of. For instance, when 
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adding two numbers the result is always bigger, when taking away a number the 
result is always smaller, when multiplying two numbers (except the simple case when 
one of the numbers is 1) the product is (much) larger than either.  
However, when one moves to fractions, new aspects arise.  The crystalline concept of 
(positive) fraction has new properties. First, the same fraction can be written in 
equivalent ways, unlike whole numbers that have only one specific name. Then there 
is no ‘next’ fraction and, between two fractions there are always (an infinite number 
of) other fractions. The rules of addition and multiplication of fractions are now more 
complicated than those of whole numbers and, while the sum of two fractions is 
again larger, the product of two fractions may be smaller than either of the 
constituent parts. Many of these properties may prove to be problematic. They often 
involves implicit properties that are not specifically taught but arise as the human 
brain becomes unconsciously aware of regularities that are implicitly strengthened in 
the mind without necessarily becoming conscious. 
The same phenomena occur each time the context changes and the underlying 
crystalline concepts subtly change in meaning. For instance, the switch to signed 
numbers introduce problematic aspects, such as taking away a negative number 
giving an unexpected larger result, or the product of two negative numbers being 
positive. 
Arithmetic of decimals introduces new problematic elements, for instance, with 
whole numbers and fractions the results of operations are always exact, but with 
finite decimals, the rules of arithmetic are no longer precisely satisfied. For example, 
expressing numbers to four decimal places gives 1/3 as 0.3333 and the product of 3 
and 0.3333 is 0.9999, not 1. 
Infinite decimals have strange properties that cause students to consider them as 
‘improper’ numbers that can never be properly computed in a finite time (Monaghan, 
2001). This difficulty is related to the physical impossibility of computing the value 
of a number given by a potentially infinite process that cannot be achieved in a finite 
number of steps. 
Fractional and negative powers do not conform to the usual conception that a whole 
number power xn consists of n copies of x multiplied together. Their properties must 
now be inferred from the power law  xm+n = xmxn , which was originally conceived by 
counting the number of times x is repeated in the product, but now is expected to 
apply not just to whole numbers m and n, but also to any signed rational number. 
The limit concept, in general, involves a potentially infinite challenge and carries 
with it experiences such as that a sequence may approach a limit and never get there, 
which is problematic for constant sequences. 
The geometric notion of tangent, experienced as a tangent to a circle, is often 
conceived as touching at one point and not crossing, which becomes problematic for 
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a tangent in the calculus, such as a tangent to a straight line or a tangent at a point of 
inflection. 
Often in mathematics, a new context requires a change in meaning that can open up 
powerful new possibilities for some and yet create problematic conflict for others. 
Epistemological obstacles 
In each case the mathematics changes in meaning to apply in a broader context which 
conflicts with previous experience. Some students see the power of the more general 
ideas and embrace them with pleasure. Others sense an underlying difficulty but 
manage to carry out the necessary procedures, perhaps with a lingering sense of 
doubt. 
Brousseau (1983), following Bachelard (1938), described the problematic nature of 
conflict that is an implicit part of the development of new ideas to be an 
‘epistemological obstacle’. Uri Wilensky (1993) referred to the problem as 
‘epistemological anxiety’, which he described as ‘a feeling, often in the background, 
that one does not comprehend the meanings, purposes, source or legitimacy of the 
mathematical objects one is manipulating and using.’  He illustrated this with the 
following excerpt from an interview: 

Interviewer: So, what was math like for you in school? 
Student: Well, I was always good at math. But, I didn't really like it. 
Interviewer: Why was that? 
Student: Why? I don’t know. I guess I always felt like I was getting away with 
something, you know, like I was cheating. I could do the problems and I did well on 
the tests, but I didn’t really know what was going on.  

