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ABSTRACT: While the general notion of ‘metaphor’ may offer a 
thoughtful analysis of the nature of mathematical thinking, this 
paper suggests that it is even more important is to take into account 
the particular mental structures available to the individual that 
have been build from experience that the individual has ‘met 
before’.  The notion of ‘met-before’ offers not only a principle to 
analyse the changing meanings in mathematics and the difficulties 
faced by the learner—which we illustrate by the problematic case 
of the minus sign—it can also be used to analyse the met-befores of 
mathematicians, mathematics educators and those who develop 
theories of learning to reveal implicit assumptions that support 
theoretical frameworks in some ways but act as impediments in 
others. 
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1. INTRODUCTION 
The notion of metaphor is used widely in mathematics education to denote 
the way in which we think about mathematics in terms of physical and 
mental actions. Here we hypothesize that the general idea of metaphor, 
especially when used to perform an intellectual analysis of how concepts are 
conceived, does not necessarily give a complete view of how students learn. 
We suggest that, rather than just a general consideration of the metaphors 
involved, it is more insightful to consider what the students bring to their 
learning, both in terms of previous experience that is supportive and previous 
experience that may be problematic. 

To represent the student’s current knowledge structures and the effect of 
earlier experiences on learning, Tall (2004) proposed the term ‘met-before’. 
This started out as a word play to describe ‘what the individual thinks now as 
a consequence of experiences that have been met before’. However, as we 
shall see, it also has theoretical implications that are somewhat different from 
the term ‘metaphor’, as used in cognitive science and in mathematics 
education. A met-before focuses not on a top-down intellectual analysis of 
the concepts concerned and the possible cognitive and philosophical origins, 
but on the way in which a student, or a mathematician, or a mathematics 
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educator, may interpret ideas biased by their previous experience. 
Inappropriate use of personal met-befores can lead to subtle difficulties in 
learning for the student. More seriously, we suggest that theoretical 
frameworks proposed by mathematicians and mathematics educators may 
also be implicitly affected by the met-befores of those who formulate the 
theory. 

This paper is in three main parts. After a preliminary consideration of 
various influences in learning, the first main part lays out the context and the 
formulation of the notion of met-before. The second includes a specific 
example with empirical data relating to the changing meaning of the minus 
sign as students follow through successive ideas in a college mathematics 
course, along with examples of other met-befores that affect learning 
negatively. Finally we consider the wider implications of the concept of met-
before in the broader frameworks of cognitive science and mathematics 
education. We find that the term gives new insight into such debates as the 
Math Wars and other areas of dispute in mathematics education, in particular, 
how theoreticians’ met-befores affect the nature of the theories that they 
propose. 

1.1 Influences in learning 
Ausubel (1968) wrote: “the most important single factor influencing learning 
is what the learner knows. Ascertain this and teach accordingly.” New 
experiences that build on prior experiences are much better remembered and 
what does not fit into prior experience is either not learned or learned 
temporarily and easily forgotten. When instructors understand what students 
know and how they think—and then use that knowledge to make more 
effective instructional decisions—significant increases in student learning 
occur (Black & William, 1998). Students’ ability to modify their prior 
knowledge has been examined and the discontinuities that are encountered 
have been documented, particularly at the elementary school levels (Skemp, 
1987; Fischbein et al., 1985; Behr et al., 1992) and at the undergraduate level 
(Davis & McGowen, 2007; McGowen & Davis, 2001; Tall, 2009).  

Existing knowledge may not be appropriate in a new situation and so the 
learner needs to adapt their approach to cope with new knowledge. We 
suggest that this need for adaptation is a major factor in causing a range of 
difficulties for students learning mathematics. Sowder (2000) described the 
enormity of the changes in thinking and adaptations necessitated as students 
move “from operating on whole numbers to operating on signed numbers and 
rational numbers (that is, fractions and decimal numbers) and from a primary 
focus on addition and subtraction to multiplication and division as well.” 
Hiebert and Behr (1988) noted that recognition of how the nature of the unit 
changes requires a shift in thinking that is “a fundamental change with far-
reaching ramifications: a change in the nature of the unit.” Sowder argues 
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that, “when teachers do not understand the significance of these subtle 
changes in how numbers are used, their students can become very confused” 
and lists three examples of this change: 

• Students move from singleton units to composite units when they 
multiply; that is, what counts as a number changes: A set of things 
can now be thought of as one whole; I have two sets of three 
pencils; I have four six-packs of Coke. 

• Students create new types of unit quantities when they divide: 
Dividing 30 cookies by 6 children yields 5 “cookies per child.” 

• Units are partitioned to form fractions. A number, for example 
1/3, is now part of a whole but can be thought of as a unit itself, so 
that it makes sense to talk about multiples of one-third, for 
example, “two one-thirds is two-thirds”. 

These are all examples of new things that children need to construct as they 
attempt to comprehend new mathematical ideas. Curriculum designers and 
mathematics educators usually focus on the positive aspects of learning, 
specifying those things that are required knowledge for the next stage in the 
curriculum. The notion of met-before includes both positive aspects that 
support new learning and prior experiences that are problematic in new 
contexts. 

