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Lesson Study is a format to build and analyse classroom teaching where teachers and 
researchers combine to design lessons, predict how the lessons might be expected to 
develop, then carry out the lessons with a group of observers bringing multiple 
perspectives on what actually happened during the lesson. This article considers how 
a lesson, or group of lessons, observed as part of a lesson study may be placed in a 
long-term framework of learning, focusing on the essential objective of improving the 
long-term learning of every individual in classroom teaching. 
INTRODUCTION 
This paper began as a result of a participation in a lesson study conference (Tokyo & 
Sapporo, December 2006) in which four lessons were studied as part of an APEC 
(Asian and Pacific Economic Community) study to share ideas in teaching and 
learning mathematics to improve the learning of mathematics throughout the 
communities. It included the observation of four classes (here given in order of grade, 
rather than order of presentation): 

• Placing Plates (Grade 2) 
December 2nd 2006, University of Tsukuba Elementary School 
– Takao Seiyama 

• Multiplication Algorithm (Grade 3) 
December 5th 2006, Sapporo City Maruyama Elementary School 
– Hideyuki Muramoto 

• Area of a Circle (Grade 5) 
December 2nd 2006, Universty of Tsukuba Elementary School 
– Yasuhiro Hosomizu 

• Thinking Systematically (Grade 6) 
December 6th 2006, Sapporo City Hokuto Elementary School 
– Atsutomo Morii 

The objective of this paper is to set these classes within a long-term framework of 
development outlined in Tokyo at the conference (Tall, 2006), which sets the growth 
of individual children within a broader framework of mathematical development. 
Long-term the development of individual children depends not only on the 
experiences of the lesson, but in the experiences of the children prior to the lesson 
and how experiences ‘met-before’ have been integrated into their current knowledge 
framework. 
In general, it is clear that lesson study makes a genuine attempt: 
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• to design a sequence of lessons according to well-considered objectives;  
• to predict what may happen in a lesson; 
• to have a group of observers bring multiple perspectives to what happened, 

without prejudice; 
and ultimately 

• to improve the teaching of mathematics for all. 
Lesson study is based on a wide range of communal sharing of objectives. At the 
meeting I was impressed by one essential fact voiced by Patsy Wang-Iverson: 

The top eight countries in the most recent TIMSS studies shared a single 
charactistic, that they had a smaller number of topics studied each year. 

Success comes from focusing on the most generative ideas, not from covering detail 
again and again. This suggests to me that we need to seek the generative ideas that 
are at the root of more powerful learning. 
For many individuals, mathematics is complicated and it gets more complicated as 
new ideas are encountered. For a few others, who seem to grasp the essence of the 
ideas, the complexity of mathematics is fitted together in a way that makes it 
essentially simple way. My head of department at Warwick University in the sixties, 
Sir Christopher Zeeman noted perceptively: 

“Technical skill is a mastery of complexity, while creativity is a mastery of 
simplicity” (Zeeman, 1977) 

This leads to the fundamental question: 
How can we help each and every child find this simplicity, in a way that works, for 
them? 

Lesson study focuses on the whole class activity. Yet within any class each child 
brings differing levels of knowledge into that class, related not only to what they 
have experienced before, but how they have made connections between the ideas and 
how they have found their own level of simplicity in being able to think about what 
they know. 
To see simplicity in the complication of detail requires the making of connections 
between ideas and focusing on essentials in such a way that these simple essentials 
become generating principles for the whole structure. 
In my APEC presentation in Tokyo (Tall 2006), I sought this simplicity in the way 
that we humans naturally develop mathematical ideas supported by the shared 
experiences of previous generations. I presented a framework with three distinct 
worlds of mathematical development, two of which dominate development in school 
and the third evolves to be the formal framework of mathematical research. The two 
encountered in school are based on (conceptual) embodiment and (proceptual) 
symbolism. I described these technical terms in more detail in Tall (2006) and in a 
range of other recent papers on my website (www.davidtall.com/papers). 
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Essentially, conceptual embodiment is based on human perception and reflection. It 
is a way of interacting with the physical world and perceiving the properties of 
objects and, through thought experiments, to see the essence of these properties and 
begin to verbalise them and organize them into coherent structures such as Euclidean 
geometry. Proceptual symbolism arises first from our actions on objects (such as 
counting, combining, taking away etc) that are symbolized as concepts (such as 
number) and developed into symbolic structures of calculation and symbolic 
manipulation through various stages of arithmetic, algebra, symbolic calculus, and so 
on. Here symbols such as 4+3,    x