Epistemological anxiety is a sign that the individual does not really understand the 
mathematics, even if he or she can carry out the necessary computations. I interpret 
this phenomenon in a broader context that includes not only problematic ideas but 
also complementary supportive aspects. A wider theory balancing both positive and 
negative aspects is more likely to provide a coherent overall theoretical framework. 
Supportive and Problematic Met-befores 
In recent years I have been developing a framework that relates new learning to 
previous experience. I introduced the term ‘met-before’ (Tall, 2004) to refer to the 
use of previous experience (ideas that were ‘met before’ that affect new learning). It 
is a play-on-words to correspond in some ways to the notion of ‘metaphor’ used by 
Lakoff (1987) to describe the type of communication in which a particular 
experience, the target, is spoken about in terms of another, the source. This enables a 
less familiar, possibly abstract, target to be thought about in terms of a more familiar 
source. For instance, ‘time is money’ interprets the abstract target notion of time in 
terms of the concrete source notion of money. The link builds a whole system of 
language to speak of time, not only in direct terms, such as the modern ways of 
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paying for time in money—in hourly wages, daily hotel room rates, yearly budgets—
but also in situations where money is not involved, such as ‘spending time doing an 
activity’, ‘investing time in work’, ‘living on borrowed time’ and ‘paying a debt to 
society in prison.’ 
The term ‘met-before’ grows out of this usage, to describe how we interpret new 
situations in terms of experiences that we have met before. A working definition of 
met-before focuses on the effect of previous learning rather than the learning itself, as 
‘a mental structure we have now, as a result of experiences we have met before.’ 
When we first meet the concept of a complex number i whose square is negative, we 
experience the met-before that tells us that ‘a (non-zero) square must be positive’. 
This met-before, which is true for real numbers, forms part of our mental concept of 
‘number’ and causes confusion for the learner meeting the notion of complex number 
for the first time. 
Some previous experiences are supportive and give pleasurable experiences in 
learning while others are problematic and cause initial confusion. A number fact like   
5+2 = 7 established through counting is supportive in subsequent learning, whether it 
be in decimal arithmetic where 35+2 = 37 or 50+20 = 70, in measurement where 5 
meters plus 2 meters is 7 meters, or even in complex numbers where 5i+3+2i is 7i+3. 
But other experiences are problematic, such as the idea that ‘after one number comes 
the next’ or ‘multiplication makes bigger’, both of which are true for counting 
numbers but not for fractions. 
It may also happen that the same met-before may be supportive in some contexts but 
not in others. For instance ‘take away leaves less’ is supportive for counting numbers, 
for (positive) fractions and for finite sets, but problematic for negative numbers and 
for infinite sets. 
While the philosophical notion of ‘metaphor’ and the cognitive notion of ‘met-
before’ have much in common, they have two significant differences. One is that the 
notion of met-before applies to the previous experience of a particular individual, 
which could include the learner, or the teacher, or the individual who formulated a 
particular theory. We will return to this at the end of the paper. The second is that the 
term metaphor, as used by Lakoff, involves a top-down theoretical analysis of 
concepts from an expert viewpoint, while the term met-before refers to a bottom-up 
practical interpretation of the development of ideas from the viewpoint of the learner. 
In order to share the ideas with the learner, it is important to formulate theoretical 
concepts in a way that can be used in conversation with students and teachers. In 
English, it is far easier to say to a young learner faced with a problematic met-before 
‘what have you met before that makes you think that?’ rather than to talk about 
metaphors. Of course, in languages other than English, the play-on-words may not be 
possible. What is important is to develop appropriate language to speak of learners’ 
previous experience that causes them to think in a certain way that has now become 
problematic. 
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When encountering a met-before, it may be helpful to identify where it arose and 
how it continues to work in that situation. For instance, when considering the 
subtraction of a negative number, it could be advantageous to confirm that in 
previous experience of counting numbers, ‘take away’ has always given less and this 
continues to be true. If you have 5 apples and take away 2 apples, then you still get 3 
apples. The new situation may involve a bank account. As you make transactions, as 
you pay out cheques these will continue to make the balance in your account less. But 
if you are given a bill for $2, which requires you to lay aside $2 to pay it, then this 
affects the money available to spend. If the bill is then removed, the $2 laid aside can 
now be used again, so it effectively adds $2 to your spending power. Taking away 
–$2 has the same effect as adding $2. 
In Lesson Study, part of the design is to help students make sense of the mathematics. 
This may include dealing with problematic met-befores directly, to encourage 
students to make meaningful sense of the changes needed to operate in the new 
situation. 
Including both supportive and problematic effects of previous experience gives a new 
balance to the development of mathematical thinking in the mind of the student. 
Supportive met-befores that work in a broader situation help the process of 
generalization from an earlier context to a wider context. Problematic met-befores act 
as a hindrance to generalization. By including both aspects in a theoretical 
framework, a fuller picture emerges. 