2. MET-BEFORE 
The notion of met-before was introduced to focus on how new learning is 
affected by experiences that the learner has met before (Tall, 2004). At first it 
was a joke. It started out with a restatement of the term ‘metaphor’ as the 
phrase ‘met afore’, using the old English word ‘afore’ to emphasise that a 
metaphor relates new knowledge (the ‘target’) in term of existing knowledge 
(the ‘source’) developed from previous experience, so that the new ideas can 
be related to familiar knowledge already in the grasp of the learner. The idea 
at first fell on stony ground as many of those who heard it could not make 
sense of two words that sound the same but are spelled differently. Then the 
new word ‘met-before’ was used as a replacement and suddenly the change 
in a single syllable, from metAphor to metBefore clarified what was to 
become a new way of looking at the effect of previous experience, 
particularly those which cause impediments to learning. 

The notion of ‘epistemological obstacle’ has long been a focus of 
attention since it was introduced by Bachelard (1938) to describe how the 
progress of science could be blocked by existing cognitive beliefs. It was 
used by Brousseau (1983) to denote a particular piece of knowledge that 
prevents the acquisition of new knowledge. For example the concept of a 
function being given by an expression may act as an epistemological obstacle 
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to the appreciation of the general set-theoretic function concept. The study of 
epistemological obstacles is well grounded in the literature. However, it 
focuses on impediments that occur as learning shifts to new contexts. We 
believe it would benefit from being situated within a broader theory that 
complements both positive and negative aspects. 

It is a theoretical construct that is owned by mathematics educators and 
possibly by teachers, but it is hardly appropriate to discuss the notion of 
‘epistemological obstacle’ with a young child. Our quest is to produce a 
framework of thinking in which theoreticians, teachers and learners can work 
together, hand in hand. For instance, while a teacher might not discuss the 
notion of ‘epistemological obstacle’ with a learner, it could be quite natural 
to ask, ‘what have you met before that makes you think that?’ It may then be 
possible to relate to an earlier positive experience where the idea worked to 
build confidence in reflecting on what needs to be changed to handle the new 
situation.  

The term met-before applies to all current knowledge that arises through 
previous experience, both positive and negative. It can be given a working 
definition as ‘a mental structure that we have now as a result of experiences 
we have met before.’ 

Met-befores can be supportive where old ideas are used in new contexts in 
ways that make sense. For instance, knowing that 2+2 makes 4 continues to 
work if one is adding apples, pencils, whole numbers, lengths in metres, 
weights in kilograms and even in more sophisticated cases such as 
 320 + 20 = 340 ,   2a + 3b + 2a = 4a + 3b  or even   2 + 5i + 2 = 4 + 5i . 

The iconic function machine representation is often used in the early 
stages of the curriculum—usually as a “guess my rule” problem, to guess the 
internal formula expressing the rule. However, it can be a supportive met-
before when used in a different way to retain greater generality through 
everyday examples with functions given by a procedure rather than a simple 
formula. It can help students to organize their thinking and clarify their 
understanding of mathematical operations and symbolic notation (such as 
finding the additive inverse versus subtraction or squaring a negative number 
versus forming the negative of a number squared). It can also be used to 
encourage students to consider the differences between mathematical 
processes such as evaluating an expression and the solving of an equation 
(McGowen, 2006). 

The idea of a function machine as an input-output machine is supportive 
in focusing on the relationship between input and output, rather than the 
specific procedures that occur internally. In this case the two procedures 
“double the result and add six” and “add three, then double the result” are 
often seen as being different (as sequences of actions) by students. By 
focusing only on the relationship between input and output of a function 
machine, it can encourage students in realising that the expressions   2x + 6  
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and   2(x + 3)  are different ways of carrying out the same underlying process 
and so represent the same function. Even here, as we will discuss later, some 
students still have difficulties dealing with various aspects of these 
procedures (Tall, McGowen & DeMarois, 2000).  

Met-befores can also be problematic, for instance the term ‘difference’ is 
often used without a sign, for instance, the ‘difference between 7 and 3 is 4’ 
and ‘the difference between 3 and 7 is also 4’, so ‘difference’ in this case 
means ‘take the smaller from the larger’. In the child’s first experiences in 
arithmetic, this causes no problems, but when the child is asked to take a 
smaller number from a larger in a case with two-digit numbers, the problem 
to take 27 from 43 may be written down as in column arithmetic as 

 
In the first column the student has found the difference between the 4 and the 
2 to be 2, and in the units column the difference between 3 and 7 is 4. Part of 
this phenomenon involves supportive met-befores, such as accurate 
knowledge of relationships between numbers. However, the major problem is 
the problematic met-before that the old idea of difference no longer works in 
this context. This is not simply a question of the learner ‘making a mistake’. 
Here the learner is using a well-formed conception that to find the difference, 
one takes the smaller number from the larger. It works with whole numbers, 
but not with place value. The learner is now in a context requiring support 
and reason to comprehend a new situation, not simply an opportunity to be 
told to ‘correct their mistakes’ and move on the slippery path towards 
becoming insecure about mathematics. 

It is also important to note that met-befores may be supportive in some 
contexts and problematic in others. For instance, the idea that ‘take away 
leaves less’ is supportive for whole numbers and (positive) fractions, it is 
supportive in the context of finite sets where even Euclid claims it as a 
common notion that ‘the whole is greater than the part’. However, it is 
problematic in dealing with negative numbers and also in cardinal numbers 
for infinite sets. This emphasizes the need to consider the roles of met-
befores in different situations where sometimes they are helpful and 
sometimes they are not. 

