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This paper focuses on the changes in thinking involved in the transition from school 
mathematics to formal proof in pure mathematics at university. School mathematics is seen 
as a combination of visual representations, including geometry and graphs, together with 
symbolic calculations and manipulations. Pure mathematics in university shifts towards a 
formal framework of axiomatic systems and mathematical proof. 

In this paper, the transition in thinking is formulated within a framework of ‘three 
worlds of mathematics’– the ‘conceptual-embodied’ world based on perception, action and 
thought experiment, the ‘proceptual-symbolic’ world of calculation and algebraic 
manipulation compressing processes such as counting into concepts such as number, and 
the ‘axiomatic-formal’ world of set-theoretic concept definitions and mathematical proof. 
Each ‘world’ has its own sequence of development and its own forms of proof that may be 
blended together to give a rich variety of ways of thinking mathematically. 

This reveals mathematical thinking as a blend of differing knowledge structures; for 
instance, the real numbers blend together the embodied number line, symbolic decimal 
arithmetic and the formal theory of a complete ordered field.  

Theoretical constructs are introduced to describe how genetic structures set before 
birth enable the development of mathematical thinking, and how experiences that the 
individual has met before affect their personal growth. These constructs are used to 
consider how students negotiate the transition from school to university mathematics as 
embodiment and symbolism are blended with formalism. At a higher level, structure 
theorems proved in axiomatic theories link back to more sophisticated forms of 
embodiment and symbolism, revealing the intimate relationship between the three worlds.  

Introduction 
The ideas in this paper are situated in an overall view of long-term human learning, 

building from genetic structures that we all share and developing more sophisticated 
individual knowledge based on personal experiences. In particular I propose that there are 
three fundamental human attributes set before our birth in our genes that are essential to 
mathematical thinking and that personal growth depends on the individual’s interpretations 
of new situations based on experiences they have met before. 

Set-befores 
I use the term ‘set-before’ to refer to a mental structure that we are born with, which 

may take a little time to mature as our brains make connections in early life. For instance, 
the visual structure of the brain has built-in systems to identify colours and shades, to see 
changes in shade, identify edges, coordinate the edges to see objects and track their 
movement. Thus the child is born with a biological system to recognise small numbers of 
objects (one, two, or perhaps three) that gives a ‘set-before’ for the concept of ‘twoness’ 
before the child learns to count. Other set-befores include conceptions such as ‘up’ and 
‘down’ related to the pull of gravity and our upright posture, and the related concept of the 
horizontal. Another is the sense of weight that we encounter through the pull on our 
muscles as we lift objects. Other set-befores include the social ability to interact with 
others using gestures such as pointing to draw attention to things. 
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However, there are three fundamental set-befores that shape our long-term learning and 
cause us to think mathematically in specific ways. They are: 

• recognition of patterns, similarities and differences; 
• repetition of sequences of actions until they become automatic. 
• language to describe and refine the way we think about things; 

While recognition and repetition to practice routines are found in other species, it is the 
power of language, and the related use of symbols, that enables us to focus on important 
ideas, to name them and talk about them to refine their meaning. Recognition of patterns is 
an essential facility for mathematics, including patterns in shape and number. 

Repetition that becomes automatic is essential for learning procedures. However, there 
is a more sophisticated level that involves not only the ability to perform the procedure, but 
also to think about it as sophisticated entities in their own right, where symbols operate 
dually as process and concept (procept) to allow us to think flexibly (Gray & Tall, 1994). 

Mathematical development depends profoundly on these three set-befores. By being 
able to routinise a sequence of actions so that we can do it without effort, we can think 
about it and do it again, and again. Each counting number is followed by another, and 
another, leading to potential infinity. By categorising the collection of numbers and giving 
it a name, or the symbol   , we can conceive of an actual infinity of numbers as a single 
entity. Thus repetition and categorisation can together lead to the notion of actual infinity. 

Met-befores 
Personal development builds on experiences that the individual has met before. 

Previous experiences form connections in the brain that affect how we make sense of new 
situations. I define a met-before to be ‘a current mental facility based on specific prior 
experiences of the individual.’ 

A met-before is sometimes consistent with the new situation and sometimes 
inconsistent. For instance, the met-before ‘2+2 makes 4’ is experienced first in whole 
number arithmetic and continues to be consistent with the arithmetic of fractions, positive 
and negative integers, rational, real and complex numbers. But the met-before ‘taking 
away gives less’ remains consistent with (positive) fractions, but is inconsistent with 
negatives where taking away –2 gives more. The same met-before works consistently with 
finite sets, where taking away a subset leaves fewer elements, but is inconsistent in the 
context of infinite sets, where removing the even numbers from the counting numbers still 
leaves the odd numbers with the same cardinality. In this way, met-befores can operate 
covertly, affecting the way that individuals interpret new mathematics, sometimes to 
advantage, but sometimes causing internal confusion that impedes learning. 

