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This paper considers the role of dynamic aspects 
of mathematics specifically focusing on the 
calculus, including both physical human action 
and computer software that responds to physical 
action to produce dynamic visual effects. The 
development builds from dynamic human 
embodiment, uses arithmetic calculations in 
computer software to calculate ‘good enough’ 
values of required quantities and algebraic 
manipulation to develop precise symbolic values. 
The approach is based on a developmental 
framework blending human embodiment, with the 
symbolism of arithmetic and algebra leading to 
the formalism of real numbers and limits. It builds 
from dynamic actions on embodied objects to see 
the effect of those actions as a new embodiment 
that needs to be calculated accurately and 
symbolised precisely. The framework relates the 
growth of meaning in history to the mental 
conceptions of today’s students, focusing on the 
relationship between potentially infinite processes 
and their consequent embodiment as mental 
concepts. It broadens the strategy of process-
object encapsulation by blending embodiment and 
symbolism. 

1. Introduction 
The calculus of Newton and Leibniz is the 
crowning glory of classical mathematics. Our 
modern approach is based on the limit concept, 
which is known to cause serious problems for 
students. In this paper I will present a framework 
for developing mathematical thinking from 
embodiment to symbolism and on to formal 
mathematical concepts that reveals how how the 
students mental conceptions of limits relate to the 
historical conceptions of potentially infinite 
processes that lead naturally to infinitesimal 
conceptions. The dynamic nature of computer 
graphics allows limiting processes to be seen as 
stabilising on a recognisable embodied object that 
can be calculated arithmetically and formulated 
symbolically, giving a link between embodiment, 

symbolism and fundamental concepts of the 
calculus. 
Calculus begins with the desire to quantify how 
things change (the function concept), the rate at 
which they change (the derivative), the way in 
which they accumulate (the integral), and the 
relationship between the two (the fundamental 
theorem of calculus and the solution of 
differential equations). 
Calculus is fundamentally a dynamic conception. 
Even the calculation of static quantities—such as 
areas or volumes—involve dynamic processes of 
adding up a large number of very tiny elements to 
build up the given shapes. 
The nineteenth century transformation of dynamic 
calculus into quantified epsilon-delta definitions 
developed the formal theory of mathematical 
analysis used by the professional mathematicians 
of today. This has led to the teaching of calculus 
based on the limit concept, which satisfies the 
logical needs of mathematicians but proves to be 
complicated for students. In the approach 
suggested here, the student builds on knowledge 
structures that are likely to be more familiar: 
dynamic human embodiment to give enlightened 
meaning to calculus concepts, ‘good enough’ 
arithmetic to calculate to a desired accuracy, and 
symbolic formulation to give precise conceptions. 

2. A framework for the development of 
mathematical thinking 
In the framework of mathematical thinking given 
here I will show how the underlying mental 
processes that allowed our predecessors to invent 
the calculus are directly related to the conceptions 
that occur in our students. They relate to how we 
as human beings perceive the changing world. 

2.1 Human embodiment 

Our brains make sense of the world by assembling 
neuronal information from our senses and our 
existing memories to form a ‘selective binding’ of 
different aspects of thought into a single 
phenomenon. Merlin Donald, in his exquisite 
book, A Mind So Rare (2001), sees this as the first 
of three distinct levels of consciousness. Selective 
binding occurs automatically in milliseconds, 
around a fortieth of a second or so. It builds a 
gestalt that takes account of many aspects of the 
situation. The second level of consciousness he 
terms ‘short-term awareness’, which links 
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together events over a period of seconds to give us 
a conscious flow of thought. The third level, 
‘extended awareness’, links together events over 
periods of minutes or hours. 
The combination of selective binding and short-
term awareness give us a continuous dynamic 
view of the world, enabling us to see a video at 25 
to 30 still frames a second as a continuous 
sequence of events that can be displayed on a 
computer screen as a dynamic moving picture. 
Short-term awareness enables us to sense the 
world in dynamic terms. Our extended awareness 
enables us to reflect on our perceptions and 
actions to interpret them in imaginative ways. 
Even though our perception is limited by the 
biological workings of our brain, our thought 
processes enable us to build on what we see to 
imagine new possibilities beyond the limitations 
of the human frame. We can imagine points with 
position and no size, lines with length and no 
breadth, perfect circles and platonic solids. We 
can amplify our thoughts using tools, such as 
magnifying glasses to look closely at things, or 
extremely fast cameras to take many more 
pictures a second and slow the result down to see 
actions in shorter periods of time in slow motion. 
We can design dynamic software that enables the 
individual to interact with calculus concepts to 
gain insights that are not evident in static pictures. 
In the next section I will present a framework for 
the development of mathematical thinking that 
builds on the natural resources available to Homo 
sapiens as a species and hypothesise how these 
resources are used to build sophisticated 
mathematical ideas, with particular reference to 
the dynamical ideas in the calculus. 
The same framework has implications for the 
historical development of mathematics within 
different societies and the development of the 
individual within today’s society. 
I will then use the framework to consider the 
historical conceptions in the calculus, the 
conceptual development of students in today’s 
society and the use of the computer to give new 
dynamic insights into calculus concepts. The 
phenomenon of a graphic approach to calculus 
using computer graphics has been with us for over 
a quarter of a century (Tall, 1981). This paper 
underpins the ongoing data with a new theoretical 
framework blending embodiment and symbolism. 