2.1 Emotional aspects of met-befores 
Met-befores give rise not only to positive and negative effects on learning, 
they also cause emotional reactions to learning situations. On the one hand, 
supportive met-befores give confidence in handling any context in which 
they work. They may give pleasure from success, or at the very least, become 
part of the unconscious functioning of mathematical activities that proceed 
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routinely in the background while the learner concentrates on essential 
decision-making. Supportive met-befores enhance the chances of making 
sense of new ideas, increasing the possibility of achieving the goal of 
conceptual understanding. 

Problematic met-befores, however, impede learning and can frustrate the 
learner in making sense of new ideas. As Skemp (1979) asserted in his goal-
oriented learning theory, while goals are related to pleasure as they are 
achieved and frustration when they are elusive, if the goal becomes 
increasingly distant then the opposite emotional effect occurs. An anti-goal is 
formed, which is a situation to be avoided. Avoiding an anti-goal can bring 
relief but failure to avoid it leads to anxiety. 

Students suffering from the effects of anti-goals have a very different 
experience in learning, which can turn into mathematics anxiety. One way of 
addressing this situation is to change the goal. Maintaining a goal that is 
unachievable can only lead to increasing frustration. Now an alternative goal 
may come to the fore. Instead of the goal of conceptual learning (knowing 
why), the goal may change to a more pragmatic procedural learning (knowing 
how). 

Learning procedures by rote and being able to do them gives a new goal 
of learning to pass examinations, or being able to use the procedures for 
practical purposes in applications. If learning defaults to the goal of knowing 
how, it can be successful. However, if it is accompanied by a lack of 
conceptual meaning so that mistakes occur, it can become fragile and more 
likely to fail in the longer term. At this stage the problems may proliferate as 
the student becomes confused as to which rule to use, where to use it, and 
how to interpret it. 

This latter condition often describes the state of students in college who 
return to study the mathematics that they failed to learn at school. They are 
already damaged by the frustrations of not being able to understand and the 
anxiety of not being able to avoid failure so that their knowledge structures 
have become increasingly fragmented and lacking in coherence. 

The solution may not be simply for the teacher to be enthusiastic and 
work towards positive attitudes. Without addressing the problematic met-
befores that remain under the surface, any chance of conceptual 
understanding is suppressed and the only way forward is to focus the student 
on the techniques required to succeed in performing correct methods of 
getting the answer. This leads to the widespread use of rote-learning that may 
give brief respite to get through routine examinations but it may also 
exacerbate the problem in the longer term. 

In curriculum design, the focus is usually on supportive methods—
teaching pre-requisites that are required in a supportive role in later learning. 
Less often is the role of problematic met-befores made explicit. If they are 
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discussed at all, it is often in the role of ‘misconceptions’ and 
‘misunderstandings’. 

Such terminology is not helpful. It suggests a deficiency in the thinking of 
the child that may cause negative feelings and possible anxiety. One cannot 
have a misconception without first having a conception. These met-befores 
are pre-conceptions in the sense that they are aspects that were experienced 
before the need for a new conception and were helpful in the earlier context. 
It is surely more productive to accentuate the positive (what worked before) 
and consider how to look at new ideas in a different way that is more 
appropriate for the new situation, rather than accuse learners of making errors 
when they need carefully directed support to help them attempt to make sense 
of complicated new ideas. 

In the USA there is a profound and widespread fear of mathematics. 
Burns (1998) claims that almost two thirds of all American adults have a 
hatred and deep fear of mathematics. Even at college level, a study of over 
9,000 American students found that one in four had a moderate to high need 
for help with their mathematical anxieties (Jones, 2001). 

The proposals to address mathematical anxiety given by the NCTM 
(1989, p.233) encourage: 

• Confidence in using math to solve problems, communicate ideas, 
and reason; 

•  Flexibility in exploring mathematical ideas and trying a variety of 
methods when solving problems; 

• Willingness to persevere in mathematical tasks; 
• Interests, curiosity, and inventiveness in doing math; 
•  Ability to reflect on and monitor their own thinking and 

performance while doing math; 
•  Focus on value of and appreciation for math in relation to its real-

life application, connections to other disciplines, existence in 
other cultures, use as a tool for learning, and characteristics as a 
language.  

These hugely worthy aspirations have a common element. They all 
accentuate the positive. Nowhere do they address the negative. Much of the 
research on anxiety in mathematics in the United States places the emphasis 
of mathematical anxiety on external factors: negative images of mathematics 
from teachers, parents and others, social deprivation, disturbing previous 
experiences in mathematics classes, poor teaching based on learning rules 
that are not understood, poor preparation for tests, anxiety at being asked to 
do mathematical problems in front of the class, fear of failure, poor self-
image, poor memory (Tobias, 1978; Betz, 1978; Ashcraft & Kirk, 2001). 
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Notice that virtually all of these involve the symptoms of mathematics 
anxiety, not the deeper cause. In particular, there are rarely any references to 
problematic met-befores that may arise from the nature of the mathematics 
itself. 

For this reason, the example that follows will often focus on problematic 
met-befores that contribute to the difficulties that students experience when 
encountering a new situation. It relates to a widespread problem that occurs 
as the student shifts from arithmetic, to algebra, and on to evaluating 
functions.  