EMOTIONAL EFFECTS IN MATHEMATICS LEARNING 
It is well known that there are widespread negative reactions to mathematics. In the 
USA, Marilyn Burns (1998) claimed that almost two thirds of all American adults 
had a hatred and deep fear of mathematics. Even at college level, a study of over 
9,000 American students found that one in four had a moderate to high need for help 
with their mathematical anxieties (Jones, 2001). 
There is a huge literature related to mathematics anxiety. The many diverse factors 
include negative images of mathematics from teachers, parents and others, social 
deprivation, disturbing previous experiences in mathematics classes, poor teaching 
based on learning rules that are not understood, poor preparation for tests, anxiety at 
being asked to do mathematical problems in front of the class, fear of failure, poor 
self-image, poor memory, and so on (Furner & Berman, 2003). 
Few of these explicitly relate to the nature of mathematics itself, but more to the 
effects of inadequate teaching, negative attitudes, or anxiety arising from being put 
under pressure in front of others or in a timed test. Furthermore, whatever, the source 
of the difficulty, a cycle can build up in which anxious students begin to avoid 
mathematics or put in little effort, leaving significant gaps in their knowledge, 
causing increasing difficulties in more advanced topics, reinforcing their anxiety and 
deepening their problems. This develops a cycle in which ‘unreasonable beliefs can 
lead to anxiety, anxiety can lead to protective behavior, and the long-term 
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disadvantage of protective behavior can reinforce unreasonable beliefs’ (Baroody & 
Costlick, 1998). Mathematics anxiety is therefore a complex issue with diverse 
sources that can increase in cycles of intensity as difficulties cause anxiety and 
anxiety causes difficulties. 
My own interpretation of this huge diversity of opinions is that they almost always 
refer to the symptoms of the problem, rather than to a specific cause. Mathematics is 
peculiar in that it has its own literature on anxiety that is far more developed than any 
other subject. A Google search returned over 47,000 entries for the precise words 
“mathematics anxiety”; “math anxiety” scores even more with over 80,000 entries. 
The related notion of “science anxiety” has 15,000 entries, “language anxiety” with 
18,000 entries often focuses on difficulties with foreign languages, while “physics 
anxiety” has less than 1,000 entries, and “music anxiety” is mainly concerned with 
using music to relieve anxieties from other causes. 
The possibility looms that major problems occur with the nature of mathematics 
itself. If we regard mathematics as the archetypal logical subject in which each idea 
fits naturally with others, then what is the source of this anxiety? I suggest that 
anxiety in mathematics occurs in part because some children find it difficult, with 
many number facts to remember in arithmetic, fractions being more complicated, 
negative numbers lacking meaning, algebra being too abstract to understand, and so 
on. A further source of anxiety is the epistemological anxiety arising when—even 
though a child may be able to do mathematics—it may have little meaning. 
The concept of met-before opens up a new way of considering these difficulties. 
While supportive met-befores are helpful in new situations and support 
generalization, problematic met-befores act as a hindrance. A major source of anxiety 
lies in the changes in meaning as the mathematics shifts into new contexts. 
Skemp’s Theory of Goals and Anti-goals 
Richard Skemp (1979) built on fundamental ideas in psychology to formulate a 
framework that not only involves goals which the learner may wish to achieve, but 
also anti-goals which the learner wishes to avoid.  This leads to a broader relationship 
between mathematics and the emotions that includes both positive and negative 
aspects. 
A goal or anti-goal can be short-term, such as the goal of adding two numbers 
together, or long-term, for example, the overall goal to succeed in mathematics. An 
anti-goal may involve a short-term wish to avoid being asked a question in class for 
fear of looking foolish, or a longer-term desire to avoid mathematics altogether. 
Children are usually born with a positive attitude to learning. They explore the world 
spontaneously, often with great pleasure. But unpleasant experiences are likely to 
lead to the desire to avoid the unpleasantness, leading to the development of an anti-
goal. 
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Skemp theorized that there are very different emotions related to goals and anti-goals. 
He distinguised between the emotions sensed as one moves towards, or away from, a 
goal or anti-goal (represented by arrows in the following figure). He also considered 
the individual’s overall sense of being able to achieve a goal, or to avoid an anti-goal 
(here represented by the smiling faces for a positive sense and frowning faces for a 
negative). 

 
Emotions associated with goals and anti-goals (this author’s visual interpretation) 