2.2 Three mental worlds of mathematics 

In recent years I have been building a framework 
of cognitive development in mathematical 
thinking that grows from the perceptions and 
actions of the child to the formal productions of 
the mathematician. This is postulated to occur 
through three mental worlds of mathematics (Tall, 
2004, 2008): 

the (conceptual) embodied world, based on 
perception of and reflection on properties of 
objects, initially seen and sensed in the real 
world but then imagined in the mind; 
the (procedural-proceptual) symbolic world 
that grows out of the embodied world through 
action (such as counting) and is symbolised as 
thinkable concepts (such as number) that 
function both as processes to do and concepts 
to think about (procepts); 
the (axiomatic) formal world (based on formal 
definitions and proof), which reverses the 
sequence of construction of meaning from 
definitions based on known objects to formal 
concepts based on set-theoretic definitions. 

The terms ‘embodiment’, ‘symbolism’ and 
‘formalism’ are used with a variety of meanings 
in linguistics, philosophy and psychology. Here, 
they will be used in conjunction with the meaning 
given by their qualifying adjectives: ‘conceptual 
embodiment’, ‘procedural-proceptual symbolism’ 
‘axiomatic formalism’. These meanings capture 
the different ways in which we humans make 
sense of mathematics within the conceptual 
framework of three developing mental worlds of 
mathematics. 
It transpires that these three worlds build naturally 
from three fundamental human abilities, which I 
term ‘set-befores’ as they are set before our birth 
in our genes and develop naturally through our 
social experiences in life: 
  recognition of similarities, differences and 

patterns, 
repetition of actions to make them routine, 
language to name phenomena to talk about 
them and refine their meaning. 

These three set-befores lead to three distinct ways 
of constructing concepts formulated by Gray and 
Tall (2001), 

Recognition supported by language enables 
categorisation, 
Repetition makes procedural learning possible 
and, suitably supported by language, it also 
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allows actions to be symbolised and 
considered as procepts through encapsulation, 
Language enables definition, initially through 
description of phenomena, and then in terms of 
formal set-theoretic definition. 

I hypothesize that this framework underlies the 
growth of mathematical thinking both in terms of 
the ways that individuals grow from childhood to 
maturity, and also in the way that ideas develop 
historically. The child begins with embodiment, 
developing proceptual symbolism in arithmetic, 
algebra and calculus, and some go on to become 
mathematicians, formalising theories in set-
theoretic terms. The adults who feature in history 
have already matured through such a development 
and, as adults, their conceptions of embodiment 
and symbolism underlie the growth of 
mathematical thinking in history, accompanied by 
the linguistic development of euclidean proof 
building coherent deductive theories based on 
embodiment and the later set-theoretic formalism 
of the late nineteenth and early twentieth century 
giving us our modern axiomatic framework. 

