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Proof is a construct of mathematical communities over many generations and is 
introduced to new generations as they develop cognitively in a social context. 
Here I present a practical framework for this development in simple terms that 
nevertheless has deep origins. The framework builds on an analysis of the 
growth of mathematical ideas based on genetic facilities set-before birth. It 
unfolds a developmental framework based on perception, action and reflection 
that leads to distinct ways to construct mathematical concepts through 
categorization, encapsulation and definition, in three distinct mental worlds of 
embodiment, symbolism and formalism, which provide the foundation of the 
historical and cognitive growth of mathematical thinking and proof. 
INTRODUCTION 
Mathematical proof in today’s society uses a formal approach based on axioms 
and definitions, constructing a formal framework by proving theorems. 
Mathematics educators research the process, to analyze how mathematicians and 
students think mathematically and to provide a theoretical framework to 
improve the teaching and understanding of the subject. In doing so we build on 
the work of others. However, the human species thinks using a biological brain 
and the growth of knowledge depends on how this biological entity makes sense 
of the world. The ideas that we share depend on the concepts developed by our 
predecessors, our genetic inheritance and our personal experiences in society. 
As we reflect on the nature of mathematical proof, we find a process that every 
mathematician claims to adhere to, yet none can formulate precisely without 
appealing to implicit meanings shared by the mathematical community. The 
central question here is to seek the essential foundations of mathematical 
thinking and proof as it grows within society and within the individual. 
Mathematicians speak of ‘intuition’ and ‘rigour’, seeing intuition as a helpful 
personal insight into what might be true, but requiring a rigorous mathematical 
proof to establish the insight as proven. However, the intuition of a 
mathematician with a rich knowledge structure (that Fischbein, 1987, calls 
‘secondary intuition’) is clearly more sophisticated than that of a child. It is 
therefore important to build a framework that takes account of the developing 
nature of individual mathematical thinking. 
THE GROWTH OF MATHEMATICAL THINKING 
In this section I outline a framework for mathematical thinking based, on the one 
hand, on the biological foundation of human thinking and, on the other, on 
mathematics as developed in our mathematical communities. 



 
I define a ‘set-before’ as ‘ a mental structure that we are born with, which make 
take a little time to mature as our brains make connections in early life,’ and a 
‘met-before’ as ‘a structure we have in our brains now as a result of experiences 
we have met before’. It is the combination of set-befores that we all share to a 
greater or lesser extent and the personal met-befores that we use to interpret new 
experiences that lead to the personal and corporate development of mathematical 
thinking. In particular, mathematicians come into the world as newborn 
children, so all of us go through a process of personal cognitive development 
within society as a whole. 
After long periods of reflection, I was surprised to find that just three set-befores 
form the basis of mathematical thinking. The first is the set-before of 
recognition that enables us to recognize similarities, differences and patterns. 
The second is repetition that enables us to practice a sequence of actions to be 
able to carry it out automatically. The third is the capacity for language that 
gives Homo sapiens the advantage of being able to name phenomena that we 
recognize and to symbolize the actions that we perform to build increasingly 
sophisticated ways of thinking. 
From these three set-befores, three different forms of concept construction are 
possible. First, recognition supported by language enables us to categorize 
concepts as formulated by Lakoff and his colleagues (e.g. Lakoff & Nunez, 
2001). Repetition allows us to learn to perform operations procedurally by rote, 
but in mathematics we can also symbolize operations and encapsulate these 
processes as mental objects (as formulated by Piaget (1985), Dubinsky (Cottrill 
et al, 1996), Sfard (1991) and others), which Gray & Tall (1994) called 
procepts. Language allows us first to describe objects for categorization 
purposes and then to give verbal definitions, but a huge shift occurs when we 
use set-theoretic language to define objects to give formal axiomatic structures 
in advanced mathematical thinking. 
Building on these set-befores gives three major ways in which mathematical 
thinking develops which I term three mental worlds of mathematics:  

A world of (conceptual) embodiment that begins with interactions with real-world 
objects and develops in sophistication through verbal description and definition to 
platonic mathematics typified by euclidean (and also non-euclidean) geometry. 