The diagram makes explicit the different emotions related to approaching or moving 
away from a goal or anti-goal. A goal that one believes to be achievable is suffused 
with a feeling of confidence, which may change to frustration if it proves to be 
difficult to achieve. Frustration sensed by a confident person is likely to be a positive 
encouragement to redouble the effort to achieve the goal. Meanwhile, moving 
towards a goal gives pleasure and moving away gives ‘unpleasure’—a Freudian term 
that Skemp used to indicate a lack of pleasure rather than active displeasure. 
Coping with an anti-goal is quite different. According to Skemp, an anti-goal that one 
believes one can avoid gives a sense of security but, when it cannot be avoided, the 
emotion turns to anxiety. Moving towards a goal instills a sense of fear, while 
moving away turns to relief. 
This reveals the vast difference between the positive emotions relating to goals that 
are considered achievable and the negative emotions relating to anti-goals which 
offer at best a sense of security and relief and at worst a sense of anxiety and fear. 
The difference is seen in the mathematics classroom where some learners build a 
positive attitude, often based on a long-term confidence that they can solve problems 
coupled with a sense of security that they can avoid difficulties. 
Skemp insightfully claimed that ‘pleasure is a signpost, not a destination’, stating a 
principle that pleasure is not something that one should seek in itself, it is a state of 
being aware of making progress towards a desired goal. For him, mathematical 
learning becomes pleasurable by making sense of the mathematics and tackling 
interesting problems that are within the grasp of the pupil willing to accept a 
challenge. The idea of ‘making mathematics fun’ may be an important ingredient in 
learning to think mathematically but it is only a partial solution, for the main goal 
should be to improve the power of one’s mathematical thinking which has its own 
inbuilt reward. 
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Pleasure that arises from conceptual understanding comes from growing more 
powerful through being able to understand the ideas and build them into rich flexible 
knowledge structures. A learner who builds confidence through success will not be 
pleased if a particular problem proves more difficult than expected, but the frustration 
experienced is more likely to provoke a determination to get it done than any initial 
fear of failure. 
If the frustration is unresolved, there are two distinct possibilities. One is to replace 
the now frustrated goal of conceptual understanding by the more pragmatic goal of 
learning the procedures to pass the examination. This can lead to its own sense of 
success, particularly for those who may not have an interest in mathematics itself but 
need a qualification in mathematics for something else. However, if the learner then 
has difficulty in performing the mathematical calculations, the situation can change 
dramatically from the goal of success to the antigoal of avoiding failure. 
Writing an editorial in a journal for teachers, John Pegg (1991) once commented: 

I was interviewing a number of students about how they worked through their 
mathematics. What became very clear was the desire of the students to ‘know the 
rule’ or ‘the way to do it’. Any attempt on my part to provide some background 
development or some context was greeted with polite indifference – ‘Don’t worry 
about that stuff; just tell me how it goes.’  

Until recently, I had always seen this as a desire for learning ‘how to do mathematics’ 
when conceptual understanding proves difficult. However, using Skemp’s theory of 
goals and antigoals, it is not one phenomenon, but two. One is the goal of wishing to 
‘know the rule’ or ‘the way to do it.’ The other is the antigoal of avoiding any 
‘explanations’ that the student believes will cause confusion. 
So now we obtain a new picture of possible sources of pleasure in learning. One is 
the major goal of making sense of mathematics as it fits together and the pleasure that 
arises through making the connections. A student with such successes is likely to be 
more persistent when faced with frustration, redoubling personal efforts to achieve 
the main goal. 
A second source of success is the desire to be able to do mathematics and perform 
well on examinations, even if it is not possible to make full sense of the mathematics. 
In the present climate, with increasing international comparisons such as TIMSS and 
PISA, there is a great political pressure for ‘raising of standards’ by gaining increased 
marks in examinations. Is there any wonder that students who fail in the intrinsic 
main goal of conceptual understanding will settle for the extrinsic pragmatic goal in 
achieving high marks in examinations? The focus on examinations is illustrated by 
the following remark from an 18-year-old school pupil from my local school who 
performs well in his mathematics: 