2.3 Historical development of the calculus 

The development of calculus over the centuries 
can be fruitfully modelled in the three-world 
framework. The Greek idea of the potential 
infinity of subdividing a quantity again and again 
builds on the set-before of repetition allowing a 
potential infinity of repetitions. The categorisation 
of potential infinity depends on the manner in 
which the repetitions operate. In the case of the 
sequence of counting numbers, the set-before of 
recognition allows the categorisation of the 
repeating sequence of natural numbers as an 
actually infinite set which is readily accepted by 
our students (Tall, 1980a). However, the 
repetition of a process with an underlying pattern 
of successive states is likely to focus attention on 
this pattern, leading to a natural human belief that 
the limiting object is endowed with the same 
properties as the individual terms. I termed this 
phenomenon a generic limit concept (Tall, 1986, 
1991a). 
For instance, if a quantity repeatedly gets smaller 
and smaller and smaller without ever being zero, 
then the limiting object is naturally conceptualised 
as an extremely small quantity that is not zero 
(Cornu, 1991). Infinitesimal concepts are natural 
products of the human imagination derived 
through combining potentially infinite repetition 
and the recognition of its repeating properties. 

The physical and mental possibilities of such 
subdivisions are different. Try cutting a strip of 
paper in half, then cut one of these halves into a 
half again, and so on to see how many bisections 
can be made. Not many. Indeed, when I wrote the 
book Foundations of Mathematics with Ian 
Stewart (1976), I enquired of my friends in 
physics how big was the estimated size of the 
known universe and how many times it could be 
cut in half before the cut was less than the size of 
an electron, and, to my amazement, the answer 
was 81! 
Physically we cannot go on dividing a quantity in 
half for very long, but, theoretically our arithmetic 
symbolism tells us that we have potentially 
infinite sequence, 1, 12 , 14 , … where the terms 
can successively be halved ad infinitum. 
The Greeks presented the dichotomy of potential 
and actual infinity by questioning whether 
subdivision can go on potentially for ever, or 
whether it reaches a point where tiny indivisibles 
cannot be further divided. They also found subtle 
problems in dealing with these ideas. 
Democritus calculated the volume of a cone by 
slicing it into thin sections parallel to the base and 
added up the volumes of these sections. However, 
he had the problem of deciding whether the 
successive sections were equal or unequal, for if 
unequal, then the curved surface of the cone 
would have a sequence of steps, but if equal, then 
the cone would be a cylinder. (Heath, 1921).  
In the revival of mathematics in renaissance 
times, Nicholas of Cusa (1401-1464) considered 
the circle as a regular polygon with an infinite 
number of sides, which Kepler (1571-1630) took 
further by formulating a metaphysical ‘bridge of 
continuity’ between a regular polygon with a large 
number of sides and a circle, or between an 
infinitesimal area and a line, or between the finite 
and the infinite. He considered a sphere made up 
of an infinite number of infinitesimally thin cones 
with vertex at the centre and bases making up the 
surface; this enabled him to use the volume of a 
cone as one-third base times height to add them 
all together to give the total volume of the sphere 
as one third the surface area times the radius. 
Leibniz formulated a similar ‘principle of 
continuity’, claiming in that: 

In any supposed transition, ending in any 
terminus, it is permissible to institute a general 
reasoning, in which the final terminus may 
also be included. 
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It was the inability of Homo Sapiens to resolve 
conflicts related to the concepts of infinity and 
infinitesimal that led to the formal construction of 
numbers by Dedekind cuts or Cauchy sequences 
and introducing a quantified version of the 
concept of limit. This new definition formulated 
the convergence of a sequence 

  
(a

n
)  to a limit a in 

the form of a challenge: given a desired accuracy 
within an error of at most  ! > 0 , find a whole 
number N so that the terms 

 
a

n
 for  n > N  are all 

within an error !  of a. In this new formulation, 
the symbols refer to specific terms in quantified 
statements, however, we still use metaphors to 
speak of the terms of a sequence ‘varying’ and 

 
a

n
 

‘getting close’ to a as N ‘increases’. 
The insight of Robinson (1966) to formulate a 
new logical theory of infinitesimals was seen by 
him as a solution to the long dispute over the 
status of infinitesimals, but mathematicians with 
brains steeped in the experiences of mathematical 
analysis chose to maintain their allegiance to the 
status quo. As a consequence the calculus is still 
taught to students in terms of the limit concept, 
with quantities getting ‘as close as desired’ which 
in practice leads to the notion of a generic limit. 
For instance, the infinite decimal 0.999… is 
intended to signal the limit of the sequence 0.9, 
0.99, 0.999, … which is 1, but in practice it is 
often imagined as a limiting process which never 
quite reaches 1. 