2
+ 2x +1, 

   
sin x dx!  all dually represent processes 

to be carried out (addition, evaluation, integration, etc) and the related concepts that 
are constructed (sum, expression, integral, etc). Such symbols also may be 
represented in different ways, for instance 4+3 is the same as 3+4 or even ‘1 less than 
4+4’ which is ‘1 less than 8’ which is 7. This flexible use of symbols to represent 
different processes for giving the same underlying concept is called a procept. 
These two worlds of (conceptual) embodiment and (proceptual) symbolism develop 
in parallel throughout school mathematics and provide a long-term framework for the 
development of mathematical ideas throughout school and on to university, where the 

 
Figure 1. The three mental worlds of (conceptual) embodiment, 

(proceptual) symbolism and (axiomatic) formalism 
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focus changes to the formal world of set-theoretic definition and formal proof. 
In figure 1 we see an outline of the huge complication of school mathematics. On the 
left is the development of conceptual embodiment from practical mathematics of 
physical shapes to the platonic methods of Euclidean geometry. In parallel, there is a 
development of symbolic mathematics through arithmetic, algebra, and so on, with 
the two blending as embodiment is symbolized or symbolism is embodied. 
The long-term development begins with the child’s perceptions and actions on the 
physical world. In figure 1 the child is playing with a collection of objects: a circle, a 
triangle, a square, and a rectangle. The child has two distinct options, one to focus on 
his or her perception of each object, seeing and feeling their separate properties, the 
other is through action on the objects, say by counting them: one, two, three, four. 
The focus on perception, with vision assisted by touch and other senses to play with 
the objects to discover their properties, leads to a growing sense of space and shape, 
developing through the use of physical tools—ruler, compass, drawing pins, thread—
to enable the child to explore geometric ideas in two and three dimensions, and on to 
the mental construction of a perfect platonic world of Euclidean geometry. The focus 
on the essential qualities of points having location but no size, straight lines having 
no width but arbitrary extensions and on to figures made up using these qualities 
leads the human mind to construct mental entities with these essential properties. 
Platonism is a natural long-term construction of the enquiring human mind. 
Meanwhile, the focus on action, through counting, leads eventually to the concept of 
number and the properties of arithmetic that benefit from blending embodiment and 
symbolism, for example, ‘seeing’ that   2!3= 3!2  by visualizing 2 rows of 3 objects 
being the same as 3 columns of 2 objects. Long-term there is a development of 
successive number systems, fractions, rationals, decimals, infinite decimals, real 
numbers, complex numbers. (What seems to the experienced mathematician as a 
steady extension of number systems is, for the growing child, a succession of changes 
of meaning which need to be addressed in teaching. We return to this later.) 
The symbolic world develops through whole number arithmetic, fractions, decimals, 
algebra, functions, symbolic calculus, and so on, which are given an embodied 
meaning through the number-line, Cartesian coordinates, graphs, visual calculus, 
with aspects of the embodied world such as trigonometry being realized in symbolic 
form. In the latter stages of secondary schooling, the learner will meet more 
sophisticated concepts, such as symbolic matrix algebra and the introduction of the 
limit concept, again represented in both embodied and symbolic form. 
The fundamental change to the formal mathematics of Hilbert leads to an axiomatic 
formalism based on set-theoretic definitions and formal proof, including axiomatic 
geometry, axiomatic algebra, analysis, topology, etc. 
Cognitive development works in different ways in embodiment, symbolism and 
formalism (Figure 2). In the embodied world, the child is relating and operating with 
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perceived objects (both specific and generic), verbalizing properties and shifting from 
practical mathematics to the platonic mathematics of axioms, definitions and proofs. 
In the symbolic world, development begins with actions that are symbolized and 
coordinated for calculation and manipulation in successively more sophisticated 
contexts. The shift to the axiomatic formal world is signified by the switch from 
concepts that arise from perceptions of, and actions on, objects in the physical world 
to the verbalizing of axiomatic properties to define formal structures whose further 
properties are deduced through mathematical proof. 
Focusing on the framework appropriate to school mathematics, we find the main 
structure consists of two parallel tracks, in embodiment and symbolism, each 
building on previous experience (met-befores), with 

• embodiment developing through perception, description, construction, 
definition, deduction and Euclidean proof after the broad style suggested by 
van Hiele; 

• symbolism developing through increasingly sophisticated compression of 
procedures into procepts as thinkable contexts operating in successively 
broader contexts. 