With exams in general, you regurgitate everything. You don’t actually learn, 
nowadays, you don’t learn anything not to be examined, so if you weren’t to be 
examined on it, you wouldn’t learn it. 
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In England, for the last twenty years there has been a steady, improvement in 
examination marks with each successive year being better than the last. A 
mathematician might look somewhat suspiciously at a monotonic increasing 
sequence bounded above by 100% that shows little random variation in a sample of 
20 years data. After all, the marks are scaled by the examiners and, every year, 
schools are generally able to declare that their efforts are, yet again, an improvement 
on the previous year. Despite this ‘improvement’, the universities all complain that 
students arrive at university, ill-prepared for courses that have had to be made simpler 
to compensate for the lack of knowledge of the students. 
As I reflected on this situation, I realized a deeper and more cynical form of 
‘mathematical understanding’ occurs as a result of learning mathematics under 
pressure of competition and the need to ‘get results’. Imagine a good mathematics 
student who operates successfully in arithmetic and then meets the arithmetic of 
signed numbers. She or he may not understand why two minuses makes a plus, but 
accepts the rule and then has the pleasure of getting the correct answer in 
manipulating algebraic expressions and solving algebraic equations. When this is 
compounded by the joy of achieving a result in a life-changing examination, 
happiness follows. The student is successful and experiences pleasure by being able 
to ‘do’ mathematics, but without a deeper understanding of why it works. 
The same framework gives corresponding insight into the relationship between 
mathematics anxiety and lack of understanding. I think vividly of an example of a 
friend who is himself a mathematics educator, whose daughter declared to me that 
she ‘did not like mathematics’ because it is ‘boring’. I asked her what she was 
studying and she replied ‘polynomials’. It transpired that this had included solving 
equations, and she ‘did not like quadratics.’ I enquired gently what she meant and she 
said her teacher did not explain things properly. So I asked her what she thought 
about the solution of the equation   (x − 2)(x − 3) = 0 . She gave no response. So I 
suggested the two brackets were numbers multiplied together whose product is zero. 
What did this tell us about the numbers themselves? She looked anxious and again 
could not reply. So I wrote down several numbers on separate pieces of paper, 
including 4, 6, –2, –3, 0, 523, and screwed up the pieces and invited her to select two 
at random, to see if the product was zero. It transpired that she did not know how to 
multiply two negative numbers together. 
This led to a further step back into earlier experiences. I drew a number line with 
positive and negative numbers on it and asked what happened if we multiplied by 2. 
Now 2 times 1 is 2, 2 times 2 is 4, 2 times 3 is 6 and it was evident to her that 
multiplying by 2 stretched the line by a factor 2. She was satisfied that in this 
stretching process, –1 would stretch to –2, –2 to –4, and so on. Then I suggested that 
multiplying by –2 would both stretch by a factor of 2 and turn the line round, so that 
not only did it shift 1 to –2, and 2 to –4, and so on, it would shift –2 to +4 and –3 to 
–6. 
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times –2 combines a stretch of 2 and a turn around to the opposite direction 

I gestured with my hand to show how multiplying by a negative number both 
stretched and turned the line over. I then made two gestures: multiplying by a 
negative number stretches and turns it over, then multiplying by another negative 
number stretches it again and turns it back to the original direction. So –2 times –3 is 
+6. Her face was suffused with a huge grin. The positive emotion was accompanied 
by a sense of deep understanding. So that’s why it works! We were then able to 
attack more general ideas of algebra, for instance, to talk about why the solutions of 
  (x − 2)(x − 3) = 0  arise when one of the brackets is zero, so x = 2, or x = 3. 

The moral of this story is that this student’s anxiety and dislike of mathematics 
cannot be resolved by simply teaching the new ideas of algebra relevant to quadratic 
equations. It requires a deeper consideration of her problematic met-befores. In this 
case, she has difficulty with her earlier experience of arithmetic of signed numbers 
that need to be addressed directly. 

THE ROLE OF LESSON STUDY IN MEANINGFUL LEARNING 
I conjecture that what is happening in a pressurised learning environment attending to 
short-term goals to teach children to pass specific examinations may simply give 
short-term success that sets up later difficulties when problematic met-befores arise 
in new situations. The effect is cumulative. Difficulties increase, anxiety increases 
and mathematics, for so many, becomes an impenetrable topic that can only be 
partially overcome by learning rules without reasons. 
Lesson Study has the framework to address this problem. It already uses techniques, 
such as the Japanese principle of ha-ka-se, to encourage the learner to ask if a new 
procedure is easy, accurate and meaningful. Making mathematics meaningful 
includes resolving possible difficulties that arise from problematic met-befores. 
Therefore we need to make sure that Lesson Study addresses not only new ideas that 
need to be comprehended, but also old ideas that may need to be reconsidered in the 
new situation. 
In Tall (2007), I referred to a framework of development of mathematical thinking 
that relates human perceptions and actions to the construction of mathematical 
concepts and operations. The interplay of human perception and action and the 
flexible development of mathematical operations is the basis of mathematics in 
school. This includes reasoning about perceptions in geometry and performing 
actions that lead to operations in arithmetic and algebra. This approach to 
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mathematics continues to be sufficient for practical applications of mathematics in 
later developments while in pure mathematics there is a further shift in sophistication 
from perception and operation encountered in school to theoretical aspects of 
axiomatic structures and formal proof.  
In an earlier APEC meeting, referring to mathematics in school, Patsy Wang-Iverson 
observed: 

The top eight countries in the most recent TIMSS studies shared a single 
characteristic, that they had a smaller number of topics studied each year. 