2.4 A formal view of infinitesimals 

Robinson’s idea of infinitesimals was used for a 
time to teach undergraduates the calculus in the 
USA (Keisler, 1976) while the market continues 
to be dominated by the widespread use of 
compendious text books such as Stewart (2003) 
which retain traditional approaches to calculus 
familiar to instructors, with the addition of 
dynamic software. 
However, one advance made by Robinson that is 
of real value is the formal notion of an 
infinitesimal, which gives a formal underpinning 
to the embodied idea of ‘magnifying’ graphs to 
see differentiable functions look ‘locally straight’. 
In Tall (2002) I gave examples of ordered fields 
that are extensions of the real numbers  !  and 
showed how they could be visualised as a number 
line. If K is such an extension field, any element 
in K is either greater than every element in  ! , in 
which case it is defined to be positive infinite, or 
less than every element in  !  (negative infinite) or 
between two elements of  ! , in which case it is 

said to be finite. A non-zero element in K that lies 
between  !r  and r for any positive   r !!  is said 
to be an infinitesimal. 
It is elementary to use the completeness of  !  to 
show that any finite element of  x !K  is uniquely 
of the form  c + !  where c is real (called the 
standard part of x, denoted by st(x)) and !  is 
either infinitesimal or zero. 
The derivative of a function 

  y = f (x) , if it exists, 
is defined to be  

 
  

!f (x) = st
f (x + h)" f (x)

h

#

$%
&

'(
 

for infinitesimal h. For instance, for 
  f (x) = x2  the 

derivative is 

 
  

st
(x + h)2 ! x

2

h

"

#$
%

&'
= st(2x + h) = 2x . 

We can magnify the plane  K ! K  by taking fixed 
a, b, c, d !K , and defining 

 
  

µ(x, y) =
x ! a

c
,

y ! b

d

"

#$
%

&'
 

This is called a 
  
(c,d) -lens pointed at 

  
(a,b) . We 

call the set of points 
  
(x, y)  where 

  
(x ! a) / c  and 

  ( y ! b) / d  are both finite the field of view of the 
lens µ . I speak of an optical lens o taking 

  
(x, y) in the field of view to 

 
  

o(x, y) = st
x ! a

c

"

#$
%

&'
,st

y ! b

d

"

#$
%

&'
"

#$
%

&'
. 

The image 
  
o(x, y)  is then a point in the real 

plane. 
Pointing an optical lens at 

  (a, f (a))  on a graph 
using an infinitesimal  c = d = ! , then any point 

  (a + h, f (a + h))  on the graph in the field of view 
is transformed to 

 
  

st
a + h ! a

"
#

$%
&

'(
, st

f (a + h)! f (a)

"
#

$%
&
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#
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&
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= st
h

!
"

#$
%

&'
, st

h

!
"
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%
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st

f (a + h)( f (a)

h

"

#$
%

&'
"

#$
%

&'
. 

The original point 
  (a + h, f (a + h))  is therefore in 

the field of view if and only if   h / !  is finite, and 
its image is then 
 

  
!,! "f (x)( )  

where 
  
! = st(h / " )  is a real number. As !  is an 

infinitesimal, h must also be an infinitesimal 
(otherwise   h / !  would be infinite). For a 
differentiable function f, the visible points 

  (!,! "f (x)) form a straight line in   !
2  with 

slope
  !f (x)  and real parameter ! . The infinite 

optical magnification of a differentiable function f 
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at a point 
  (x, f (x))  is therefore an infinite straight 

real line of slope 
  !f (x) .  

It is this knowledge that gave me the personal 
confidence to declare a locally straight approach 
to calculus (Tall, 1985). My intention has never 
been to teach students a new theory of 
infinitesimals when they first meet the calculus, 
but to build a new approach based on dynamic 
human embodiment. The first step in this 
approach is to zoom in on a graph dynamically to 
see it close under high magnification. 

