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Abstract: What is the nature of mathematical thinking, problem-solving and 
proof? In the book Thinking Mathematically that John Mason wrote with 
Leone Burton and Kaye Stacey, the term 'proof' never appears. On enquiring 
the reason for this, John expressed the deep fear that the word 'proof' 
engendered in his Summer School students. In this paper I will reflect on the 
development of mathematical thinking in the individual learning mathematics 
over a life-time and relate the theory in Thinking Mathematically to a theory of 
the long-term development of mathematical thinking that includes the 
development of proof. This will be related to the work of Richard Skemp on 
mathematical knowledge and emotions and provide an overall template for the 
journeys which individuals take as they develop mathematical thinking over the 
longer term. 

INTRODUCTION 
It was my privilege to use the book Thinking Mathematically for over a quarter 
of a century from its first publication in 1982 to my retirement in 2007. This 
was a life-changing experience. Before my encounter with this remarkable text 
I saw my objective as a mathematics educator to reflect on mathematical 
knowledge and present it to students in ways that would enable them to make 
sense of it. In my early career, I wrote books and course notes with this purpose 
in mind. On the publication of Thinking Mathematically, I chose to use the text 
as a course book for a course that I termed ‘Problem Solving’ for second and 
third year undergraduate mathematicians with a liberal sprinkling of computer 
scientists, mathematical physicists and others. 

I remember my abject fear when I first met with these students. I was going 
to start with the first problem in the book, inviting the students to work out 
whether it was better to calculate a percentage discount before or after adding a 
percentage tax. My panic was noted by my secretary in those early days as I 
walked by her door looking nervous and she said, ‘You’re doing that problem-
solving again, aren’t you?’ 

My fear arose because these were very able mathematics students and it was 
quite likely that they would say, ‘but you just multiply the two factors and 
multiplication is commutative.’ But none of them did. 

Place someone in an unusual context and present him or her with a problem 
and it is likely that they will initially lose all sense of direction and need to 
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build up their confidence. This happened to me and it happened to my students. 
Over time we developed confidence and an ability to anticipate what would 
happen. It turned the routine learning (or mis-learning) of mathematics into a 
dynamic act of self-construction and gave most of us concerned a deep sense of 
pleasure. 

Each week we had a two-hour problem solving session with a class of forty 
to eighty students where I began by setting the scene with the objective of the 
class, using successive sections of the book each week, then leaving the 
students to solve a particular problem illustrating the objective of the day. I also 
announced a ‘problem of the week’ for students who finished the problem of 
the day to keep them occupied. Initially some competitive students (often male) 
would move on to the problem of the week fairly quickly, but often they hadn’t 
solved the problem at all. The book suggested three levels of explanation:  

convince yourself 
convince a friend, 

and 
convince an enemy. 

Often the students had a story that clearly convinced themselves and even 
convinced their friends in the group, but by acting as an enemy I was able to 
begin to help them be more reflective about what they claimed, so that, over 
time, they began to question their ideas as a matter of course. 

It was my belief that I should not try to solve the problems in advance. It 
was a distinct advantage to be caring but non-directive in my relationships with 
the students. Not knowing the ‘answer’ meant that I could change my approach 
from someone who shows how to do things and gives hints into someone who 
emcourages the students to think for themselves. ‘Are you sure?’ ‘What does 
this tell you?” ‘Is there another way of looking at it?’ 

At the same time I introduced the students to Richard Skemp’s theories of 
modes of building and testing and, more importantly, to his ideas of goals and 
anti-goals, to help the students reflect on their emotions to be able to reason 
why they felt as they did and use this knowledge to advantage. 