3. THE PROBLEMATIC DEVELOPMENT OF THE MINUS SIGN 
The minus sign arises in mathematics with several different but related 
meanings. It is usually met first in childhood as “take-away” in practical 
situations such as ‘5 apples take away 3 apples leaves two apples’, written 
later as 5 – 3 = 2. In this context, ‘3 apples take away 5 apples’ makes no 
sense, so that—as a met-before—this can cause a later obstacle when 
handling negatives. We have already noted that the word ‘difference’ is often 
used non-directionally, so that the difference between 2 and 5 is the same as 
the difference between 5 and 2, which is 3. The implied principle is that you 
always ‘take the smaller from the larger.’ 

In another context, the minus sign may be used to indicate temperatures 
lower than zero, or on a (horizontal) number line it indicates values to the left 
of the origin. In these cases, the minus sign is part of the notation for the 
number; it always indicates a negative value. This met-before can cause a 
major problem in algebra where –x is the additive inverse of x and, for 
negative numerical values of x, the value of –x will then be positive. It proves 
to be problematic in college algebra courses where experience shows that, 
when students are asked what they think of when they see the minus sign, 
they will often first say, “subtraction,” and then, “negative number.” They 
rarely mention the new interpretation, “finding the additive inverse.” Later, 
additional interpretations such as the inverse of a function contribute even 
more to their confusion. 

This is illustrated by a post-test interview with a student, MD, that is 
typical of the belief held by many students, that a variable with a minus sign 
in front of it has a negative value. 

I: What does it mean “to square” a number? 
MD: Squaring...multiplying a number times itself, like –5 times –5. 
I:  What is negative five squared? 
MD: Twenty-five. [She responds quickly and confidently.] 
I:  [showing the student a response she gave on a test problem: –

25] What comes to mind? 
MD:  Square negative five. 
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I: How did you get the answer –25? 
MD:  Oh! On the calculator. I just entered the problem exactly as 

written. 
I: You told me a few minutes ago that “to square” means 

multiplying a number times itself. 
MD: Yes. 
I: ... and that squaring negative five gives an answer. 
MD:  of 25. Yes. 
I:  If you square a negative number, what is the sign of the 

answer? 
MD: (very quickly) Positive! It’s always positive. 
I:  Then what process was used by the calculator to produce an 

answer of –25? 
MD: Oh! Square five, then take the opposite of the answer. 

[In the course attended by the students, the term ‘opposite’ was used to 
denote the negative inverse, with the intention of attempting to clarify the 
different meanings of ‘negative’.] 

I:  What does it mean, “to take the opposite”? 
MD: Change the sign of the number or answer. 

The quickness of her responses and her confidence in her answers suggests 
that MD understands what it meant to square a number, whether it be positive 
or negative. However, when asked to interpret the meaning of –f(x), she 
reveals the met-before of the minus sign denoting a negative number:  

I:  How do you interpret this? [writes down –f(x)]. 
MD:  negative output. The answer is negative. 
I: and [writes down f(–x)]? 
MD: The input is negative. 
I: How do you know the answer is negative? [Interviewer points 

at –f(x)]. 
MD: I don’t—I just assumed it was negative. The minus sign is in 

front of f. 
I: And in f(–x)? 
MD: Negative, the input is negative. 
I: How do you know… 
MD: I just assumed it would be negative because the minus sign is 

in front of x. 
I:  [writes down –5 and –x.] and asks MD: Does it make a 

difference if the minus sign is in front of a number or in front 
of a variable? 

MD: Being in front of a variable, it would be a negative answer. 
And negative five is just that, negative five. 



 10 

MD was requested to take out her graphing calculator and was asked: 
I: Use the Y1 = key and enter [writes down: –3x, thus avoiding a 

verbal interpretation].  
[MD enters –3x, correctly using the opposite (–) key (as it was 

referred to in the course), not the subtract operator key on the 
TI-83 calculator.] 

I:  If you substitute 2 for x, what answer would the calculator 
display? 

MD:  (answering quickly) “negative six,” then verifying her answer 
by substituting the value 2 for x. 

I: And if you substitute negative one for x? 
MD:  (quickly) three, again verifying her answer by substituting the 

value for x on the calculator. 
I:  And if you substituted zero? 
MD:  Zero. 
I: How did you get the answer negative six? 
MD: I multiplied 2 by negative 3. 
I: And the answer 3? 
MD: I multiplied negative one by negative 3. 
I: Would you review your answers displayed on the calculator? 

Reviewing your substitutions and the results, was the answer 
for –3x always negative? 

MD: No, only if x was a positive number—Oh! The minus sign 
doesn’t always mean a negative answer! 

3.1 LARGER VERSUS SMALLER 
Students’ prior arithmetic operational experiences include other met-befores 
that can cause difficulty when variables are introduced. These include the 
met-before of larger versus smaller (a) in the case of 2y versus y when y is a 
negative value and (b) subtracting variables, such as x – y compared with 
y – x, when x is a positive value and y is a negative value. 

Student responses to the following question (Bright & Joyner, 2003) 
provide additional evidence of ideas that were perfectly satisfactory in their 
original arithmetic context but are now recalled as met-befores that interfere 
with construction of new knowledge. Students were given several pairs of 
variables representing positive or negative values according to their 
respective positions on the number line pictured below and asked the 
following survey question (overleaf) to determine which had the greater 
value. 
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The numbers 0, 1, x, y, and –z are marked on the number line below. 