 
Figure 2: long-term developments in the three worlds 
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These two developments are fundamentally different. On the one hand, embodiment 
gives a global overall picture of a situation while symbolism begins with coordinating 
actions, practicing sequences of actions one after another to build up a procedure, 
perhaps refining this to give different procedures that are more efficient or more 
effective, using symbolism to record the actions as thinkable concepts. The problem 
here is that the many different procedures can, for some, seem highly complicated 
and so the teacher faces the problem of reducing the complexity, perhaps by 
concentrating on a single procedure to show the pupils what to do, without becoming 
too involved in the apparent complications. Procedures, however, occur in time and 
become routinized so that the learner can perform them, but is less able to think about 
them. (Figure 3.) 
As an example, consider the teaching of long-multiplication. First children need to 
learn their tables for single digit multiplication from   0!0  to   9!9 . They also need to 
have insight into place value and decimal notation. 
The method used by Hideyuki Muramoto in the lesson study at Sapporo City 
Maruyama Elementary School on December 6, 2006 can be analysed in terms of an 
initial embodiment representing 3 rows of 23. Here the learner can see the full set of 
counters: the problem is how to calculate the total. The embodiment can be broken 
down in various ways, separating each row into subsets appropriate to be able to 
compute the total. In the previous lesson the students had already considered 3 rows 
of 20 and had broken this into various sub-combinations, breaking each row into 
10+10 or 5+5+5+5, or even 9+9+2, or 9+2+9. Now the problem related to breaking 

 
Figure 3: Developmental framework through embodiment and symbolism 
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23 into sub-combinations, suggested possibilities included 10+10+3 and 9+5+9 (but 
not 5+5+5+5). Three lots of 10+10+3 gives 30+30+9, which easily gives 60+9, 
which is 69. Three lots of 9+5+9 is more difficult requiring the sum 27+15+27. Here 
we have two different procedures giving the same result, 69, and the most productive 
way forward is to break the number 23 into tens and units and multiplying each 
separately by 3. 
In this analysis, the embodiment gives the meaning of the calculation of a single digit 
times a double digit number, while the various distinct sub-combinations give 
different ways of calculation, from which the sub-combination as tens and units is 
clearly the simplest and the most efficient. 
The approach has a general format: 

1. Embody the problem (here the product   23!3); 
2. Find several different ways of calculation (here   23!3 is three lots of 10+10+3 or 
three lots of 9+9+5) where the embodiment gives meaning to symbolism; 
3. See flexibility, that all of these are the same; 
4. See the standard algorithm is the most efficient. 

Thus embodiment gives meaning while symbolism enables compression to an 
efficient symbolic algorithm. 
It may be that not all the children in the class will be able to cope with the different 
procedures (for instance, one would expect the suggestion 9+5+9 to come from a 
more able child and the computation would not be easy for some). Thus, the dynamic 
of the whole class may not be shared by all individuals. The more successful may see 
the different ways of computing the result as different procedures with the same 

 
Figure 4: multi-digit arithmetic from embodiment to symbolism 
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effect, and meaningfully see that the standard algorithm is just one of many that is 
chosen because it is efficient and simple. They may sense that it is not appropriate to 
use a more complicated method like 3 times 9+9+5 and not even desire to carry it 
through without this compromising their insight that different procedures can give the 
same result. Meanwhile, those who are less fluent in their tables may feel insecure 
and seek an easy method to cope that is less complicated. A single procedure may 
have its attractions, showing how to do it, without the complication of why it works. It 
may have attractions to the teacher to teach the method by rote as this may have 
short-term success without extra complication.  
In this way, the same lesson may be seen very differently by different participants, at 
one extreme, a great insight into the meaning and construction of the standard 
algorithm within a rich conceptual framework, at another extreme, a great deal of 
complication and a desire to cope by seeking a procedure that works rather than a 
situation which is too complicated to understand. This bifurcation is what Gray & 
Tall (1994) called the proceptual divide between those who seek to maintain 
procedures that work at the time rather than flexible methods that require many 
meaningful connections in a broader knowledge structure. 
BLENDING KNOWLEDGE STRUCTURES IN THE BRAIN 
In addition to this combination of embodiment and symbolism to give meaning to 
number concepts and operations, there are subtle features of successive number 
systems that cause additional problems. A mathematician may see successive 
numbers systems such as: 