Skemp’s three modes of building and testing 
In his book Intelligence, Learning and Action, Richard Skemp (1979, p. 163) 
made a valuable distinction between different modes of building and testing 
conceptual structures in table 1. He speaks of building and testing a personal 
‘reality’ as opposed to the ‘actuality’ of the physical world. Mode (i) relates to 
the individual’s conception of the world we live in (‘actuality’), mode (ii) to the 
individual’s relationships with others, and mode (iii) to the individual’s 
relationship with mathematics itself. There is a strong relationship with the 
levels of Thinking Mathematically (convince yourself, convince a friend, 
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convince an enemy), in terms of order of levels, but not in a one-to-one fashion. 
Whereas Mode (i) refers to the personal perceptions of the world based on 
experience and reflections on actual experiments, the act to ‘convince yourself’ 
can involve any personal ideas that the individual may bring to bear on the 
problem in hand. However, in both cases, the onus is on the individual to use 
their own resources. Meanwhile Mode (ii) involves relationships with others, 
which would include both friends and ‘enemies’, where the latter are doubters 
who demand a higher level of rigour. Skemp’s beautiful Mode (iii) involves the 
relationship of the human mind and spirit with mathematics, through creativity 
and internal consistency. 

In Thinking Mathematically, the role of Mode (iii) is formulated in terms of 
an ‘internal enemy’, in which the individual learns to criticise their own creative 
thinking to seek self-improvement and internal consistency. The full list of 
levels of explanation in Thinking Mathematically is therefore: 

Convince yourself 
Convince a friend 
Convince an enemy 
Develop an internal enemy. 

Long-term this leads to the desire to think mathematically by producing 
arguments that may begin with personal insights, are made clearer by 
discussions with a friend, then with an enemy whose purpose is to challenge the 
ideas put forward and make the deductions more rigorous. The ultimate goal is 
a personal level of consistency corresponding to a mode (iii) relationship with 
the coherence of mathematical ideas themselves. 

REALITY CONSTRUCTION 
REALITY BUILDING REALITY TESTING 

Mode (i) Mode (i) 
from our own encounters with 
actuality: 
experience 

against expectation of events in 
actuality: 
experiment 

Mode (ii) Mode (ii) 
from the realities of others: 
communication 

comparison with the realities of others: 
discussion. 

Mode (iii) Mode (iii) 
from within, by formation of higher 
order concepts: by extrapolation, 
imagination, intuition:  
creativity 

comparison with one’s own existing 
knowledge and beliefs: 
 
internal consistency. 

Figure 1: Modes of Building and Testing 
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Mathematics and the emotions 
Thinking Mathematically focuses on the role of the emotions in mathematics, 
particularly in dealing with the high of an ‘Aha!’ experience which should be 
enjoyed before subjecting the insight to further scrutiny, and being ‘Stuck’, 
requiring a positive approach to analyse what has happened and how this can 
help to suggest alternative approaches. 

In the middle of the twentieth century, psychologists separated the cognitive 
and affective domains (as, for instance, Bloom’s famous Taxonomy of 
Educational Objectives distinguished three distinct domains: cognitive, 
affective and psychomotor). Richard Skemp stood out from the crowd by 
relating the cognitive and affective domains in terms of his (1979) theory of 
goals and anti-goals. A goal is an intention that is desired. It may be a short-
term simple goal, for instance, to add two numbers together, or it may be a 
long-term major goal, for example, to succeed in mathematics. On the other 
hand, an anti-goal is something that is not desired and is to be avoided. For 
instance, a child may wish to avoid being asked a question in class because of a 
fear of being made to seem foolish. In general terms a goal is something that 
increases the likelihood of survival, but an anti-goal is something to avoid along 
the way. 

Children are born with a positive attitude to learning. They explore the world 
spontaneously, with great pleasure. But unpleasant experiences may cause them 
to avoid a repetition of that unpleasantness, which leads to the development of 
anti-goals. 

In his theory of goal-oriented learning, Skemp formulated two distinct 
aspects of goals and anti-goals. One concerns the emotions sensed as one moves 
towards, or away from, a goal or anti-goal (represented by arrows in figure 2). 
The other concerns an individual’s overall sense of being able to achieve a goal, 
or avoid an anti-goal (representing by the smiling faces for a positive sense and 
frowning faces for a negative). 