Success comes from focusing on the most generative ideas, not from covering detail 
again and again. This suggests to me that we need to seek the generative ideas that 
are at the root of more powerful learning. 
This places a great responsibility on our shoulders, not just to teach mathematics as 
practitioners use it, but also to find the generative ideas that enable the student to 
build a powerful understanding based on them. 
Experience of research using Lesson Study in the Netherlands (Verhoef & Tall, in 
preparation) revealed that the teachers involved were very keen to help students make 
sense of the mathematics. However, they operated in a context where current 
developments in Realistic Mathematics, introduced to make mathematics meaningful 
for students, was coming under criticism because it did not fully extend the more able 
students who would eventually go to university. As a result, although the teachers 
were enthusiastic that their lesson study approach helped them to get students 
involved and helped them personally to become more aware of student difficulties, 
they all too soon returned to their earlier ways of teaching, so that the students could 
concentrate on the fluency of operations required in the examinations. In this case the 
subject being studied was the calculus, and in particular, the notion of derivative and 
the rules of differentiation. 
An approach using computer graphics was being introduced in which the lesson study 
session was designed by the teachers to use software for drawing graphs and their 
derivatives. The generative idea being used in this case was the notion of ‘local 
straightness’. Looking at a graph drawn with a single stroke of a pen reveals it as a 
curved line. 

 

Such a graph could easily be quite irregular in shape, but many functions like 
polynomials, trigonometric, exponential and logarithmic functions all change in a 
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reasonably smooth way. If part of the graph is covered, what is left may look 
reasonably straight. 

 
A small part of a smooth graph may ‘look straight’ 

It may be seen that a continuous graph, drawn freehand, may have corners and may 
be wrinkled in various ways. However, if the student is encouraged to explore graphs 
under higher magnification using a graphical interface, then it may be found that 
some graphs look less curved as the magnification increases until, at a sufficient 
magnification, such a graph looks ‘locally straight’. This allows a distinction to be 
made between ‘continuous’ graphs that can be drawn with a stroke of the pen without 
the pen leaving the paper and those that are ‘locally straight’ under high 
magnification. For a locally straight graph, one can speak of ‘the slope of the graph’. 
This is the slope of the graph as seen under high magnification and it changes as one 
scans along the curve. 
First one may trace a finger along the graph itself to sense it as a dynamic object 
relating x continuously to   f (x) . Then one may align the hand in the direction of the 
graph as the hand moves along the curve, giving the sensation of the changing slope. 

  
Tracing a graph to see 

 and feel the graph as an object 
Sliding a hand along 

the graph to sense the changing slope 
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Imagining a magnifying glass moving along the curve, or using software that allows a 
dynamic magnification as the glass moves along the curve enables the learner to 
imagine the changing slope as a new graph.  

 

 
Moving a magnifying glass along the curve 

to see the changing slope 
Plotting the changing value 
of the slope as a new graph 

This exploration allows students to relate the visual slope of the graph to the slope of 
a line through two close points through   (x, f (x)) ,   (x + h, f (x + h))  to find the 
approximate slope as 

  
f (x + h) − f (x)

h
 

which in the case of   f (x) = x2  is 

 
  
(x + h)2 − x2

h
= 2x + h . 