Whole Numbers 
Fractions 
Rational Numbers 
Positive and Negative numbers 
Real Numbers consisting of rationals and irrationals 

as a growing extension of the number system. They can all be marked on an 
(embodied) number line and the child should be able to see how each one is extended 
to the next. However, for the learner, each extension has subtle aspects which can 
cause significant problems. We all know of the difficulty of introducing the concept 
of fraction and of the problem of multiplying negative numbers. 
There are subtle difficulties between counting and measuring: 

Counting 1, 2, 3, ... has successive numbers, each with a next number and no 
numbers in between. Multiplying these numbers gives a bigger result ... etc. 
Measuring numbers are continuous without a ‘next’ number and have fractions 
between. Multiplying can give a smaller result. 

Elsewhere (e.g. Tall, 2007), I use the idea of conceptual blending from Fauconnier & 
Turner (2003) to shed light onto the cognitive strengths and difficulties of long-term 
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learning in mathematics. Fauconnier and Turner share the distinction of being the 
first cognitive scientists to integrate the fundamental ideas of compression and 
blending of knowledge into a single framework. In considering how students learn 
long-term, this suggests we need to be aware not only what experiences students have 
had before, but how they compress this experience into thinkable concepts and how 
different knowledge structures are blended together to produce new knowledge. 
USING A LONG-TERM FRAMEWORK OF EMBODIMENT AND 
SYMBOLISM IN LESSON STUDY 
Putting together the ideas of growth in elementary mathematics discussed here and in 
the earlier paper (Tall, 2006), we find that the parallel development of embodiment 
and symbolism suggests: 

Embodiment gives human meaning as prototypes, developing verbal description, 
definition, deduction. 
Symbolism is based initially on human action, leading to symbol use, either through 
procedural learning or through conceptual compression to flexible procept. 
Experiences build met-befores in the individual mind that are used later to interpret 
new situations. 
Different experiences may be blended together, requiring a study of what learners 
bring to a new learning experience. 

Tall (2006) also observed: 
Embodiments may work well in one context but become increasingly complex; 
flexible symbolism may extend more easily. 

This means that successful students may show a long-term tendency to shift to 
symbolism to work in a way that is both more powerful and (for them) more simple. 
In our earlier discussions in Tokyo, great emphasis was made not only on meaningful 
learning of mathematical concepts and techniques, but also on problem-solving in 
new contexts. Learning new concepts can be approached in a problem-solving 
manner. My own view is that learners must take responsibility for their own learning, 
once they have the maturity to do so, which includes developing their own methods 
for solving problems. I also believe that teachers have a duty, as mentors, to help 
focus students on methods that are powerful and have long-term value. 
In studying lessons, therefore, we need some objectives to consider. There are so 
many theories in the literature, from Bruner’s (1966) analysis into enactive iconic and 
symbolic, Fischbein’s (1987)  categorization into intuitive, algorithmic and formal, 
the Pirie-Kieren theory (1994) with its ideas of ‘making’ and ‘having’ images and 
successive levels of operation, Dreyfus and colleagues RBC theory (Recognising, 
Building-With, Consolidating), theories of problem-solving (Schoenfeld 1985, 
Mason et al. 1982) and so on. With such a wealth of ideas to choose from and build 
on (and build with), rather than attempt to combine or contrast these theories, I will 
here focus on three simple ideas that are important. You may choose different ones, 
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but in the long run, it is important for those studying lessons to have principles with 
which they are working and a fundamental framework for each lesson study. I 
suggest the need in long-term development to focus on three aspects: 

Building thinkable concepts in (meaningful) knowledge structures; 
Using knowledge structures in routine and problem situations (where ‘routine’ 
includes practising for fluency); 
Proving knowledge structures (as required in context). 

I would see these three aspects being applied before, during and after each lesson. 
BEFORE:  What is the purpose of the lesson 
(e.g. Building new constructs, Using known routines or problem-solving, Proving 
in some sense) and what concepts may the learners have in mind that may be used in 
the lesson? (met-befores, blends, routines, problem-solving techniques) 
DURING: How do learners use their knowledge structures during the lesson to 
make sense of it? (met-befores, blends, routines, problem-solving techniques) 
AFTER: What knowledge structures are developing that may be of value in the 
future? (met-befores, blends, routines, problem-solving techniques) 

LESSONS STUDIES 
Four classes were videoed during our previous meeting in Japan, December, 2006. 