Most long-term curricula focus only on broadening experiences based on positive met-
befores, failing to address met-befores that cause many learners profound difficulties. For 
example, mathematicians will have the limit concept as a met-before in their own minds, 
which, for them, forms the logical basis of calculus and analysis; but it is not a met-before 
for students beginning calculus and causes profound difficulties. The brain changes in its 
ability to think over time, reorganising information to create new structures that are often 
more sophisticated and better at coping with new situations. It is not simply a repository of 
earlier experiences adding new information to old; it re-formulates old information in new 
ways, changing how we think as we grow more mature. Experts may have forgotten how 
they thought when they were young and are likely to need to reflect on how different 
students’ met-befores affect their ways of learning. 
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Three worlds of mathematics 
The development of the individual from a young child to a sophisticated adult builds 

on the three fundamental set-befores of recognition, repetition and language to construct 
three interrelated sequences of development that blend together to build a full range of 
mathematical thinking (Tall, 2004, 2006). This is not to say that there is a one-to-one 
correspondence between set-befores and sequences of development. However, recognition 
and categorisation of figures and shapes underpins thought experiments with geometry and 
graphs, while the repetition of sequences of actions symbolised as thinkable concepts leads 
to arithmetic and algebra. Each of these constructional processes develop further through 
the use of language to describe, define and deduce relationships, until, at the highest level, 
set-theoretic language is used as a basis for formal mathematical theory. 

While it may be argued that these developments are simply different modes of thinking 
that grow in sophistication, I have come to describe them as ‘three worlds of mathematics’ 
that develop in sophistication in quite different ways. 

 the conceptual-embodied world, based on perception of and reflection on properties 
of objects, initially seen and sensed in the real world but then imagined in the mind; 

 the proceptual-symbolic world that grows out of the embodied world through 
action (such as counting) and is symbolised as thinkable concepts (such as number) 
that function both as processes to do and concepts to think about (procepts); 

• the axiomatic-formal world (based on formal definitions and proof), which reverses 
the sequence of construction of meaning from definitions based on known objects to 
formal concepts based on set-theoretic definitions. 

Terms such as ‘embodied’, ‘symbolic’, ‘formal’ have all been used in a range of 
different ways. Here I use a technique that arose from my friend and supervisor, the late 
Richard Skemp, in putting two familiar words together in a new way to signal the need to 
establish a new meaning (such as ‘instrumental understanding’ and ‘relational 
understanding’ or ‘concept image’ and ‘concept definition’). 

‘Conceptual embodiment’ refers not only to the broader claims of Lakoff (1987) that 
all thinking is embodied, but more specifically to perceptual representations of concepts. 
We conceptually embody a geometric figure, such as a triangle consisting of three straight 
line-segments; we imagine a triangle as such a figure and allow a specific triangle to act as 
a prototype to represent the whole class of triangles. We ‘see’ an image of a specific graph 
as representing a specific or generic function. Conceptual embodiment grows steadily more 
sophisticated as the individual matures in a manner described by Van Hiele (1986), 
building from perception of objects, through description, construction and definition, 
leading to deduction and Euclidean geometry. Other embodied geometries follow, such as 
projective geometry, spherical geometry, and various non-euclidean geometries, all of 
which may be given a physical embodiment. It is only when the systems are axiomatised 
and the properties deduced solely from the axioms using set-theoretic formal proof that the 
cognitive development of geometry shifts fully to a formal-axiomatic approach. (Figure 1.) 

‘Proceptual symbolism’ refers to the use of symbols that arise from performing an 
action schema, such as counting, that become thinkable concepts, such as number (Gray & 
Tall, 1994). A symbol such as 3+2 or    b2−4ac  represents both a process to be carried 
out or the thinkable concept produced by that process. Such a combination of symbol, 
process, and concept constructed from the process is called an elementary procept; a 
collection of elementary procepts with the same output concept is called a procept. 
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Process-object encapsulation was first described succinctly by Dubinsky in his APOS 
theory (e.g. Cottrill et al, 1996) based on the theories of Piaget and was used mainly in 
programming mathematical constructs in a symbolic development. Later in this paper we 
will return to APOS theory to show how a blending of embodiment and symbolism gives a 
more complete way of developing sophistication in mathematical thinking. 

 ‘Axiomatic formalism’ refers to the formalism of Hilbert that takes us beyond the 
formal operations of Piaget. Its major distinction from the elementary mathematics of 
embodiment and symbolism is that in elementary mathematics, the definitions arise from 
experience with objects whose properties are described and used as definitions; in formal 
mathematics, as written in mathematical publications, formal presentations start with set-
theoretic definitions and deduce other properties using formal proof. 

Formal mathematics does not arise in isolation. In his famous lecture announcing the 
twenty-three problems that dominated the twentieth century, Hilbert remarked: 

To new concepts correspond, necessarily, new signs. These we choose in such a way that they 
remind us of the phenomena which were the occasion for the formation of the new concepts. So the 
geometrical figures are signs or mnemonic symbols of space intuition and are used as such by all 
mathematicians. Who does not always use along with the double inequality a > b > c the picture of 
three points following one another on a straight line as the geometrical picture of the idea 
“between”? Hilbert, 1900 ICME lecture 

It is important to discuss the interrelationship of worlds working together. Putting 
together two names, such as ‘conceptually embodied axiomatic formalism’ is clearly 
inappropriate and compression is required. For this purpose, we now refer to the three 
worlds simply as ‘embodied’, ‘symbolic’ and ‘formal’, using the meanings for the terms 
established above, which enables us to combine them to give names such as ‘embodied 
formalism’ when formal thinking is underpinned by embodiment. 

The overall structure of figure 1 can now be seen in outline as a combination of 
interacting worlds of mathematics in figure 2. 