2.5 The Leibniz notation and local straightness 

The Leibniz notation remains the fundamental 
symbolism used in the calculus because it is so 
very useful. However, over the centuries its 
meaning has changed as Bolzano insisted that the 
symbol 

  dy / dx  should not be seen as a ratio of dy 
to dx but as the limit of 

  ( f (x + !x)" f (x)) / !x  as 
 !x  tends to zero. Subsequently this led to a 
dysfunctional approach to the calculus which still 
prevails today in which 

  dy / dx  is a limit, not a 
quotient, the dx in the integral 

  ! f (x) dx  is not the 
same as the dx in 

  dy / dx , but means ‘the integral 
of 

  f (x)  with respect to x’, yet the differential 
equation 

 
 

dy

dx
= !

x

y
 

is solved by ‘cross-multiplying’ to get 
  y dy = !x dx  
which is integrated to get 
 

 
y dy! = " x dx!  

with solution 
 

  
x

2
+ y

2
= c . 

This confusing mixture of ideas does no favours 
for meaningful understanding of the calculus. 
Yet Leibniz’s first definition of dx and dy was to 
let dx be any non-zero number and dy to be the 
value such that the ratio of dy to dx is the same as 
the ratio of y to the subtangent BX (figure 1). 

 
Figure 1: The Leibniz definition of dx, dy 

This picture with dx and dy as the components of 
the tangent vector is found in modern textbooks. 
Its static nature fails to convey the vision in 
Leibniz’s mind. However, if we take a graph such 
as 

  
y = x

2  with very small values of dx and dy, 
then on high magnification (as suggested by 
Robinson’s insight), the magnified graph will look 
like a straight line so that the graph and its tangent 
are now indistinguishable (figure 2). 

 
figure 2: A graph under high magnification 

This picture now seems to show the value of dy 
going up to the graph itself. There is still an error, 
but it is contained within the thickness of the line 
in the drawing. This is related to the idea of 
Leibniz that the addition of a line to an area does 
not affect its area as what is added is of a smaller 
order of size. 
By choosing a suitably small value of dx, we can 
see 

  dy / dx , as the slope of the tangent, now a 
‘good enough’ approximation to give a visual 
representation for the slope of the graph itself. 

3. A locally straight approach to calculus 
The purpose of a locally straight approach to the 
calculus is to use students’ knowledge built up 
before meeting the calculus to smooth the passage 
to the imaginative ideas of changing slope and 
growing areas. It builds on the student’s embodied 
imagination of graphs that can be magnified 
dynamically on a visual display to look locally 
straight. It also has the advantage that it gives an 
embodied meaning to the Leibniz notation as the 
ratio of the components of the tangent vector. 
When the graph of a function is plotted on the 
screen what we see is not the ‘perfect’ graph of a 
line with no thickness, but a string of pixels of 
finite size that covers the theoretical graph and 
draws a practical version. This can be embodied 
by tracing a finger along the graph, which not 
only traces along a visual object, it also embodies 
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the changing relationship between the x-
coordinate and the functional value of the y-
coordinate (figure 3). 

 
Figure 3: tracing a curve with a finger 

We may gesture in the air to indicate the dynamic 
nature of the graph and we may use a whole hand 
to follow along the curve representing its 
changing slope. (Figure 4.) This gives us a 
physical sensation of the dynamically changing 
slope; in the figure the hand starts at the origin, 
sloping upwards, and the slope becomes less steep 
until it is zero at the top and then increasingly 
sloping downwards with a negative slope. 

 
Figure 4: sensing the changing slope along a graph 

This gives a sense of the changing slope as an 
embodied action, which can be enhanced by 
computer software to step along the graph and at 
each step draw a ‘practical tangent’ through 

  (x, f (x))  and 
  (x + h, f (x + h)) , simultaneously 

plotting the value of the slope of this line as a 
point. The succession of points plotted shows the 
changing slope of the graph (figure 5). 

 
Figure 5: computing and tracing the changing slope 

The picture shows the shape of the changing slope 
looking like graph of   cos x . Indeed, if the graph 

of   cos x  were drawn, then, as h gets smaller, the 
graph of the slope function stabilises on the graph 
of   cos x . 