 
Figure 2: emotions associated with goals and anti-goals 

The emotions related to goals and anti-goals are very different. Believing one is 
able to achieve a goal is accompanied by a sense of confidence, whilst being 
unable to achieve a goal is accompanied by frustration. Moving towards a goal 
gives pleasure, whilst moving away gives unpleasure, in the sense employed 
earlier by Freud. It is subtly different from the more usual, but not equivalent, 
term ‘displeasure’. Drifting away from a desired goal may not be ‘unpleasant’ 
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in the sense that it is distasteful, it may simply generate a feeling that one is 
going on the wrong path and intimate the need to reconsider one’s options. 

By using Skemp’s theoretical framework while working with the book 
Thinking Mathematically, I found it possible to have discussions about 
individuals’ emotional reactions to mathematics, to recognize the different 
emotional signs and to use them to advantage. For instance the subtle difference 
between frustration and anxiety in being unable to solve a problem reveals the 
difference between a goal one desires positively and an anti-goal one wishes to 
avoid. Once the source of the problem is identified, it becomes possible to take 
action to move in a more appropriate direction. 

Proof Anxiety 
The one important word missing from Thinking Mathematically is ‘proof’. In a 
private conversation, John told me that this was because of the reaction of 
students to the word in his summer schools working with Open University 
students. If the idea of ‘proof’ was mentioned, they froze. In Skemp’s 
terminology this seems to be anxiety arising from a sense of not being able to 
avoid an anti-goal. Proof seems to be something that these mature students had 
difficulty with, and they had long since seen it as a topic that they wished to 
avoid. If guided towards it, they felt a sense of fear, which could only be 
relieved by moving away from it again. 

Thinking Mathematically is designed to give positive encouragement to 
students through strategies that are likely to lead to the pleasure of success and 
build confidence in the art of problem solving as a goal to be achieved, rather 
than an anti-goal to be avoided. So what is it that causes proof to become an 
anti-goal? To gain insight into this, it is helpful look at the long-term 
development of mathematical thinking. 

Cognitive development of mathematical thinking 
In a number of recent papers (e.g. Tall, 2008), I have followed the path of 
development of human thinking from mental facilities set-before birth and the 
subsequent experience met-before in our lives that affect our current thinking as 
it matures. Long-term we develop through refining our knowledge structures, 
coming to terms with complicated situations by focusing on important elements 
and naming them, so that we can talk about them and build ever more 
sophisticated meanings. Mason’s insight of a delicate shift of attention plays its 
part in switching our thinking from the global complications to the essential 
aspects that turn out to be important. More generally it is the discipline of 
noticing that is important to seek to focus on essential ideas and gain insight 
into various problematic situations. 

The framework that I have developed centres on the way in which we use 
words and symbols to compress knowledge into thinkable concepts, such as 
compressing counting processes into the concept of number or the likenesses of 
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triangles into the principle of congruence in Euclidean geometry. Through 
experience and reflection, we build thinkable concepts into knowledge 
structures (schemas) that enable us to recognise situations when we attempt to 
solve new problems. Problem Solving arises when our knowledge structures are 
not sufficient to recognise the precise problem, or, if we have recognised it, to 
have the connections immediately available to solve it. To be more effective in 
mathematical thinking we therefore need to be aware of how our knowledge 
structures operate and how they develop over time. 

As a pupil of Richard Skemp, I was taken by his simple analysis of the way 
the human mind works through perception, action and reflection, which gives 
us input through perception, output through action and makes mental links 
between the two through reflection. Skemp took his theory forward by 
suggesting that the mind operated at two levels, delta-one with physical 
perception and action, and delta-two with mental perception and action, linked 
together by reflection. I reflected on this structure and came to the conclusion 
that the distinctions between what we perceive through our senses and what we 
conceive in our mind are not as clear as we might wish them to be. So, rather 
than a two-stage theory, I saw a developing mental structure focusing on the 
complementary nature of perception and action and how it shifts from physical 
perceptions and actions to mental structures. 