 

Figure 1: The Three Worlds of Mathematics illustrated by selected aspects 
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School mathematics builds from embodiment of physical conceptions and actions: 
playing with shapes, putting them in collections, pointing and counting, sharing, 
measuring. Once these operations are practiced and become routine, they can be 
symbolised as numbers and used dually as operations or as mental entities on which the 
operations can be performed. As the focus of attention switched from embodiment to the 
manipulation of symbols, mathematical thinking switches from the embodied to the 
(proceptual) symbolic world. Throughout school mathematics, embodiment gives specific 
meanings in varied contexts while symbolism in arithmetic and algebra offers a mental 
world of computational power. 

The later transition to the formal axiomatic world builds on these experiences of 
embodiment and symbolism to formulate formal definitions and to prove theorems using 
mathematical proof. The written formal proof is the final stage of mathematical thinking; it 
builds on experiences of what theorems might be worth proving and how the proof might 
be carried out, often building implicitly on embodied and symbolic experience.  

Formal theories based on axioms often lead to structure theorems, which reveal that an 
axiomatic system (such as a vector space) has a more sophisticated embodiment and 
related symbolism—for instance a finite dimensional vector space is an n-dimensional 
coordinate system. In this way the theoretical framework turns full circle, building from 
embodiment and symbolism to formalism, returning once more to a more sophisticated 
form of embodiment and symbolism that, in turn, gives new ways of conceiving even more 
sophisticated mathematics. 

This gives a natural parsimony to the framework of three worlds: as human 
embodiment leads to the mathematical operations of symbolism and on to the formalism of 
pure mathematics and back again at higher levels to more embodiment and symbolism. 
Meanwhile those who use mathematics in physics, applied mathematics, economics and so 
on, formulate mathematical models and symbolism to process the mathematics in the 
models—an approach justified by the accompanying formal framework that interlinks 
embodiment, symbolism and formalism. 

 

Figure 2: Cognitive development through three worlds of mathematics 
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Compression, Connection and Thinkable Concepts 
The study of the development of mathematical thinking is aided by several theoretical 

concepts to support our analysis. The human brain is highly sophisticated, but it is also 
surprisingly limited, being able to deal with only a small number of pieces of information 
at a time. In his famous paper, Miller (1956) suggested the number is around 7±2, based on 
a review of many articles published at the time. Personally I feel that it is much smaller 
than this; perhaps I could cope with more when I was younger – but I can’t remember. 

The human brain copes with this by connecting ideas together into ‘thinkable 
concepts’. (Although all concepts are clearly thinkable, I use the two words together to 
focus on how the concept is held in the mind as a single entity at a single time.) 

Compression into thinkable concepts occurs in several different ways. One, discussed 
by Lakoff (1987) in his book Women Fire and Dangerous Things, is categorisation, where 
concepts are connected in various ways in a category that itself becomes a thinkable 
concept. Sometimes the category may be represented by a specific case operating in a 
generic capacity such the equality   3+ 4 = 4 + 3 representing commutativity of addition. 

Another mode of compression, described by Dubinsky and his colleagues  (Cottrill et 
al, 1996), occurs in APOS theory where an ACTION is internalised as a PROCESS and is 
encapsulated into an OBJECT, connected to other knowledge within a SCHEMA; they also 
note that a SCHEMA may also be encapsulated as an OBJECT. 

Following Davis (1983, p. 257), who used the term ‘procedure’ to mean a specific 
sequence of steps and a process as the overall input-output relationship that may be 
implemented by different procedures, Gray, Pitta, Pinto & Tall (1999) represented the 
successive compression from procedure through multi-procedure, process and procept, 
expanded in figure 3 to correspond to the SOLO taxonomy sequence: unistructural, multi-
structural, relational, extended abstract, (Pegg & Tall, 2005). 

 

Figure 3: Spectrum of outcomes from increasing compression of symbolism 
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This models the way in which a procedure—as a sequence of steps performed in 
time—is steadily enriched by developing alternative procedures to allow an efficient 
choice. The focus switches from the individual steps to the overall process, and may then 
be compressed as a procept to think about and to manipulate mentally in a flexible way. 

Some students who have difficulty may become entrenched in a procedural approach, 
perhaps reaching a multi-procedural stage that can lead to procedural efficiency. Other 
students develop greater flexibility by seeing processes as a whole and compressing 
operations into thinkable concepts. This can lead to a spectrum of outcomes within a single 
group of learners between those who perform procedurally and those who develop greater 
flexibility. In arithmetic, Gray & Tall (1994) called this the proceptual divide. 

The earlier work of Dubinsky and his colleagues (e.g. Cottrill et al., 1996) focused 
initially on a symbolic approach by programming a procedure as a function and then using 
the function as the input to another function. The data shows that, while the process level 
was often attained, encapsulation from process to object was more problematic. 

A curriculum that focuses on symbolism and not on related embodiments may limit the 
vision of the learner who may learn to perform a procedure, even conceive of it as an 
overall process, but fail to be able to imagine or ‘encapsulate’ the process as an ‘object’. 

Widening the perspective to link symbolism to embodiment reveals that symbolic 
compression from procedure to process to object has an embodied counterpart. This 
happens when the actions involved operate on visible objects. The actions have an effect on 
the objects, for instance, when sharing them into equal shares, permuting them into a new 
arrangement, or translating an object on a plane. The ‘effect’ is the change from the initial 
state to the final state. The compression from procedure to process can be seen by shifting 
the focus of attention from the steps of a procedure to the effect of the procedure. 