 
Figure 1: quantities on a number line 

For each pair of numbers circle the number that has the greater value. 
If the two numbers are equal, circle both numbers. 
 A. y  – y D. x – y  y – x 
 B. z  – (–z) E.  |y| –y 
 C.  2y y F.  x + y  x – y 

A majority of 128 college freshmen recently surveyed claimed that 2y was 
larger than y (Part C). The two most common explanations for this choice 
were “2y is greater because it is two times more than y” and “2y because it 
has a number in front of the letter.” Here the possible met-before is the idea 
that the product of whole numbers is generally bigger than either (except the 
isolated case when one of the numbers is 1). One student added “and because 
it has more variables” (again perhaps because the more (whole) numbers you 
multiply together, the more you get.) 

Nearly one-third of the students responded that the two expressions x – y 
and y – x (Part D) were equal. Reasons given included: “same problem, just 
switched around,” “because they are both subtracting a variable,” and 
“because you don’t know if the variable was an opposite or not.” These 
responses may relate to the notion of ‘difference’ being independent of order 
for whole numbers or to the additional difficulty encountered with the 
procedure to subtract a quantity by changing its sign. Less than one-third of 
the students indicated that x – y is greater than x + y (Part F) and were able to 
provide a valid reason. The most common response was: “x + y because the 
numbers were added,” which may relate to the met-before with whole 
numbers that the sum is bigger than the difference. One out of every five 
students responded that “x + y = x – y.” Reasons given for this choice 
included: “because adding a positive and a negative is the same as subtracting 
a positive and a negative number” and “because in both equations you are 
really adding the numbers.” Note, in this case, that y is visibly negative, so 
subtracting a negative means changing its sign and adding the positive. 

The student difficulties include not only evident met-befores such as 
‘difference is larger minus smaller’, ‘multiplication makes bigger’, ‘addition 
gives a bigger result than subtraction’ and problems coping with the minus 
sign, there are also more complicated errors relating to mis-remembering 
rules learnt by rote. This is consistent with the hypothesis that changes in 
context lead to difficulties in making sense of the mathematics and 
consequent learning by rote may result in more fragile knowledge that is 
likely to break down. There may be a further unintended consequence. By 
failing to help students make sense of the new ways of thinking appropriate 
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for a new context, we may give ourselves a proliferation of even more new 
difficulties that make later teaching and learning even more complicated. 

3.2 Ambiguity of Language and Symbols 
The difficulties that face the student in making sense of algebra are made 
more problematic by the need to handle several distinct conventions that are 
used, often implicitly, in interpreting algebraic symbols. The process of 
reading from left to right produces a particular met-before that is sometimes 
supportive, but more often problematic. This met-before is compounded by 
several distinct forms of ambiguity that students must deal with in the various 
conventions used in arithmetic and algebra. For instance the question, “What 
is 2 more than 3 times 4?” can be interpreted in two quite different ways, 
depending on how it is spoken or read. The student who considers the 
question as “What is two more than three (pause) times four?” is likely to 
respond “20.” The student who considers it as “What is two more than 
(pause) three times four?” is more likely to answer “14.” These ambiguities 
are addressed in algebraic notation using brackets. However, their meanings 
need careful linkage to everyday language. 

A second form of ambiguity is that symbols in arithmetic and algebra 
have a dual use as evoking a process (such as addition in 2+3) or as a concept 
(the sum 2+3). Gray and Tall (1994) defined a symbol that operates dually as 
process and concept to be a procept and used the same term when different 
procedures give the same overall effect, so that 2x + 6 and 2(x + 3) represent 
the same procept even though the procedures—‘double a number and add 6’, 
‘add 3 to a number and double the result’—are different.  

The symbol –3 is an example of a procept that can be interpreted in 
different ways, depending upon the context. It could be interpreted as (1) the 
concept negative three or (2) the unary process of taking the additive inverse 
(a process requiring one input) or (3) the binary process of subtracting 3 from 
some unknown number (a process requiring two inputs). When used in 
combination with other operations, such as  –32, the need to distinguish 
between “minus the square of three” and “the square of negative 3” lead to 
new conventions and more possibilities for confusion, as we will see in the 
next section. 

3.3 Arithmetic knowledge of grouping symbols in algebra 
In the application of concepts in arithmetic, a number of situations require 
flexibility to deal with both process-object ambiguity and notational 
ambiguity. The precedence of division and multiplication over addition and 
the precedence of powers over taking the additive inverse are frequently 
ignored by students who compute using the met-before of reading from left to 
right (or right to left in some languages). This order is such a strong met-
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before that knowledge of how grouping symbols change the order of 
operations may fail to make a strong impression on many learners. 

A recent pre-test of 140 undergraduate students documented how met-
befores from prior experience in arithmetic involving grouping symbols and 
the minus symbol becomes problematic in algebraic situations. Asked to 
evaluate f(x) = x2 – 3x + 5 given x = –3, only 21 of 140 undergraduate 
students gave a correct response. Most errors in responses to this item were 
the result of the students’ substitution of –32 and the subsequent evaluation of  
–32 as –9 instead of (–3)2. 