For small values of h, as seen in the picture, the slope graph stabilizes on the graph 
with formula 2x. 
We can use the symbol   Df (x)  to denote the stabilized slope function that is given 
visually by looking along the original graph   f (x) = x2  to produce the slope function, 
in this case,   Df (x) = 2x . In Tall (2009, 2010) I fill out the details to show how this 
gives a more meaningful approach to the calculus where the derivative is the slope of 
the graph produced by looking closely at it to see how steep it is, rather than focus 
only on the limit process at a point, which proves to cause significant cognitive 
difficulties. What does it mean to claim that the limit ‘exists’? If one is dealing with a 
‘locally straight graph’, one can see the changing slope. The problem now is not to 
prove existence but to calculate the graph either as a good numerical approximation 
or as a perfect symbolic derivative. 
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This is an example of relating human perception and action to operational 
mathematics. It is typical of a range of links between what I term conceptual 
embodiment (based on human perception and action and on thought experiments to 
make sense of mathematical ideas) and operational symbolism (based on actions that 
become symbolised as mathematical operations). Conceptual embodiment gives 
generative ideas and operational symbolism expresses them in a precise and powerful 
manner that enables situations to be formulated symbolically and the symbols 
manipulated precisely to give accurate solutions to problems. 
In the long-term, however, as the mathematics shifts into more subtle contexts, such 
as from whole number arithmetic, to fractions, to decimals, to signed numbers and on 
to real numbers as infinite decimals, the conceptual embodiments change and 
problematic met-befores occur. To cope with this long-term change in meaning, it 
becomes vital to focus on those aspects that will be more supportive in the long-term 
and which are helpful in making generalizations. At the same time, it is vital to make 
explicit the need to address problematic aspects where new situations require 
modifications of experiences that worked in earlier situations but need to be 
rethought in the new learning. 
By emphasizing that earlier beliefs (such as ‘take away makes smaller’), one can 
work from a position of confidence where earlier ideas still work in the same way in 
the original situation, but need specific modification to deal with the new. While 
many researchers and curriculum designers speak of students having 
‘misconceptions’ and ‘making errors’, there is a clear difference between making an 
error perhaps through faulty arithmetic, and making an assumption that was perfectly 
satisfactory in an earlier situation but now requires a different treatment. 
This brings us not just to the problematic met-befores of the students, but also to 
problematic met-befores of mathematicians, mathematics educators, curriculum 
designers and teachers. 
This last sentence may be seen by some readers as an uncalled-for attack on the 
integrity of those responsible for designing and teaching the curriculum for our 
children in school. However, it is important, in all humility, for us to look at how we 
think and how we teach to see if our viewpoint is based on experiences that may not 
be appropriate for teaching and learning in the changing societies in which we live. 
Let us take these one by one. 
Met-befores of mathematicians 
Mathematics is a human activity, and, as such it is subject to the ways in which we 
operate as biological and social creatures. For instance, mathematicians who 
specialise in mathematical analysis know, to their cost, that visual information may 
be insightful, but it can also be subtly misleading, applying only to particular 
examples and not to general theorems. Thus we teach the calculus based on our 
historical development that introduced the limit concept in the late nineteenth century 
to clarify the meanings of continuity, differentiation, integration, sums of sequences 
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and series and so on. But we now know that students find the concept of limit highly 
subtle and, based on their experience, they often have problematic met-befores that 
cause them to misinterpret the formal theory. But are students so different from 
mathematicians who live in a particular culture and share ideas of that culture? 
Prior to the formulation of the limit concept, mathematicians used infinitesimals 
which continue to be used by applied mathematicians to this day. It was 
commonplace among nineteenth century mathematicians, as it is among our students, 
that, apart from a few peculiar examples, most continuous functions will be 
differentiable. A locally straight approach to the calculus shows that this need not be 
so (Tall, 2009, 2010). The notion of local straightness is highly specialised and not at 
all typical of arbitrary continuous functions that may be very wrinkled. Just as there 
are many more irrationals than rationals, yet we experience far more rationals than 
irrationals in our everyday life, it turns out that there are many more continuous 
functions that are nowhere differentiable rather than those that we meet regularly that 
are (nearly) everywhere differentiable. 
By giving appropriate experiences to learners, we can help them build mathematical 
ideas over the longer term and develop increasingly sophisticated theory in a way that 
makes sense at the time. This does not mean that we should not base mathematical 
analysis on the difficult foundation of limits, as this is the broadly accepted status quo 
amongst mathematicians. But it does suggest that we might consider ways of 
teaching the calculus that allow students to build from their current knowledge to 
develop practical ideas based on good mathematics that provides a sound foundation 
for later developments. 
Met-befores of mathematics educators 
Mathematics educators (including those of us involved in Lesson Study) have a duty 
to enable students to learn mathematics in a way that both makes sense to them as 
learners at the time, but is also part of a longer-term learning programme that enables 
them to operate at an appropriate level as the subject becomes more sophisticated. 
In school this means blending human conceptual embodiment with a full range of 
flexible mathematical operations. However, as we have seen earlier in the different 
forms of crystalline concepts in geometry and arithmetic, working with conceptual 
embodiment involves different principles from those in operational mathematics. 
Embodied mathematics arises in geometry and in geometric representations of the 
number line, graphs in two dimensions, visual diagrams of various kinds, and a range 
of other activities in space and shape. Here the general strategy is to work with visual 
objects (say figures or graphs) and to operate on them to determine their properties or 
to construct new objects, formulating ideas in more formal verbal terms. 
In Euclidean geometry, one may operate on an isosceles triangle by joining the vertex 
to the midpoint of the base, to show that it has many equivalent properties using 
congruence. Visual arithmetic is also initially a perceptual activity: one may look at a 
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visual array of m objects by n objects either as rows or columns to see that the 
commutative law for multiplication of whole numbers holds. Later, in the calculus, 
one may trace the changing slope of a (locally straight) graph f to be able to imagine 
the visual slope function Df. In each case, one operates on an object to give 
information about the same object, or to construct a new object. The results of the 
actions are clearly visible. 
Operational mathematics arises through actions on objects, such as counting 
collections, putting them together, taking away, repeating collections, sharing 
collections. The result is then symbolised and the symbol representing the operation 
is conceived as a mental object (counting becomes number, addition becomes sum, 
sharing becomes fraction, and so on). This has a framework of development in which 
operations are encapsulated as manipulable symbols (e.g. Dubinsky& MacDonald, 
2001; Sfard, 1991). The developments in embodied mathematics have a different 
theoretical framework (e.g. van Hiele theory, 1986), as figures develop more subtle 
crystalline meanings as platonic objects. 
Note that, in conceptual embodiment the emphasis focuses on objects to construct 
objects, in operational symbolism the emphasis is on operations that become 
symbolised as mental objects. The former involves natural perception that can make 
visual sense while the latter is inherently far more powerful. School mathematics is a 
blend of these two forms of mathematical thinking. While it might seem naïvely 
obvious that conceptual embodiment always precedes operational symbolism, once 
operational symbolism becomes available, it develops a power of its own that enables 
it to give more precise information about conceptual embodiment. For instance, in 
using Dienes blocks to represent place value, while some children may recognise the 
concept of place value from the blocks, others, who have a knowledge of place value, 
may interpret the meaning of the embodiment using their existing symbolic 
knowledge of place value. 
My own view is that it is essential to simplify the complexities to reveal the 
underlying generative ideas. In school, human perception and action gives deep 
generative ideas that need to be teased out and made explicit. Operations that are 
symbolised can be routinised so that they can be performed without much conscious 
effort. There is a synergy in which perception and operation act together. However, if 
the link between conceptual embodiment and operational symbolism is not made, 
then the lack of meaning may cause the child to learn operations by rote and fail to 
build long-term flexibility in thinking. Condensed into a single overall aim, what is 
essential is to link the embodied ideas to flexible operational ideas that are capable of 
supportive generalization while addressing problematic met-befores that can impede 
learning in new situations. 
Met-befores of mathematics teachers 
Teachers who participate in lesson study in mathematics have to fit in their 
development of lesson study within their regular professional activities. They have 
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little reflective time to think through new approaches with the pressing need to 
prepare for tests that focus on fluent use of operations in examination conditions. In 
my view, preparing for lesson study essentially means not only knowing the 
mathematics from a sophisticated viewpoint required in the longer-term, but also 
being aware of the current knowledge of their learners and of the possible effects of 
previous experience, both problematic and supportive. In this way they may be better 
prepared to broaden their approach to enable learners both to make sense of new 
mathematics and to adjust their current knowledge to deal with problematic aspects. 
This lays a foundation for teachers to act as mentors to their learners to enable them 
to develop both power and flexibility in mathematical thinking and also to derive 
pleasure from dealing with mathematical problems using increasingly flexible 
mathematical theory. 