For example, a translation of an object on a plane is an action in which each point of 
the object is moved in the same direction by the same magnitude. At the multi-structural 
level all the arrows from a start point to finish point can be seen to be equivalent, providing 
a set of equivalent translations. However, any one of these arrows can be used as a 
representative of all the equivalent arrows. A more subtle interpretation shifts us from the 
process level (equivalent arrows) to an object level by representing the effect of the action 
as a single free vector, as an arrow of given magnitude and direction that may be moved to 
any point to show how that point moves. This free vector is a conceptual embodiment of 
the vector translation as a mental embodied object. Adding free vectors is performed by 
placing them nose to tail to give the unique free vector that has the same effect as the two 
in succession. In the embodied world, there is therefore a meaningful parallel to symbolic 
compression in APOS theory by shifting one’s attention from the steps of an action to the 
effect of that action and imagining the effect as an embodied thinkable concept. (Figure 4.) 

This combination of embodiment and symbolism can give an embodied meaning to the 
desired encapsulated object, changing the learning required from a search for an as yet un-
encapsulated symbolic object in APOS theory to the state of having an embodiment of the 
required object and searching for a numeric or symbolic way to compute it. 

  As different individuals follow through a mathematics curriculum that introduces 
ideas in increasing levels of sophistication, they cope with it in different ways. Piaget 
hypothesised that all individuals pass through the same sequence of stages at different 
rates, but Gray and Tall (1994) observed the proceptual divide in which children develop 
in different ways, some clinging to the security of known step-by-step procedures, while 
others compress their knowledge into the flexible use of symbols as process and concept 
(procepts). Procedures occur in time and work in limited cases but may not be sufficiently 
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compressed into thinkable concepts to be used flexibly for more sophisticated thinking. 
Procedural learning may have a short-term advantage to pass an imminent test, but it needs 
the additional compression into thinkable concepts to enable the long-term development of 
increasingly sophisticated mathematical thinking. 

Knowledge frameworks and conceptual blending 
Recent developments in cognitive science suggest an overall picture of long-term 

growth that is of great value in mathematical thinking. Fauconnier and Turner (2002) 
present a view of the development of human thinking that focuses on compression and 
conceptual blending. Compression is seen as a general cognitive process that compresses 
situations in time and space into events that can be comprehended in a single structure by 
the human brain. For instance, the statement ‘If Mrs Thatcher stood for President, then she 
would not get elected because the unions would oppose her’ is a compression blending 
together the American and British democratic systems. The blend links similar ideas, such 
as the election of a leader in a democratic system subject to the support or opposition of 
pressure groups and ignores differences such as the fact that the American President is 
elected by all the people while the British Prime Minister is the elected leader of the party 
that wins the election. Blending also encourages new creative thinking, such as a higher-
level analysis of the ways in which different democracies work. 

In general, when we encounter a new situation we interpret it by blending together our 
met-befores, which may come from different experiences having some aspects in common 
and others in conflict. Those in common may give pleasurable insight; those in conflict 
may cause confusion that can act as a challenge for those who feel confident but lead to 
anxiety for those who do not. 

 

Figure 4: Procedural knowledge as part of conceptual knowledge (from Tall, 2006) 
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The development of the number concept is a typical case of successive blends. While 
the number systems   ⊂ ⊂ ⊂   may be seen by a mathematician as successive 
number systems represented on the number line which lies in the complex plane   , each 
extension involves a sophisticated blending process for the learner. The number line itself 
is a blend of counting and measuring where each whole number has a ‘next’ in the 
counting operation, but in measurement there is no ‘next’ fraction. Operating with whole 
numbers gives the sense that ‘addition and multiplication give a bigger result’ and ‘take-
away gives less’ which conflicts with the behaviour of integers, where taking away a 
negative gives more, and with fractions where multiplication can produce a smaller result. 

Later expansions of the number system blend an original knowledge structure within a 
wider structure with properties that conflict with previous experience. The hypotenuse of a 
right-angled triangle with rational sides may not itself be rational, the shift from fractions 
to decimals introduce infinite decimals that never end. The embodied number line includes 
numbers such as π, e and √2 that cannot be expressed as fractions or recurring decimals. 
Every non-zero number on the number-line has a square which is positive but the complex 
numbers have a ‘number’ i whose square is negative.  

Blends can occur within one of the worlds of mathematics or between different worlds. 
For instance, multiplication is a blend of different embodiments such as the area produced 
by multiplying two lengths or the number of elements in a rectangular array of objects. On 
the other hand, algebraic symbolism may be blended with corresponding embodied graphs. 
The shift from school mathematics to the logical demands of university mathematics 
involves a major shift in knowledge blending. 

Blending embodiment, symbolism and formalism in the concept of real number 
The concept of real number is a blend of embodiment as a number line, symbolism as 

(infinite) decimals and formalism as a complete ordered field. Each has its own properties, 
some of which are in conflict. For instance, the number line develops in the embodied 
world from a physical line drawn with pencil and ruler to a ‘perfect’ platonic construction 
that has length but no thickness. This is a natural process of compression in which the 
focus of attention concentrates on the straightness of the line and the position of the lines 
and points. In Greek geometry, points and lines are different kinds of entity in which a 
point has position but no size and a point may by ‘on’ a line or not. The line is an entity in 
itself; it is not ‘made up of points’. 