Quite recently (February 2008 to be more precise) I realised, to my 
astonishment, that our mathematical thinking could be seen to develop from just 
three mental facilities that are set-before our birth and which come to fruition 
through our personal and social activities as we mature. I termed these three set-
befores: recognition, repetition and language. Recognition is the human ability, 
which we share with many other species, of recognising similarities and 
differences that can be categorised as thinkable concepts. Repetition is the 
human ability, again shared with other species, of being able to to learn to 
repeat sequences of actions in a single operation, such as see-grasp-suck, or the 
human operations of counting or solving linear equations. This is the basis of 
procedural knowledge. However, language enhances the set-befores of 
recognition and repetition. Recognition can be extended to give successive 
levels of thinking: forming thinkable concepts, then using those concepts as 
mental objects of attention to work at higher levels. Repetition can be 
compressed subtly through encapsulation of operations as thinkable concepts, 
denoted by symbols that can evoke either the underlying operation to perform, 
or the thinkable concept itself to be manipulated in its own right. These 
thinkable concepts that act dually, ambiguously and flexibly as process and 
concept are named procepts. As thinking processes become more sophisticated, 
language itself becomes increasingly powerful, leading to new formal ways of 
forming concepts through definition and mathematical proof. 

This offers a framework for the development of mathematical knowledge 
structures, building on recognition, repetition and language, with compression 
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into thinkable concepts through categorisation, encapsulation and definition, 
evolving through three distinct but interrelated mental worlds of mathematics 
that I term conceptual embodiment, proceptual symbolism and axiomatic 
formalism. Within the confines of this framework I usually compress the names 
to single words: embodiment, symbolism and formalism, while acknowledging 
that these terms have very different meanings in other theories. 

This enables me to put the names together in new ways, such as formal 
embodiment, embodied symbolism, or formal symbolism. Indeed, the meanings 
of the two word phrases themselves depend on the direction travelled. 
Arithmetic arises from counting, adding, taking away, sharing as embodied 
operations that shift into symbolic embodiment. Representing number systems 
on the number line shifts back to give an embodied symbolism. 

For instance, algebra builds from embodiment to symbolism through 
generalised arithmetic operations of combining, taking away, sharing, 
distributing, and so on. The reverse direction takes us from algebraic 
expressions and functions to graphs. These are quite different activities and, as 
we shall see later, there are a number of problematic aspects of these 
relationships. 

The cognitive development of proof in the embodied world 
We now turn our attention to see what the framework of embodiment, 
symbolism and formalism tells us about students’ growing appreciation of 
proof. 

In the embodied world of geometry, building on perception of figures and 
actions to make constructions gives us more specific insight into the nature of 
these figures. We already have the analysis of van Hiele to chart the 
development over the years. Give a child a plastic triangle, with equal sides and 
the child sees it as a whole and can touch and explore it to sense its corners, its 
sides and its angles. At one and the same time, it has three equal sides and three 
equal angles. From this beginning, were a figure has simultaneous properties, 
the child moves through successive van Hiele levels where the meanings and 
relationships change in conception. I choose to describe these successive levels 
as: 

Perception: recognising shapes 
Description: verbalising some of the properties 
Definition: prescribing figures in terms of selected properties 
Euclidean Proof: using constructs such as congruent triangles to build up a 
coherent theoretical framework of Euclidean geometry 
Rigour: Formulating other geometric structures in terms of set-theoretic axioms. 

In school mathematics, we are mainly concerned with the first four levels up to 
the development of Euclidean proof. My major focus of attention is the shift 
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from Description to Definition. It seems innocuous. One simply moves from 
specifying certain properties of a figure to giving a more focused definition. 
However, cognitively, there is a huge shift in meaning. The plastic triangle that 
the child describes as being equilateral with its three equal sides and three equal 
angles is now defined as having three equal sides. Full stop. 