A world of (procedural-proceptual) symbolism that develops from embodied human 
actions into symbolic forms of calculation and manipulation as procedures that may 
be compressed into procepts operating dually as process or concept 

A world of (axiomatic) formalism based on axioms for systems, definitions for new 
concepts based on axioms, and formal proof of theorems to build coherent theories. 

In each of these worlds, various phenomena are noted, given a name (which may 
be any part of speech) and then refined in meaning to give a thinkable concept 
that can be spoken or symbolized with varying levels of rich internal structure, 
and then connected together in knowledge structures (schemas).  When 



 
thinkable concepts are analyzed in detail, they may be seen as knowledge 
structures, in a manner that Skemp (1979) described in his ‘varifocal theory’ 
where concepts may be seen in detail as schemas and schemas may be named 
and become concepts. This shift between knowledge structure and thinkable 
concept is, in John Mason’s phrase, achieved simply by ‘a delicate shift of 
attention’. Further details of the three worlds can be found in published papers 
available for download from my website: http://www.davidtall.com/papers. 
THE COGNITIVE DEVELOPMENT OF MATHEMATICAL PROOF 
The development of proof in mathematical thinking matures over a lifetime. The 
young child experiments with the world, making a grab at something seen, and 
after practice, developing the action-schema of ‘see-grasp-suck.’ Initially the 
child develops mentally by experiment. Literally, ‘the proof of the pudding is in 
the eating.’ As the child grows more sophisticated, proof develops in various 
ways based on the three set-befores and the individual learner’s met-befores. 
Figure 1 shows the hypothesized cognitive development of the child in the lower 
left hand corner, developing through perception, action and reflection. 

 
Figure 1: the cognitive development of proof 
through three mental worlds of mathematics 