3.1 A theoretical approach blending 
embodiment and encapsulation 

The approach just given expands the APOS theory 
of Dubinsky and his colleagues (Asiala et al, 
1996) to what Chae (2002) terms BAPOS theory. 
Whereas APOS theory starts with ACTIONS, 
routinized as PROCESSES, encapsulated as 
OBJECTS and embedded in a SCHEMA of 
knowledge, BAPOS theory starts by focusing on 
the BASE OBJECTS upon which the actions are 
performed. In the case of the slope of the graph, 
the base object is the graph itself, which is acted 
upon by tracing the changing slope and the effect 
of this action, the changing slope, is embodied as 
the changing graph of slope values. Once one can 
imagine the embodied effect in the mind’s eye, it 
is possible to attempt to calculate it, either by 
calculations to give numerical values that are 
‘good enough’ for practical purposes of drawing 
the graph, or by seeking an explicit formula for it. 
Because the embodiment of the original graph 
(  sin x ) is locally straight, we can calculate the 
practical slope either as

  
(sin(x + h)! sin x) / h or as 

  
(sin(x + h)! sin(x ! h)) / 2h . The latter is easier 
using the formula for 
 

  
sin(x + h) = sin x cos h + cos x sin h  

to get the slope as 
  
(sin x cos h + cos x sin h ! sin x cos h + cos x sin h) / 2h

 
  

= cos x
sin h

h
. 

For small values of h, 
  
sin h / h  stabilises on the 

value 1, and the slope function of   sin x  stabilises 
on the derivative   cos x . 
The vast difference between this approach and the 
standard approach is that APOS theory requires 
the final OBJECT to be encapsulated from the 
PROCESS. Because the process of tending to a 
limit is a potentially infinite process, the limit 
object is likely to be conceived as a generic limit.  
The locally straight approach recommended here 
intimately blends embodiment with symbolism. It 
begins by sensing an embodied base object (a 
graph), acting upon it and then representing the 
effect of that action as another embodied object 
(the graph of the slope function). It is no longer a 
matter of encapsulating a process into an as-yet-
unknown limit object but of recognizing the 
output embodied object through the senses and 



7 

seeking to approximate it as accurately as required 
by numerical method or precisely as a symbolic 
formula. 

3.2 Magnifying and stretching 

In addition to magnifying with the same scale on 
both axes, it is possible to use different scales on 
the horizontal and vertical axes. This can be done 
in various ways. For instance, attempting to home 
in on the position of a maximum or minimum will 
not be helped by zooming in with the same 
horizontal and vertical scale, for the graph will 
look straight and the precise location cannot be 
found by eye. Stretching the graph vertically 
while retaining or lessening the horizontal scale 
makes the graph look taller and thinner and a 
more precise position of the maximum or 
minimum can be found.  (Figure 6.) 

 
Figure 6: stretching part of the graph more vertically 

If the software shows a marked ruler for 
horizontal and vertical scales, then this will enable 
the operator to zoom in and find the maximum to 
several decimal places—just by looking. 
A horizontal stretch is even more interesting 
(figure 7). 

 
Figure 7: stretching part of a graph horizontally 

This pulls a small part of the graph more and 
more flat. Remember that the graph seen is made 
up of pixels. Suppose that the graph is drawn with 
the point 

  
(x

0
, f (x

0
))  precisely in the middle of a 

pixel height 
  
f (x

0
) ± !  (drawn with exaggerated 

height in figure 6), To be able to stretch the graph 
horizontally to fit within the horizontal row of 
pixels requires a positive value !  so that if x is 
between 

  
x

0
!"  and 

  
x

0
+! , then 

  f (x)  lies 
between 

  
f (x

0
)! "  and 

  
f (x

0
)+ ! . (Figure 8.) 

 
Figure 8: A continuous function pulls flat 

The idea of ‘pulling flat’ is essentially the 
definition of continuity. A function f is continuous 
at 

  
x

0
 if, given any  ! > 0 , there exists a  ! > 0  

such that 
  
x

0
!" < x < x

0
+"  implies 

  
f (x

0
)! " < f (x) < f (x

0
)+ " . 

In this way, the embodied approach leads 
naturally to a formal definition of continuity. 

Integration 

The area under a graph from a point a to a point b 
is another quantity that can be seen and imagined. 
The area can be calculated approximately by 
adding up strips, or counting squares. The 
problem is to calculate it precisely. This provides 
another example of BAPOS theory. There is an 
embodied object (area) that can be seen and the 
action upon it is to calculate its size. This occurs 
in two stages. The first stage is to calculate the 
area 

  
A(a, x)  from a point a to a point x, the 

second stage is to trace the area for increasing x 
and plot its changing value as a graph. Figure 9 
shows the area function 

  
A(a, x)  calculated 

numerically on a computer by successively adding 
together the area of strips width dx, height y 
(where y is the left-hand strip height). The first 
strip is shown, the dots are the successive areas by 
adding on successive strips. 
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Figure 9: the area 
  
A(a, x)  under a graph from a to x 

Figure 10 shows the same calculation with much 
thinner strips. The last strip is magnified to show 
the last two dots representing the area calculation.  