A VISION FOR THE FUTURE 
Lesson study offers great possibilities for the future of mathematics teaching and 
learning. But it requires dedication, humility and reflection on both mathematical 
knowledge and the way in which children grow to think mathematically in a flexible 
and confident way. In designing sequences of learning, we need to find the generative 
ideas that we can uncover to give learners the power to tackle new situations and to 
build for long-term sophistication. It is helpful for us to reflect on our own ways of 
thinking with humility to see how we can re-organise our knowledge to make it 
meaningful for the developing child. 
We can improve learning by enabling children to question new ideas as to whether 
the ideas are easy, accurate and meaningful (ha-ka-se), to select more appropriate 
ways forward, so that they may become masters of their own destiny. But this 
involves more than simply allowing children to make their own choices, for it 
requires a teacher, as mentor, to guide the development, taking into account 
problematic met-befores that impede learning and to focus on supportive met-befores 
that enable generalization to new domains of mathematical knowledge. The 
generative idea is to build from the child’s sensory perception and motor action to 
refine ideas and develop verbal and symbolic ways of operation that are increasingly 
powerful and flexible. Lesson study offers a framework for organised learning in the 
classroom, not only in general, but also in the special development of the crystalline 
concepts of mathematical thinking that offers the supreme aesthetic pleasure of 
mathematical insight. 
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Endnote: The area of a spherical triangle 
The proof of the area formula arises by 
considering a spherical triangle ABC 
produced by cutting the surface with three 
great circles. It has a corresponding triangle 
A'B'C' where the great circles meet on the 
opposite side of the sphere having exactly 
the same shape and area. The total area of the 
shaded parts of the surface between the great 
circles through AB and AC can be seen by 
rotation about the diameter AA' to be  
of the total area, where  denotes the size of 
the angle A measured in radians. This area is 

. The same happens with 
the slices through B and through C with area  and . These three areas cover 
the whole surface area of the sphere and all three overlap over the triangles ABC and 
A'B'C'. Adding all three together, allowing for the double overlap gives the surface 
area of the sphere as 

 
where  is the area of the spherical triangle ABC. This gives the area  as 

 and the sum of the angles as 

  
α + β + γ = π +

Δ
r 2

. 
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