The child can see that an equilateral triangle also has three equal angles, but 
now it becomes necessary to prove that an equilateral triangle, as defined, really 
does have three equal angles, as a consequence of having three equal sides. The 
method of proof is quite technical. It goes like this. First establish the meaning 
of congruent triangles. (Two triangles are congruent if they have three 
corresponding properties: three sides, two sides and included angle, two angles 
and corresponding side, or right-angle, hypotenuse, one side). 

Effectively the notion of congruence depends on embodied actions. If two 
triangles ABC, XYZ have two sides equal AB = XY, AC = XZ and included angle 
equal, !A = !X , then pick up triangle ABC and place it on triangle XYZ with 
vertex A placed on X, side AB placed on XY and angle A over angle X. Then, 
because the angles are equal, the side AC will lie directly over XY and, because 
the side-lengths are equal, point C will be coincident with X and point B will be 
coincident with Y. It follows that all the other corresponding aspects must be 
equal, including all corresponding angles, all corresponding sides and even the 
midpoints of the respective sides, the angle bisectors, and so on. 

Now take a triangle ABC with equal sides AB, BC and, by constructing the 
midpoint M of the base AC, form two triangles ABM and CBM. These have 
corresponding sides equal, AB=CB (given), AM=CM (by construction), BM 
(common), so the triangles are congruent and, in particular, !A = !C . Q.E.D. 
Apply the same argument again, and if a triangle has three equal sides, then it 
has three equal angles. 

There are some who appreciate the need for proof and get great pleasure out 
of the beauty of many aesthetic ideas in Euclidean geometry, such as the circle 
theorems where two angles subtended by the same chord in a circle are equal. 
But the vast majority of learners have connections in their minds that tell them 
such things as the fact that an equilateral triangle has equal sides and equal 
angles, and so, why do they need to ‘prove’ it. The shift from description to 
definition and deduction is mystifying for many and forms an obstacle causing 
fear and anxiety. Indeed, the only way to cope with the problem is to use the 
met-before of repetition to learn the proofs as procedures by rote. It addresses 
the goal of passing examinations without attending to the goal of understanding. 

The cognitive development of proof in the symbolic world 
The symbolic world of arithmetic and algebra develops out of embodied actions 
of counting, adding, taking away, making a number of equal-sized groups, 
sharing, and so on. These are then symbolised and there is a shift of attention 
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away from specific embodiments and towards the relationships between the 
symbols. 

In the embodied world of counting, it is not initially obvious that addition is 
commutative. If a child is at a stage of ‘count-on’ then 8+2 by counting on two 
after 8 to get 9, 10 is much easier than count-on 8 after 2 to get 3, 4, 5, 6, 7, 8, 
9, 10. The realisation that it is possible to perform the shorter count and get the 
same answer can be a pleasurable moment of insight. 

Over time, experience shows that addition and multiplication are 
independent of order, and do not depend on the sequence in which the 
operations are performed, so that 3+4+2 can be performed as 3+4 is 7 then 7+2 
is 9, or as 4+2 is 6 and 3+6 is also 9.  These are formulated as ‘rules’, though 
they are not rules that are to be imposed on numbers, but observations that have 
been noticed. Then there is the associative law that says that 3! (4 + 2)  is the 
same as 3! 4 + 3! 2  which gets more interesting in sums like 20 ! 3" (4 ! 2)  
being the same as 20 ! 3" 4 + 3" 2 . 

At this stage the learner has to deal with a range of principles in using the 
notation of arithmetic and how they operate in practice. These principles are 
then employed in algebra. 

To ‘prove’ the formula for the difference between two squares, it is usual to 
start with (a + b)(a ! b)  and to multiply it out using the ‘distributive law’ then 
use commutativity of multiplication to reorganise the expression and cancel ba 
and –ab to get the final result: 

(a + b)(a ! b) = a(a ! b) + b(a ! b)

= a
2
! ab + ba ! b

2

= a
2
! b

2

 

The problem here is to know what is ‘known’ and what needs to be ‘proved’. 
The ‘laws’ being quoted (if they are indeed spoken explicitly) depend on 
experience and build on all kinds of met-befores that are implicit within the 
mind. While it may be appropriate in the more sophisticated axiomatic formal 
world to build proofs on definitions and deductions, for the teenager struggling 
with algebra it may cause nothing but confusion. 