Physically the number line can be traced with a finger and, as the finger passes from 1 
to 2, it feels as if it goes through all the points in between. But when this is represented as 
decimals, each decimal expansion is a different point (except for the difficult case of 
recurring nines) and so it does not seem possible to imagine running through all the points 
between 1 and 2 in a finite time. There is also the counterfactual dilemma that, if the points 
have no size, how can even an infinite number of them make up the unit interval? In the 
embodied world we may imagine a point as a very tiny mark made with a fine pencil, so 
practical points have an indeterminate small size even if theoretical points do not. 
Furthermore, if a point had no size and a line no thickness, then we would not be able to 
see them. Prior to the introduction of the formal definition of real numbers, we live, 
perhaps somewhat uneasily, with the blend of a practical number line that we draw and 
imagine and a symbolic number system that can be represented by infinite decimals. 

Formally, the real numbers   is an ordered field satisfying the completeness axiom. 
This involves entering a completely different world where addition is no longer defined by 
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the algorithms of counting or decimal addition, instead it is simply asserted that for each 
pair of real numbers a, b, there is a third real number call the sum of a and b and denoted 
by a+b. Formally, it is possible to prove that there is, up to isomorphism, precisely one 
complete ordered field and that this can be represented by infinite decimals which are 
unique (except for the case where one decimal ends in an infinite sequence of nines and the 
other increases the previous place by one and ends in an infinite sequence of zeros). Thus it 
is possible for the human brain to recycle its former experiences and use the arithmetic of 
experience to blend the symbolic world with the formal world. 

Personally I continue to be concerned that I ‘know’ things symbolically that I have 
never proved axiomatically. In the symbolic world, I ‘know’ that 210 is bigger than 103, 
because the first is 1024 and the second is 1000. But I have never proved this from the 
axioms for a complete ordered field or from the Peano postulates for the whole numbers. I 
am happy to accept that the familiar arithmetic of decimals is the unique arithmetic of the 
axiomatic complete ordered field because it fits together so coherently. But ‘acceptance’ is 
not mathematical proof. 

In the transition from school arithmetic to formal mathematics we need to confront 
many issues such as this. Is it any wonder that Halmos in his book I want to be a 
mathematician remarked, ‘I never understood epsilon-delta analysis, I just got used to it.’ 
As mathematicians we begin to appreciate the purity and logic of the formal approach, but 
as human beings we should recognise the cognitive journey through embodiment and 
symbolism that enabled us to reach this viewpoint and helps us sustain it. 

Blending embodiment, symbolism and formalism in calculus and analysis 
Calculus builds in three very different worlds of mathematics. Calculus in school is a 

blend of the world of embodiment (drawing graphs) and symbolism (manipulating 
formulae). The geometric notion of slope of a graph is often represented by the action of 
moving a secant through a point on the graph towards a tangent at the point or, more 
subtly, through magnifying the graph near the point to see it look like a straight line under 
high magnification. The latter enables the learner to ‘see’ the changing slope of a curve and 
to imagine the slope itself as a changing function. The symbolic aspect allows the slope 
between two distinct points to be computed numerically or symbolically and a limiting 
process is required to get the symbolic slope of the tangent as the symbolic derivative. The 
embodied version has the limit process implicit in the process of magnification, while the 
symbolic version involves computing an explicit symbolic representation. 

It is interesting to note that the mathematical expert, who already has conceptions of 
derivative, integral and so on, has the limit concept as a met-before and sees the calculus as 
building logically from the limit concept, hence designing the curriculum to build on an 
‘informal’ version of the limit concept. However, the novice may feel more comfortable 
with the embodied approach through magnification to ‘see’ the slope function before being 
introduced to symbolic techniques for computing it and formal language to define it. 

Reform calculus in the USA was built on combining graphic, symbolic and analytic 
representations of functions using computer software and graphical calculators. However, 
those of us occupied in research in undergraduate mathematics need to look a little deeper 
into how the concepts of calculus are constructed. Mathematicians, who live in a world 
built on the met-before of the limit concept, have a view of calculus that sees the need to 
introduce the limit concept explicitly at the beginning of the calculus sequence. My own 
view is different. For students building on the embodiment and symbolism of school 
mathematics, I see a more natural route into the calculus combining embodiment and 
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symbolism in a manner that has the full potential to lead either to standard mathematical 
analysis, non-standard infinitesimal analysis, or practical calculus in applications. 

This approach involves using the embodied notion of local straightness that is 
cognitively different from the symbolic notion of local linearity. Local straightness 
involves an embodied thought experiment looking closely at graphs to see that, as small 
portions of certain graphs are highly magnified, they look straight. Some mathematicians 
have difficulties with such an approach because it seems difficult to formalise at first 
encounter. But it makes sense to students as they look at a computer screen successively 
magnifying a graph of a familiar function composed of polynomials, trigonometric 
functions, exponentials or logarithms. It also makes sense that a function like 

  
sin x  has a 

corner at every multiple of π so that on can begin to imagine not only local straightness, 
but also situations that are not locally straight. It is also relatively simple to give an 
embodied proof with hand gestures, that the recursively-defined blancmange function is 
everywhere continuous, but nowhere differentiable (Tall & Giacomo, 2000). Here 
magnification of the graph shows tiny blancmanges growing everywhere, so the 
magnification never looks straight (Figure 5).  