The failure to recognize that a negative value is being squared is so 
refined and stable that its selection and retrieval is automatic for many 
students, who wrote f(–3) = –32 –3(–3) + 5, followed by  −9 + 9 + 5 = 5 . Some 
students believe that they have “used up” the negative sign. One student, after 
writing y = –32 –3(–3) + 5 commented, “I have to do parentheses first.” 
Beneath his initial work of –32 –3(–3) + 5, he wrote 9 + 5. Pointing at the 
first term, –32, he said, “Now I have to do this but I can’t remember if it’s 
negative nine or just nine. I never can remember which to use.” He wrote 
down –9 and stopped. “There’s no sign in front of this (pointing at 9 + 5), so 
I need to multiply,” and wrote: –9(14) = 136.  

The following two items reveal further problematic aspects when verbal 
statements read from left to right need translating into algebraic symbolism 
that requires strategic use of brackets to represent the operations. 

 Item A: Given the input/output machine, write an algebraic 
expression for this machine.  

 
Figure 2: multiply by 3 and add 6 

 
 Item B: Given the input/output machine, write an algebraic 

expression for this machine.  

 
Figure 3: add 2 and multiply the result by 3 
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Answering both Items A and B correctly requires students to understand 
how the presence or absence of grouping symbols modifies the computation. 
Item B requires a bracket, but item A does not. On a post-test at the end of 
the course, 101 of the 140 students (72%) answered Item A correctly, but 
only 26 students (19%) correctly answered Item B. These results are similar 
to those found in an earlier study of developmental algebra students from 
four different community colleges where 71 students correctly answered Item 
A on the post-test but only 38 students correctly answered Item B (DeMarois, 
1998), 

4. THEORETICAL ASPECTS OF THE CONCEPT OF MET-BEFORE 
The discussion so far has focused on the met-befores that cause students 
difficulty as they study college algebra and have the problem of coping with 
the minus sign and grouping symbols. We can all stand and nod our heads as 
we, the experts, offer our assistance to help students understand subtle 
changes in mathematical meaning. However, the notion of met-before has 
implications beyond the problems encountered by students. 

It may seem initially as though the concept of met-before is nothing more 
than a study of epistemological obstacles using a misspelling of the word 
‘metaphor’. Nothing could be further from the truth. Research 
mathematicians, mathematics educators, cognitive scientists, and other 
participants in the learning and teaching of mathematics have their own met-
befores, in addition to the students and teachers that they study. This affects 
the theories that are used to interpret student experiences. 

For instance, in writing Where Mathematics Comes From, Lakoff and 
Núñez present a beautifully argued theoretical framework in which 
mathematics is embodied, building from fundamental sensori-motor actions 
of the human brain and body, constructing mathematical ideas through 
metaphors, starting from grounding metaphors based on sensori-motor 
human experience, forming linking metaphors to connect them together, and 
then re-definitional metaphors to specify formal mathematical concepts. It is 
a compelling theory and sheds new light on how humans are able to think 
mathematically. 

However, two aspects weaken the argument. The first is the top-down 
nature of the ‘idea analysis’ proposed by the authors, which in practice refers 
to general metaphors in learning and offers intellectual reasoning from the 
viewpoint of linguistics, philosophy and cognitive science rather than the 
development of the learner. The second is that the authors themselves are part 
of this embodied cognition. Therefore, they too will have an embodied 
background and benefit or suffer from their previous experience, a factor that 
is not made explicit in their argument.   

As an instance, consider the Lakoff and Núñez notion of the ‘romance of 
mathematics’ in which they carry out an idea analysis of mathematical 
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thinking based on metaphors. These metaphors are based on an intellectual 
analysis of the four grounding metaphors of arithmetic (as object collection, 
object construction, measuring stick, motion along a path) and travelling 
through a succession of linking and re-definitional metaphors until they reach 
the ‘formal reduction metaphor’, which links sets and symbols to 
mathematical ideas (p.369). On the way they attack what they term ‘the 
romance of mathematics’ (p.338), which they see as a myth: that 
mathematicians live in a world of mathematics with various attributes 
including the idea that ‘mathematical objects are real’ and ‘mathematics is 
universal, absolute and certain’ (p.339). This is used as a weapon to contrast 
the ‘beautiful story of mathematics’ (p.340) with ‘the sad consequences’ 
(p.341) that ‘it intimidates people. It makes mathematics beyond the reach of 
even intelligent students with other primary interests and skills. It leads many 
students to give up on mathematics as simply beyond them.’ 

This is a touching story and makes a powerful claim for the idea of 
embodied mathematics, which we share, resonating with the experience of so 
many mathematical learners who find difficulty with formal mathematics. 
However, the notion of met-before does not reveal the full picture. Another 
essential aspect is to study the met-befores of the various participants to 
understand not only ‘where mathematics comes from’ using an intellectual 
viewpoint, but where it comes from in the actual experience and cognitive 
development of every individual involved. This may give new insights, 
worthy of the highest ideals of mathematics education to see ourselves not 
only as part of the solution but also as part of the problem. 

We begin by looking at the experiences of research mathematicians. They 
live in a world where they prove theorems that apply to any context in which 
the assumptions of the theorems are true. They do not rely on a single 
embodiment, but on a formal argument that applies to any embodiment 
already experienced and any others to come that satisfy the given axioms and 
definitions. 