My own view is that the shift from embodiment to symbolism that operates 
in whole number arithmetic is not as evident in the shift from embodiment to 
algebra. For the learner who has a flexible proceptual view of symbolism, 
algebra may be an easy, even essentially trivial, application of generalised 
arithmetic. But for the learner who is already struggling with arithmetic and 
operates more in a time-dependent, procedural manner, it is likely to be highly 
complicated. 

Letters may be used to represent unknown numbers in an equation such as 
3x + 5 = 5x ! 7  or as units as in 120 cm = 1.2 m . The famous ‘students and 
professors problem’ relating the number of students (S) to the number of 
professors (P) when there are 6 students for each professor should be written as 
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S = 6P using the algebraic meaning of letters. However, it is often interpreted as 
1P = 6S in the units sense that 1 professor corresponds to 6 students. 

The met-before that every arithmetic expression, such as 3+2, 3.14 ! 4.77 , 
or √2+1, ‘has an answer’ is violated by algebraic expressions such as 3+2x that 
has no ‘answer’ unless x is known.  So now the student who is bewildered by 
expressions that cannot be worked out is asked to manipulate them as if he or 
she knows what they are, when they have no meaning. 

The interpretation of letters as objects which may help the student simplify 
3a + 4b + 2a  to 5a + 2b  by thinking of a as ‘apple’ and b as ‘banana’, but it 
fails to give a meaning to the expression 3a ! 5b  (how can you take away 5 
bananas when you only have 3 apples?) 

The idea that an equation such as 5x +1= 3x + 5  is a balance between 3 
things and 5 on one side and 5 things and 1 on the other is seen as being widely 
meaningful to many students (Vlassis, 2002). Take 3x off both sides to get 
2x +1= 5 , now take 1 off both sides to get 2x = 4  and divide both sides by 2 
to get the solution x = 2 . But change the equation slightly to 3x + 5 = 5x ! 7  
and suddenly it has no embodied meaning. How can you imagine a balance in 
which one side is 5x ! 7? How can you take 7 away from 5x when you don’t 
yet know what x is?  

In so many ways, the shift from embodiment to symbolic algebra is a 
minefield of dysfunctional met-befores for so many learners. This does not lead 
to the goal of making sense of algebra to develop power in formulating and 
solving equations. Instead, algebra becomes a topic to be avoided at all costs, an 
anti-goal provoking fear and a sense of anxiety as one attempts to find any 
method possible to avoid failure.  For so many it leads to dysfunctional ways of 
learning procedures to cope with the difficulties: the English use of BODMAS 
to remember the order of precedence of operation (Brackets, Of, Division, 
Multiplication, Addition, Subtraction), the American acronym FOIL to multiply 
out pairs of terms in brackets (First, Outside, Inside, Last), operations to solve 
equations such as ‘change sides, change signs; divide both sides by shifting the 
quantity to the other side and put it underneath.’  For so many, algebra is an 
anti-goal to be avoided at all costs. 

Now we are beginning to build up a picture of what may be happening in 
school as children learn arithmetic, then algebra. For so many, the initial 
embodiments of putting together and sharing have a meaning in the actual 
world in which they live. But the many successive compressions in meaning 
from operation to flexible procept work for some but impose increasing 
pressures on others. Eddie Gray and I called this ‘the proceptual divide’ in 
which the flexible thinkers have a built-in engine to derive new facts from old 
based on their rich knowledge of relationships between numbers, while others 
see increasing complication in all the detail and fall back on attempts to learn 
procedures by rote to cope with the pressures of testing.  
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Learning procedures by rote can be supporting in being able to perform 
routine calculations but procedural learning alone makes it more difficult to 
imagine flexible relationships between compressed concepts that are required in 
more sophisticated problem solving. As mathematics becomes more 
complicated for those who lack the rich flexible meanings, mathematics itself 
becomes an anti-goal to be avoided, creating a sense of anxiety and fear. More 
generally, mathematical proof, which requires a coherent grasp of ideas and 
how they are related, becomes problematic, both in geometry and in algebra. 