 

Figure 5: A graph that nowhere looks straight under magnification 

The arguments and pictures are found in several of my papers (see for example, Tall 
2003). The embodied ideas can give highly insightful ideas not found in a normal symbolic 
approach. For example, defining the ‘nasty function’    n(x) = bl(1000x) / 1000  then   sin x , 
and    sin x + n(x)  look the same when drawn on a computer over a range say –5 to 5, but 
one is differentiable everywhere and the other is differentiable nowhere! This can be seen 
just by magnification. It shows that just looking at a static graph is not enough. To be sure 
of differentiability one needs to deal directly with the function given symbolically. Hence 
embodiment reveals subtle meanings that encourage the use of symbolism and formal 
definitions. 

No regular calculus course attempts to give insight into what it means to be nowhere 
differentiable, yet I do it in my first lesson on calculus to show some functions are locally 
straight and some are not. If one can imagine, in the mind’s eye, that a graph is locally 
straight, then as the eye follows the curve from left to right, focusing on the slope of the 
curve, it is possible to see the changing slope as a function that can be graphed in its own 
right. This brings us precisely to the principle enunciated earlier, that the slope can be 
embodied and visualised giving a slope function that can be seen but now needs to be 
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calculated either numerically or symbolically. The need for a limit arises from the 
embodiment to calculate the slope function, not the other way round.  

An approach using local linearity, as in College Calculus, on the other hand, involves a 
symbolic concept, seeking the best linear approximation to the curve at a single point. It 
involves an explicit limiting concept from the beginning instead of an implicit limiting 
concept that occurs when zooming in to see how steep the curve is over a short interval. 
Non-differentiability is the non-existence of a limit, which lacks the immediacy of the 
embodied idea of a graph that does not magnify to look locally straight. 

The function 
   
a(x) = bl(t) dt

0

x

∫  has bl(x)  as its derivative, so it is differentiable once 

everywhere and twice nowhere. When I showed a class of undergraduates the graph of 
  a(x)  calculated numerically by a computer program, one of the students (not a 
mathematics major) said, ‘you mean that function is differentiable once but not twice.’ 
(Tall, 1995.) If you know of any other mathematics professor who has had a student 
imagine a function that is differentiable once and not twice, tell him or her to e-mail me. 

Local straightness is particularly apt when dealing with differential equations. A 
differential equation    dy / dx = F(x, y)  tells us the slope of a locally straight curve at a 
point   (x, y)  is  F(x, y) , so it is easy to program software to draw a small segment of the 
appropriate slope when the mouse points to   (x, y)  and by depositing such segments end to 
end, the user can build an approximate solution onscreen. This was done in the Solution 
Sketcher (Tall, 1991) and has been implemented in the currently available Graphic 
Calculus software (Blokland & Giessen, 2000, figure 6). 

The Reform Calculus Movement in the USA focuses on the notion of local linearity, 
with the derivative as the best linear approximation to the curve at a single point. It seeks a 
symbolic representation at a point, using a limiting procedure to calculate the best linear fit 

  

Figure 6: building the solution of a differential equation 
by following its given slope (Blokland & Giessen, 2000). 
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perhaps even with a formal epsilon-delta construction. Then the fixed point is varied to 
give the global derivative function. I cannot imagine a worse approach to present to 
beginning calculus students. 

Thurston (1994) suggested seven different ways to think of the derivative: 

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to the 
infinitesimal change in a function. 

(2) Symbolic: the derivative of  xn  is   nxn−1 , the derivative of sin(x) is cos(x), the 
derivative of   f  g  is   ′f  g ∗ ′g , etc. 

(3) Logical:    ′f (x) = d if and only if for every ε there is a δ such that when  

    
0 < Δx < δ , then

    

f (x +Δx)− f (x)
Δx

− d < δ.  

(4) Geometric: the derivative is the slope of a line tangent to the graph of the function, 
if the graph has a tangent. 

(5) Rate: the instantaneous speed of  f (t) , when t is time. 
(6) Approximation: The derivative of a function is the best linear approximation to the 

function near a point. 
(7) Microscopic: The derivative of a function is the limit of what you get by looking at 

it under a microscope of higher and higher power. (Thurston, 1994.) 

These ideas show a mathematician with great insight blending together a range of 
possible meanings, including local straightness expressed at a point (item 7). However it 
omits the global concept of local straightness from which all others can grow: 

 (0) Embodied: the (changing) slope of the graph itself. 

Mathematicians, with their met-befores based on the limit concept have long passed 
beyond this missing level 0. Learners without experience of the limit concept benefit from 
such an embodied introduction. 

It is my contention (Mejia & Tall, 2004) that the calculus belongs not to the formal 
world of analysis, ‘looking down’ on it from above: it belongs in the vision of Newton and 
Leibniz, looking up from met-befores in embodiment and symbolism used appropriately.  

Using a framework of embodiment and symbolism, Hahkiöniëmi (2006) studied his 
own calculus teaching to find students following different developments, including an 
embodied route, a symbolic route and various combinations of the two. He found that ‘the 
embodied world offers powerful thinking tools for students’ who ‘consider the derivative 
as an object at an early stage.’ 