Formal mathematics as practiced by most research mathematics is a 
difficult area of struggle with complicated situations requiring deep reflection 
on ambiguities, conflicts and paradoxes (Byers, 2007) which in turn require 
the blending of conflicting ideas to produce emergent ideas that were not part 
of their earlier thinking (Fauconnier and Turner, 2002). 

This involves inventing new formal definitions as a basis for formal 
arguments and the exploration of the logical consequences of these 
definitions. This exploration can lead to entirely new insights that the 
mathematician had never conceived before. In such circumstances, the 
mathematics ceases to feel as if it is their own creation. What they have 
found are new concepts that have such a purity and inevitability that they 
now take on a role of existence, as if they are beyond the personal sphere of 
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the researcher and belong to the wider sphere of the mathematical community 
in what is, for them, the true ‘romance’ of mathematics. 

This does not remove the thinking from the embodied mind of the 
mathematician to some platonic sphere; it remains embodied, but now the 
embodiment is based on logical deduction from formal definitions expressed 
using sophisticated language. Furthermore, as Hadamard (1945) noted, one of 
the developments of building theorems in a theory is the proof of specific 
structure theorems that act as ‘staging posts’ in further development. As Tall 
(2008) observes, these structure theorems, proved logically and verbally, lead 
to structures that again enable the mathematician to think in embodied terms 
that are now no longer naïve embodied constructions, but are now formally 
linked together in a logical manner. 

It is a surprise to us that a book written in part by a linguist does not 
interpret the role of language in general and mathematical language in 
particular as a human endeavour that builds on embodiment to lead through 
formal mathematics to more sophisticated mathematical forms of 
embodiment. For it is just this form of thinking that leads to the creation of 
new theories that take us beyond our initial naïve conceptions as human 
beings. This ‘romance’, berated by Lakoff and Núñez, is the stuff of 
mathematical thinking that is shared by mathematicians with mathematical 
met-befores that they build on to produce new theories. 

The consequences are evident. The met-befores of research 
mathematicians include the experience of manipulating mental entities that 
have a reality for them and lead to new constructs that seem too perfect to 
simply be invented by the instigator(s) of the new theory. That is their 
privilege. The ‘sad consequence’ is that mathematicians sometimes err by 
believing that their sophisticated met-befores have a form that can be shared 
by learners who lack their experience. It is argued vigorously in ‘the Math 
Wars’ that children should be taught logically how to make sense of 
mathematics, when educators are attempting to tailor their teaching to fit their 
perceived views of how children think. Mathematicians could do well to have 
some sympathy with the growing minds of children if they wish to encourage 
new generations of mathematicians to mature to continue their enterprise. 

Meanwhile, educators have a responsibility to view more than the positive 
met-befores that are seen to be pre-requisites for learning new mathematics. 
It is essential that they also consider problematic met-befores that impede 
learning and enter into a dialogue with students to encourage them to develop 
new ways of working in a new context. Even better, it may be helpful to look 
at problematic met-befores in a positive light: that they operated satisfactorily 
in an earlier context to give the students confidence in their previous 
knowledge and to seek positive new ways of addressing the new situation. 

The inventors of theories also need to reflect on their own met-befores. 
An example of an implicit met-before that apparently goes unnoticed in the 
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book ‘Where mathematics comes from’ is the notion of a ‘naturally 
continuous function.’ This has properties that can be embodied, such as the 
fact that its graph can be imagined as the motion of a point, it can be drawn 
physically as a continuous stroke of a pencil that always remains on the paper 
with no gaps, it moves smoothly, always with a tangent. Graphs that violate 
natural properties are ‘monsters’ (Lakoff and Núñez, p.307.) 

The fact is that ‘monsters’ do not violate ‘natural’ ideas: they violate met-
befores. They are problematic for individuals who have not developed the 
requisite knowledge structures to make sense of them. Broadly speaking, 
mathematicians before the introduction of axiomatic formalism at the end of 
the nineteenth century, most of today’s students and teachers, and apparently 
certain thinkers in cognitive science, all share a common met-before. They 
studied calculus where the functions are initially given by formulae 
composed of standard functions that can be differentiated. Their total 
experience is of functions that are not only continuous, they are everywhere 
differentiable, except possibly at a few points that require ingenuity to think 
up a formula that might have different left and right derivatives, or some 
problem involving multiple oscillations, or some other monstrous property. 

It is even difficult in analysis courses in university to get beyond relatively 
simple ‘monstrosities’ like   sin(1 / x)  or   x sin(1 / x)  at the origin, or oddities 
like   | sin x |  that has different left and right derivatives at multiples of π. So 
the met-before builds that ‘most’ functions are differentiable except, possibly 
at a finite number of exceptional points. Indeed, in most university courses, 
examples of functions in calculus are usually given, at worst, as piecewise 
continuous functions where each piece is a differentiable formula, with 
possible problems occurring at the points where two pieces meet. This 
reinforces the met-before. 