 
Perception develops in the embodied world through description, construction, 
and definition, leading to Euclidean proof represented by the bust of Plato. Even 
non-euclidean geometry is embodied, being based on mental embodiments of 
space that have different definitions from Euclidean geometry. 
In parallel, the actions performed by the child, in terms of embodied operations 
such as counting, are encapsulated as symbolic thinkable concepts (procepts) 
such as number. Arithmetic develops through the compression of counting 
operations (count-all, count-on, count-on-from-larger) to known facts that may 
be used flexibly to derive new facts. Symbolic arithmetic benefits from blending 
with embodied conceptions, through a parallel development 
in embodiment and symbolism. For instance, the sum of the 
first 4 whole numbers can be seen as a succession of 
counters in rows of length 1, 2, 3, 4 and extended in each 
row successively by 4, 3, 2, 1, to give the sum 1+2+3+4 as a 
half of 1+4, 2+3, 3+2, 4+1, which is half of 4 lots of 5. This 
specific picture may be seen as a generic picture that works 
for any number of rows whatsoever, so that the sum of the 
first 100 numbers is 12 !100 !101 . 
The specific and generic sum of the first few numbers may be generalized as an 
algebraic proof by writing the sequence 1, 2, …, n above the sequence in reverse 
as n, …, 2, 1, and adding the corresponding pairs to get n times n +1, to obtain a 
general algebraic proof that the sum of the first n whole numbers is 12n(n +1) . 
Symbolic operations  develop from specific calculations to generic calculations, 
to general calculations represented algebraically. As this happens, the meanings 
of the ‘rules of arithmetic’ also develop in sophistication. Initially it may not be 
evident to the young child that addition and multiplication are commutative. For 
instance, calculating 8+2 by counting on 2 starting after 8 is much easier than 
calculating 2+8 by counting on 8 after 2. However, both calculations can be 
embodied by specific examples (for instance, seeing that a line of eight black 
objects and 2 white objects ( ) can be counted in either 
direction to get the same answer, 8+2 is 2+8 is 10). Such specific pictures can 
again be seen to be generic in the sense that the numbers of objects can be 
changed without affecting the general argument. 
A significant shift of meaning occurs when observed regularities such as the 
shape of a figure in geometry or the property of an operation in arithmetic are 
formulated in terms of a definition. For instance, a figure that has four equal 
sides with opposite sides parallel and all angles are right angles is called a 
‘square’. However, when it is defined to be a figure with four equal sides and (at 
least) one angle a right angle, a problem occurs. The young child may see that 
such a figure has four equal right angles, but the definition only insists on one. 
An embodied proof that a square, as defined, must have four equal angles can be 
performed by practical experiment in which four equal lengths are hinged to 
form a four-sided figure that can be placed on a flat table. Changing one angle 
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automatically changes the others and it can be seen that if the one angle moves 
into a right angle, then the others do so as a physical consequence. Now the need 
for the implication is established. Such a embodied actions can also be carried 
out using appropriate dynamic geometry software such as Cabri, or SketchPad. 
Embodied proofs continue to be of value to the learner as they mature, for 
instance it may be possible to translate them in terms of Euclidean proofs using 
congruent triangles. Embodied proofs can also be used to prove quite 
sophisticated statements, such as the fact that there are precisely five Platonic 
solids with faces given by particular regular polygon. Beginning with equilateral 
triangles, and considering how many can be placed at a vertex reveals that two 
are insufficient, three, four or five are possible, to give tetrahedron, octahedron 
and icosahedron, while six equilateral triangles fit to give a flat surface, so six or 
more is not possible. A similar argument with squares and pentagons reveals just 
one possibility in each case (the cube and dodecahedron). Hexagons and above 
do not fit to give a corner at all. Hence there are precisely five Platonic solids. 
A second fundamental transition occurs in the shift from embodied and 
symbolic mathematics to the axiomatic formal world of set-theoretic definitions 
and formal deductions. Here, instead of a definition arising as a result of 
experiences with known objects, a definition is now given in set-theoretic terms, 
and the formal concept is constructed by proving theorems based on the 
definition. This leads us to the formal world introduced by Hilbert, as used today 
by most research mathematicians. 
An example of the shift from symbolic formalism to axiomatic formalism can be 
seen in the nature of a proof by induction. Symbolically, it begins by 
establishing the truth of a proposition P(n)  for n = 1, then the general step that 
‘if P(n)  is true, then P(n +1)  is true’ which is then repeated as often as desired 
for n = 1, 2, 3, … to reach any specific value of n. For instance, to reach 
n = 101, start the general step with n = 1 to get the case n = 2 , and repeat the 
general step 100 times to reach n = 101. This is a potentially infinite proof. 
However, the formal proof using the Peano postulates is a finite proof in just 
three steps: first establish the proof for n = 1, then establish the general step, and 
then quote the induction axiom, ‘if a subset S of  !  contains 1 and, when it 
contains n it must contain n +1, then S is the whole of  ! ’. Applying this to the 
set S of n for which P(n)  is true establishes the proof in a single step. 
As students pass from elementary mathematics of embodiment and symbolism 
to the axiomatic formal world of mathematics, they must build on their set-
befores and met-befores. Two different paths can be successful. One is to give 
meaning to the definition by using images or diagrams or dynamic change, 
building on met-befores to construct a natural route to formal proof. The other is 
to extract meaning from the definition by focusing on the logic of the proof, to 
become familiar with the definition and the various deductions that can be made, 
to build a formal knowledge structure that does not depend intrinsically on 
embodiment (Pinto, 1998). 



 
Formal mathematical proof can then lead to what are termed structure theorems, 
which give rise to new meanings for embodiment and symbolism. For instance, 
a vector space is defined by formal axioms yet there is a structure theorem that 
proves that a finite dimensional vector space over a field F is isomorphic to Fn , 
thus the formal axiomatic system can be embodied by a coordinate system that 
can also be used for symbolic manipulation. In this way, formal mathematics 
returns to its origins in embodiment and symbolism. 
The individual cognitive development of proof, which relates directly to the 
long-term social development of proof, builds on the three set-befores of 
recognition, repetition and language, which give concept construction through 
categorization, encapsulation and definition, giving rise to three mental worlds 
of mathematics based on embodiment, symbolism and formalism. Each world 
develops proof in different ways: embodiment begins with experiment to test 
predictions, and shifts through description then definition to verbal euclidean 
proof in geometry. Symbolism develops proof through specific, then generic, 
then general calculations and manipulations, leading to proof based on rules 
derived from regularities in symbol manipulation. Formalism is based on set-
theoretic definitions and deductive proof. 
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