This simple observation is at variance with APOS theory suggesting the building up of 
the limit concept from (symbolic) ACTION to PROCESS and then to OBJECT. It questions 
Sfard’s (1991) suggestion that operational thinking invariably must precede structural. In 
our technological age, one can see the structure of the derivative globally as a slope 
function stabilizing onscreen and seek to operationalise it by computing it numerically or 
symbolically. The formal limit can follow later as a natural way of completing the process 
already seen as an object in the mind’s eye. 

To cope with the complexity of the derivative, Hahkiöniëmi proposed a framework in 
which the teacher is responsible as a mentor for guiding the students through a variety of 
possible routes by which the students may blend together the various knowledge structures 
in a way that is personally meaningful (Figure 7) . 
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Figure 7: Hypothesised learning framework (Hahkiöniëmi, 2006). 

The Cognitive Development of Proof 
Proof is handled differently in each of the three worlds. (Mejia-Ramos & Tall, 2006). 

In the embodied world the child may begin with specific experiments represented by 
specific pictures to confirm that something is true, for instance, a rectangle of items with 3 
rows and 2 columns shows that the same array can be seen as 3 lots of 2 or 2 lots of 3, so 
  3×2 = 2×3 . The same picture may also be seen as a generic picture demonstrating this 
property for any two whole numbers. Later, as language is used more carefully to make 
definitions, geometric proofs in Euclidean geometry become verbalised and build into an 
organised structure of proof from definitions. Meanwhile, in symbolic development, proof 
of specific properties may be performed using specific arithmetic calculations, perhaps 
seen as generic demonstrations, later developing into proof by algebraic manipulation. 

The major shift in proof occurs from the embodiment and symbolism of school 
mathematics to the formalism of advanced mathematical thinking (Tall, 1991). Proof in the 
embodied and symbolic worlds is based on concepts that are given definitions, so the 
concepts underpin any sense of proof. Proof in the formal world is ostensibly based only 
on set-theoretic definitions and mathematical deduction. However, as students come to 
appreciate formal proof, they build on their previous experience, as do mathematicians 
who use a variety of approaches, perhaps using embodiment to suggest new hypotheses 
that are subsequently proved as formal theorems, or counting arguments and other 
calculations and manipulations that can develop into formal proofs. 

My colleague and PhD student, Marcia Pinto (1998) followed students learning 
concepts in formal mathematical analysis and found there were two distinct routes, one a 
‘natural’ route giving meaning to definitions from the met-befores of the individual’s 
concept image (including both embodiment and symbolism), the other a ‘formal’ route 
extracting meaning from the concept definition (figure 8). 

For instance, Chris followed the natural route building on his imagery to give meaning 
to the limit concept, ‘seeing’ the terms (sn) of the sequence plotted as points (n, sn) in the 
plane and imagining that for any ε>0, he could find an N such that the points (n, sn) for 
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n≥N lie between horizontal lines L± ε.  Ross, on the other hand, followed the formal route 
by repeating the definition until he could say it in full detail and carefully studying proofs 
to see how they deduced a theorem from its assumptions. 

Cliff also followed the natural route, but his met-befores clashed with the formal 
definition. He believed that a function on the integers could not be continuous as its graph 
consisted of disconnected dots, not a ‘continuously drawn’ pencil line. 

Meanwhile, Rolf built on his symbolic experience and could show numerically that if 

   an = 1 / n2  and    ε= 10−6 , then he could calculate    N = 103
 for which    an < ε  when n > N. 

However, he could not show that if    an →1 , then for some N, if n>N, then    an > 3
4 . Not 

knowing the formula for  an  he could not carry out a numerical calculation to find N. 
Weber (2004) refined this analysis by a qualitative case study on a particular analysis 

lecturer and his students. He found that the lecturer began with an initial logico-structural 
teaching style in which he guided the students into constructing a sequence of deductions 
to prove a theorem. He divided his working space on the board into two columns, with the 
left column to be filled in with the text of the proof and the right column as ‘scratch work’. 
He wrote the definitions at the top of the left column and the final statement at the bottom, 
then he used the scratch-work area to translate information across and to think about the 
possible deductions to lead from the assumptions to the final result. Later, he became more 
streamlined, presenting proofs in a sequential procedural style, writing the proof down in 
the left column and using the right column to work out detail such as routine manipulation 
of symbols. Later, he taught topological ideas in what Weber termed a semantic style, 
building on visual diagrams to give meaning, then translating into formal proof. 

He analysed student approaches into three types, building on the theory of Pinto: 

 
Figure 8: natural thinking builds on embodiment and symbolism, 

while formal thinking builds on concept definition 
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• a natural approach involved giving an intuitive description and using it to lead to 
formal proof, 

• a formal approach where students had little initial intuition but could logically 
justify their proofs, 

• a procedural approach where students learnt the proofs given them by the professor 
by rote without being able to given any formal justification. 