 
Figure 10: Area calculation with many thin strips 

The strip width is small and the magnification 
reveals the graph of 

  
A(a, x)  as being locally 

straight with horizontal change dx and vertical 
change dA. However, dA is the value of the area 
of the final strip of width dx, height y. There is a 
tiny error in the calculation of the actual area 
under the curve caused by the variation in the 
height of the graph within the strip so we write: 

  dA = y dx + error  
If y is continuous, then given any desired 
maximum error  ! > 0  we can choose the width of 
the strip smaller than some specific  ! > 0  to make 
the variation in y in the strip less than  !.  So the 
error in the area dA will be in the range 

 
±! dx . 

Hence 
  dA = y dx ± ! dx  
and so 

 
 

dA

dx
= y ± !  

Thus, as the strips get ever smaller, the derivative 
stabilizes on 

 
 

dA

dx
= y . 

Leibniz envisaged the area as the sum of 
infinitesimally thin strips of height y and width dx 
and wrote the area as 

 ! y dx  where the symbol !  
is an elongated S for the Latin word ‘summa’. 
Leibniz’s vision was amazing. He ‘saw’ the strips 
as thin lines and the errors at the top of each strip 
as points that are infinitesimally small compared 
with the length of the strip. Figure 11 shows the 
Leibniz sum with strips whose width can be seen. 
 

 
Figure 11: The Leibniz area as a sum of strips 

width dx, height y 
If much thinner strips are taken, the top of the 
strip can be magnified to see the error caused by 
the difference between the original graph and the 
horizontal tops of the strips (figure 12). The error 
can be made smaller by choosing strips so thin 
that the error is enclosed within the thickness of 
the drawing of the graph. 

 

 
Figure 12: The Leibniz error in the area 

Another view can be seen by stretching a tiny part 
of the graph horizontally, until a short part of the 
original graph pulls flat (figure 13). 
The strip now looks like a rectangle of area width 
dx, height y, of area  dA = y dx  where the only 
source of error is in the variation of the function 
inside the thin row of pixels at the top of the 
rectangle. 
 

 
Figure 13: stretching a thin strip to see  dA = y dx  
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The sign of the integral 

The sum of the strips can vary in sign depending 
not only on the sign of the ordinate y, but also on 
th direction of the width dx. 
Figure 14 shows the sum calculated using strips 
from left to right, then right to left. The first 
picture shows dx positive and gives a positive area 
when y is positive (above the x-axis) and shaded 
as negative when y is negative (below the axis). 
The second picture shows the strips dx as 
negative, giving a negative value for y positive 
and positive for y negative (shaded above the 
axis). 

 

 
Figure 14: The different signs for adding strips 

These visibly show the four possible signs that 
occur from the product of two signed numbers. 
This can be imagined with the area being part of 
the surface with two sides, the front (coloured 
white) and the back (shaded grey). Changing 
direction of one of the quantities is the same as 
turning the area over to show the other side. This 
gives an embodied meaning to the sign of the area 
that links to the mathematical idea of orientation 
related to the two sides of a surface in space. Most 
mathematicians cope with the sign of area in 
integration by first calculating the integral 

 
  

f (x) dx
a

b

! for  a < b  

and noting that the area below the graph is 
negative; the area from b to a where  b > a  is then 
defined to be 

 
  

f (x) dx = !
b

a

" f (x) dx
a

b

" . 

The embodiment reveals a coherent meaning for 
this symbolism in which the value of dx can be 
seen to be positive or negative. 