Generating confidence through Thinking Mathematically 
Given the relationship between cognitive success and emotional reactions, it 
becomes likely that one might attempt to improve students’ abilities to think 
mathematically through organising situations in which they may experience 
success. Having experienced the good feelings generated in an open-ended 
problem-solving course myself, I was fortunate to be joined by Yudariah binte 
Mohammad Yusof, a university teacher from Malaysia who was concerned by 
the concentration on procedural learning in her students and the lack of a 
problem-solving ethic, other than that of becoming highly proficient at solving 
specific problems that would feature on the university examinations. 

She took part in the Problem Solving course at Warwick University and 
trialled a questionnaire investigating student attitudes towards various aspects 
of mathematics and problem-solving. She then returned to Malaysia to teach the 
course and to research its effect on the students. (The details are given in Yusof 
& Tall 1996.) Half way through the course she telephoned me to express 
concern that her students continued to ask her what she wanted them to do, so 
that they could do well on the course. All I could say to her was that she should 
maintain the objective that the students needed to take control of their own 
working using the framework of Thinking Mathematically. 

By the end of the course attitudes had changed dramatically. To identify 
what was meant by a ‘desirable change’, she asked the students’ lecturers to fill 
in the questionnaires twice, once to indicated what they expected the students to 
say, once to say what they preferred the students to say. The direction of 
change from expected to preferred was taken to be a ‘positive’ change. In 
general all the changes in students’ attitudes during the problem-solving course 
were positive, but when they returned to their normal mathematics lectures and 
were asked again six months later, the changes generally went back in the 
opposite direction. In other words, the problem-solving course took the 
students’ attitudes in the direction desired by the staff, but when the staff 
themselves did the teaching, the attitudes of the students changed to the 
opposite direction. 

My experience to date, through the work of research students carrying our 
studies in other countries and through my own links with communities around 
the world, is consistent with the global concern about the learning of 
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mathematics. Some societies try to encourage meaningful learning through 
problem-solving, some teach by rote to encourage proficiency with many 
variations in between. Everywhere the pressure to compete and succeed in tests 
is driving the policies of governments. Surely our job as mathematics educators 
is not just to increase percentages passing examinations but a wider and deeper 
concern to understand the nature of mathematical thinking, to identify precisely 
why it is so difficult for many and how it can be improved for each individual. 

Reflections 
The analysis given here shows the power of Thinking Mathematically to 
improve students’ attitudes and improve students’ self-confidence and pleasure 
in doing mathematics and thinking for themselves. However, this occurs in a 
context in which so many older students have anxieties in dealing with the most 
central of all mathematical concepts, the notion of proof. The analysis given 
here in terms of the development of mathematical thinking through increasingly 
sophisticated embodiment and symbolism reveals transitions that are required to 
make sense of increasingly sophisticated mathematical thinking. The apparently 
innocuous shift from description to definition in geometry violates earlier 
beliefs in the properties of figures that are ‘known’ as part of a global 
perception but now must be ‘proved’ from the selected definitional properties. 
The shift from arithmetic to algebra involves a range of met-befores where 
established beliefs need to be changed to make sense of the new ideas. 

John Mason has led a personal crusade for everyone to think about 
mathematics in new ways and his methods have yielded success. Clearly the 
way forward is to increase students’ confidence by giving them genuine 
experiences of successful thinking, for only then will they face new problems as 
a challenge rather than a source of anxiety and fear. There is still much to be 
done by future generations to extend the pathways already trodden. 
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