This seems to be a universal experience, an epistemological obstacle, that 
cannot be avoided. However, this is false. It is what the French School term a 
‘didactical obstacle’ occurring because of the way that calculus is taught. An 
alternative ‘locally straight approach to the calculus’ (Tall, 1985, 2009) uses 
the new technology of computer software to allow us to ‘zoom in’ on a graph 
to see it look less and less curved before our embodied eyes, and even 
magnify a small portion of the graph to see its slope change as one traces 
along the graph. This characterizes a differentiable function as one that is 
‘locally straight’ under suitably high magnification and the derivative is the 
visible change in slope as one traces along the graph. This is a natural 
approach that builds on the student’s embodied experience of drawing a 
graph continuously with a stroke of a pencil and looking along a curve with a 
dynamic shift of the eye. Continuity in this case is related to perceptual 
continuity using the attributes of our human senses. 

If experiences of drawing and analyzing graphs are extended to include 
the possibility of functions that are ‘highly wrinkled’ then the situation 
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changes. This can be done using a function such as the ‘blancmange’ 
function (Takagi, 1903, Tall, 1982) which is formed by adding together 
successively half-size saw teeth to produce a fractal that looks wrinkled at 
any magnification. To calculate   s1(x) , find the whole number n such that 
  n ≤ x < n+1  and calculate the decimal part  d = x − n , then, if   d ≤ 1

2  define 
  s1(x) = d , otherwise   s1(x) = 1− d . 

To calculate the blancmange function itself, calculate a succession of 
smaller sawteeth where  

  sn(x) = s(2n−1 x) / 2n−1 . 
The nth approximation to the blancmange function is  

  bn (x) = s1(x) + ...+ sn (x) . 
and the blancmange function itself, bl(x) is the limit of these approximations. 
(Figure 4.) 

 
Figure 4: Getting a good-enough picture of the blancmange function 

Not only is it possible to ‘see’ a wrinkled function that is not differentiable 
anywhere because it never magnifies to ‘look straight’ as the error function 
  bl(x) − bn (x)  is just a 1/2n scale copy of the blancmange function itself.  
Therefore, wherever we look, at high magnification we see a tiny 
blancmange growing on a line segment, so the graph is nowhere locally 
straight. Once the blancmange function is seen as an everywhere continuous, 
nowhere differentable function, it opens up a wealth of new embodied ideas. 
For example, since the blancmange function has values between 0 and 1, a 
small blancmange such as   n(x) = bl(1000x) / 1000  is everywhere smaller 
than 0.001 and drawing it to a normal scale it is too small to see. 

If we draw a graph of any differentiable function   f (x)  on a computer 
screen, say between –5 and 5, we won’t be able to distinguish between the 
graph of   f (x)  and the graph of   f (x) + λ n(x)  where λ  is any real number 
between 0 and 1. This ‘natural’ idea shows that for every differentiable 
function  f (x) , there is an infinite number of nowhere differentiable functions 
that are indistinguishable from it when drawn to a normal scale. The wrinkles 
only appear on higher magnification. With this met-before, there is a huge 
distinction between a ‘naturally continuous function’ that can be drawn with 
a pencil and a differentiable function that is locally straight. (Figure 5.) 
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Figure 5: Two graphs that look the same at one level but are very different magnified 

The moral of this example is that ‘naturality’ depends on previous 
experience: on our met-befores. 

One amazing example of this is reported in Tall (1993) where student 
teachers attending an undergraduate course on mathematical analysis were 
shown a non-technical locally straight approach that included a proof of the 
fundamental theorem that the integral   I (x) of a continuous function   f (x)  is 
differentiable and   ′I (x)  is equal to   f (x) . The students were then shown a 
computer simulation of the calculation of the area under the graph of the 
blancmange function   bl(x) . As the area function was drawn dynamically on 
the screen, a member of the class, who performed capably without being 
otherwise exceptional, suggested that the area function is differentiable once 
but not twice. 

It was a stunning moment. It led to a further discussion of what happened 
when this function was integrated again and again, to find that if the 
blancmange function were integrated 27 times, then the resulting function 
would itself be differentiable 27 times but not 28. Is this a ‘natural’ 
occurrence? To the class of student teachers it certainly appeared to be so. 

The moral of this particular story is that the notion of ‘natural’ in terms of 
embodiment depends on the met-befores of the individual concerned. As 
most of our current community studying the calculus have only the 
experience of functions that are everywhere differentiable, or, in more 
modern approaches, only piecewise differentiable, then the ‘natural’ ideas of 
the community have a certain form. It is a form presumably shared by the 
authors of Where Mathematics Comes From (Lakoff & Núñez, 2000) and 
also by most members of our current community. But it is not the only form 
of naturality. 

We are already aware that mathematicians in different areas of 
mathematics have a variety of personal embodied notions of mathematical 
concepts based on embodied images, symbolic calculations and logical 
definitions and deductions. An applied mathematician or a theoretical 
physicist will treat problems in calculus and analysis in very different ways 
from a pure mathematician proving theorems in mathematical analysis. A 
study of how mathematicians think and how students learn to think 
mathematically deserves the widest possible view of how ideas develop over 
time. 
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The notion of met-before provides a theoretical construct in which greater 
insights can be found in the thinking of mathematicians, mathematics 
educators, cognitive scientists, mathematics teachers and in the learning of 
our students. As we develop our theories of how people think 
mathematically, we should all—including the authors of this paper—
remember the saying: 

“Why do you look at the speck that is in your brother’s eye, but do not 
notice the log that is in your own?”1 

What is required is a theory of mathematics education that takes note of our 
own met-befores affecting the ways in which we think, in order to better 
understand the perceptions and problems of our students. 
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