Differential equations 

The dx and dy in a differential equation make 
sense as the components of the tangent vector to 
the solution curve. 
The differential equation mentioned earlier, 
usually written in the form 

 
 

dy

dx
= !

x

y
 

with 
  dy / dx  interpreted as the derivative of y as a 

function of x is highly problematic because right-
hand side is undefined when 

  
y = 0 . However, the 

equation 
  y dy = !x dx  
as an equation defining the direction of the 
tangent 

  (dx,dy)  to a solution curve defines the 
direction everywhere except the origin where it 
reduces to  0 = 0 . In general the direction 
 

  (dx,dy) = (! y,!x)  
satisfies the equation for any real number ! . If 

  
y = 0  and   x ! 0 , then the differential equation 

gives   dx = 0  and the tangent vector is 
  (0,dy)  

which is perpendicular to the x-axis. 
BAPOS theory is again appropriate. The initial 
object is now the symbolic differential equation 
which gives the direction of the tangent to the 
solution through any point 

  
(x, y) . Computer 

software such as the Solution Sketcher (Tall, 
1991b), now part of Graphic Calculus (Blokland, 
Giessen & Tall, 2000) enables the operator to 
point at any point 

  
(x, y)  in the graph window and 

click to deposit a short line segment with the 
given tangent direction. 
Figure 15 shows a succession of segments already 
drawn and the pointer dragging the next line 
segment in place with its slope calculated at the 
blob in the centre of the segment. (Calculating the 
slope at the centre point of the segment, gives a 
more accurate point-and-click picture than a 
simple Euler solution with the slope calculated at 
the beginning of each segment.) The embodied 
action placing segments end to end gives the 
embodied sense of building a solution that follows 
the direction given by the differential equation, 
approximating to a locally straight solution curve. 
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Figure 15: Building a solution curve 

to a differential equation 
The solution can be found numerically by various 
numerical methods. The differential equation 

 y dy = !x dx is a special case of a separable 
differential equation that can be written as 

  f (x) dx = g( y) dy . 
This can be imagined as coordinating the areas 
under the graphs of f and of g, the first giving the 
area of the stripwidth dx as x varies and the 
second giving the area of the stripwidth dy as y 
varies. As in Leibniz’s imagination, if the solution 
starts from the point 

  
(a,b) these strips can be 

added up to calculate the sums 

 
  

f (x) dx = g( y) dy
b

y

!a

x

!  

which, just as in the case of the calculation of the 
areas under the graph stabilizes to give the precise 
integral. There is just one subtle difference. The 
integral is usually defined with the dx and dy both 
implicitly being positive. Here, the values of dx 
and dy are the directions of the tangent vector 
coordinated by the differential equation 

 y dy = !x dx . If the sign of dx or dy changes, then 
that part of the integral will simply reverse sign, 
allowing the curve to continue smoothly and 
change direction. In the case of the differential 
equation  y dy = !x dx , the solution through 

  
(a,b) is 

 
 

x dx = ! y dy
b

y

"a

x

"  

which gives 
 

  
1

2 (x2
! a2 ) = 1

2 ( y2
! b2 )  

so that the solution curve is the circle 
 

  x
2
+ y2

= a2
+ b3  

and, far from the necessitv of y being given as a 
function in x, the solution of this differential 
equation will trace around the circle in time. 

4. Reflections 
In this paper we have seen the use of embodied 
actions to build up dynamic embodied concepts in 
the calculus. In each case a specific action (tracing 
th changing slope of a curve, tracing the changing 
area 

  
A(a, x) under a graph to see it as a function 

of x, tracing the solution of a differential equation, 
gives a physical embodiment of the desired 
concept that can then be estimated numerically or 
investigated symbolically to give a precise 
description. 
This gives a versatile approach to the calculus 
combining embodiment and symbolism in which 
the limit notion arises naturally in the process, not 
formally at the beginning of the process where 
students find the topic so difficult. 
The approach is a natural first approach to 
calculus that can act as a precursor to standard 
mathematical analysis with formal limits or non-
standard analysis with formal infinitesimals, or as 
a meaningful underpinning for calculus in its 
applications. 
It is based on a natural development through the 
three worlds of mathematics, beginning in 
embodiment, carrying out actions whose output is 
another embodied object, which then forms an 
objective to calculate numerically or describe in 
precise symbolism. 
It is a form of calculus that preserves its links with 
the history of the calculus, giving meaning to the 
Leibniz symbolism with differentials as 
components of the tangent vector and a locally 
straight approach that allows the learner to see the 
derivative, area, or solution of a differential 
equation as a meaningful embodiment before 
leading, if desired, to a formal approach based on 
the limit that arises naturally from the blending of 
embodiment and symbolism.  
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