• Placing Plates (Grade 2) 
December 2nd 2006, Universty of Tsukuba Elementary School 
– Takao Seiyama; 

• Multiplication Algorithm (Grade 3) 
December 5th 2006, Sapporo City Maruyama Elementary School 
– Hideyuki Muramoto; 

• Area of a Circle (Grade 5) 
December 2nd 2006, University of Tsukuba Elementary School 
– Yasuhiro Hosomizu; 

• Thinking Systematically (Grade 6) 
December 6th 2006, Sapporo City Hokuto Elementary School 
– Atsutomo Morii. 

My purpose is to focus on the role of these lessons in long-term learning, and to 
consider how the long-term development of each and every student may be affected 
by the lesson within the framework suggested above. 
There is already a great deal of evidence of the use of broad principles in the planning 
of the lessons which are formulated in the lesson plans. Taking a few quotes at 
random we find: 
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• The goal of the Mathematics Group at Maruyama is to develop students 
ability to use what they learned before to solve problems in the new learning 
situations by making connections.  
  In addition, we want to provide 3rd grade students with experiences in 
mathematics that enable them to use why they learned before to give 
problems in new learning situations by making connections. 

• Through teaching mathematics, I would like my students to develop ‘secure 
ability’ for finding problems on their own, studying by themselves, thinking, 
making decisions, and executing those decisions. Moreover, I would like to 
help my students like mathematics as well as enjoy thinking. 

• In order for students to find better ideas to solve the problem, it is important 
for the students to have an opportunity to feel that they really want to do so. 
  Starting in April (beginning of the school year), I taught the students to 
look at something from a particular point of view such as ‘faster, easier, and 
accurate’ when they think about something or when they compare 
something.  
  If you think about the method that uses the table form this point of view, 
students might notice that “it is accurate but it takes a long time to figure 
out: or “it is accurate but it is complicated.”  
  In order to solve a problem in a short time and with less complexity, it is 
important for the students to notice that calculation using a math sentence in 
necessary. 

Each of these shows a genuine desire for students to make connections, to rely on 
themselves for making decisions and to seek more powerful ways of thinking with 
less complexity. The videos of the classes themselves show high interaction between 
the students, and with the teacher, carefully orchestrated by the teacher to bring out 
essential ideas in the lesson. 
We now briefly look at each lesson in turn, to see how it fits with a long-term 
development blending embodiment and symbolism, what aspects of Building, Using, 
and Proving arise as an explicit focus of attention, before, during, and after the 
lesson. In particular, we need to look deeper at how individual children respond to the 
lesson in ways that may be appropriate for their long-term development of powerful 
mathematical thinking. 
In the pages which follow, I reproduce overheads from my presentation that look at 
each of the lessons to see where it fits in the overall plan of building ideas from a 
blend of embodiment and symbolism to build use and prove powerful mathematical 
concepts. This is, in no way, intended to be a once-and-for-all analysis. It is offered 
as a preliminary analysis for those developing lesson study to initiate discussion on 
how to implement the techniques of lesson study within a long-term framework that 
focuses on improving the learning of mathematics for each and every student.  
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In Britain, attention is turning to the needs of ‘pupils at risk’ who need extra support 
and to the ‘gifted and talented’ who need extra challenges. 

… for pupils at risk of falling behind, early intervention and special support to help 
them catch up. This is already underway with the ‘Every Child a Reader’ 
programme for literacy, which is now being matched with the ‘Every Child Counts’ 
initiative for numeracy, alongside one-to-one tuition for up to another 600,000 
children. Gordon Brown, The Guardian, May 15, 2007 

However, it is not a linear race, with some ‘falling behind’ and others ‘racing ahead’. 
It is also a question of different kinds of learning and different ways of coping. 
Assuming our major purpose is to improve the long-term learning of mathematics for 
each and every one of our children, I suggest that there is a need for lesson study to 
be placed in a long-term framework to design and monitor the long-term 
development of individuals, to gain insight not only what needs to be learnt and how, 
but also why some develop flexible, powerful mathematical thinking and others have 
serious difficulty. 
The framework offered is based on the different styles of cognitive growth in 
embodiment and symbolism over the long-term, and the way in which different 
individuals build on mental structures based on ideas met-before. 
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