The term ‘natural’ corresponds to that of Pinto in giving meaning from intuitive 
(embodied) knowledge, ‘formal’ now refers to those who are successful in following a 
formal approach and ‘procedural’ refers to those who attempt to learn the formal proofs by 
rote without either embodied or logico-structural meaning. Of the students considered in 
Pinto’s research, Chris was successful in giving embodied meaning to formal theory via a 
‘natural’ route. Ross was successful in a ‘formal’ approach, extracting meaning from the 
definitions and the logical structure of theorems. Cliff was unable to make sense of the 
formal definition because it conflicted with his embodied imagery. Rolf attempted to 
extract meaning from the definitions based on his symbolic experience. Essentially, both 
Cliff and Rolf follow Weber’s procedural route, but Cliff was unsettled because of a 
conflict with his embodied ideas, while Rolf was happy to relate the definition to his met-
befores in performing calculations to find a numerical N given a numerical  ε ; Rolf 
conceived his task as learning procedures by rote to use in solving problems but this was 
insufficient to cope with more sophisticated ideas and he left the course halfway through. 

Weber’s data also shows that students can vary in approach dependent on the context 
in which they work. Six students interviewed after the course all responded in a natural 
manner to a topological question (where topology had been taught in a semantic manner 
building from visual imagery). However, in two other questions about functions and limits, 
only one student responded naturally. The other responses to a question on functions were 
4 formal and 1 procedural, and to a question on limits, 2 formal and 3 procedural. 

Other research studies reveal how embodiment can operate in subtle ways to affect 
how students interpret formal definitions. For instance, in a formal lecture course that took 
the logical route of defining a relation as a set of ordered pairs, and then specialized the 
definition to specify functions, order relations, and equivalence relations, students gave a 
variety of meanings to the definitions that affected their interpretation of the mathematics. 
For example, the transitive law   a ~ b  and   b ~ c  implies   a ~ c  was given subtle 
embodiments in which a, b, c were implicitly assumed to be all different, which is true for 
a strong order relation   a < b , but not for an equivalence relation (Chin & Tall, 2002). 

From Formal Proof back to Embodiment and Symbolism 
A major goal in building axiomatic theories is to construct a structure theorem, which 

essentially reveals aspects of the mathematical structure in embodied and symbolic ways. 
Typical examples of such structure theorems are: 

• An equivalence relation on a set A corresponds to a partition of A;  
• A finite dimensional vector space over a field F is isomorphic to  F n ;  
• Every finite group is isomorphic to a subgroup of a group of permutations;  
• Any complete ordered field is isomorphic to the real numbers.  

In every case, the structure theorem tells us that the formally defined axiomatic 
structure can be conceived in an embodied way and in the last three cases there is a 
corresponding manipulable symbolism. 
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Thus, not only do embodiment and symbolism act as a foundation for ideas that are 
formalized in the formal-axiomatic world, structure theorems can also lead back from the 
formal world to the worlds of embodiment and symbolism. This means that those who use 
mathematics as a tool can use the embodiment and symbolism to imagine problem 
situations and model them symbolically. In this way, engineers, economists, physicists, 
biologists and others often use embodiment and symbolism as a foundation for their work. 

 The new embodiments depend not just on experience in the world, but on concept 
definition and formal deduction, leading to new formal insights. 

As an example, the completion of the rationals to give the reals using Dedekind cuts 
was seen by many as ‘filling in’ the gaps between rational numbers with real numbers so 
that the line is ‘complete’, with ‘no room’ for other numbers such as infinitesimals.  

This interpretation is false. Once the formal definition of ordered field has been 
formulated and its properties determined by mathematical proof, then we can conceive of 
an ordered field K that is a proper ordered extension of the field   . It is then easy to prove 
that any element in K is either greater than, or less than all elements in   , or is of the form 
   a + ε  where    a∈  and  ε  is an infinitesimal (meaning that    −k < ε< k  for all positive 
real numbers k). In a regular picture of the line, it will be impossible to distinguish between 
a and    a + ε  because they differ by something too small to see. However, the map 
    µ : K→ K given by     µ(x) = (x− a) / ε  maps a to 0 and    a + ε  to 1, which allows them to 
be ‘seen’ separately under the magnification  µ . Now we can imagine the number line to 
have not only real numbers, but infinitesimals that we can ‘see’ under high magnification. 

Reflections 
The final return of formalism to a more sophisticated form of embodiment and 

symbolism through structure theorems leads me to see the three worlds of mathematics as a 
natural structure through which the biological brain builds a mathematical mind. The child 
builds from the three major set-befores of recognition, repetition and language to recognise 
and categorise geometric objects, to repeat procedures until they become automatic and 
perhaps compressed into thinkable procepts, and later to use the more technical language 
of set theory and logic to construct formal mathematical structures at the highest level. 

A wider awareness of the met-befores of embodiment and symbolism and their subtle 
effects on the students transition to formal mathematical thinking now offers the possibility 
of explicit discussion between mathematicians and students of the nature of the transition 
that is occurring in learning formal mathematics. 

While university mathematicians differ in their perception of the relevance of 
embodiment to formal proof—and some may insist that their research is purely formal—all 
human beings enter this world as children who cannot speak and thus go through a long-
term development that builds through embodiment and symbolism to formalism. 
Axiomatic systems are not designed arbitrarily; they need some form of insight as to what 
axioms are appropriate, and here met-befores in embodiment and symbolism play subtle 
roles. Furthermore, formalism itself leads back to structure theorems that have embodied 
and symbolic meanings, giving a parsimonious framework that returns to its origins. 

 The proposed theory of conceptual embodiment, proceptual symbolism and axiomatic 
formalism offers a rich framework in which to interpret mathematical learning and 
thinking at all levels from the earliest pre-school mathematics through to mathematical 
research, and, in particular, in the transition from school to undergraduate mathematics. 
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