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In recent years I have been working on a theoretical framework of long-term 
learning that presents three ways in which mathematical thinking develops that 
operate so differently as to present essentially three distinct ‘worlds of 
mathematics’—conceptual embodiment, proceptual symbolism and axiomatic 
formalism. Long-term human learning is seen to begin with facilities set-before birth 
in the genes and builds on successive constructions based on conceptions met-before 
in development. Thinking becomes increasingly sophisticated through compression 
of knowledge in which important aspects of a (possibly complicated) situation are 
named and built into rich thinkable concepts that are both powerful and simple in 
use. At the same time concepts that were met-before may enhance or impede new 
thinking where the latter requires explicit focus on re-thinking old ideas to develop 
new sophistication. This leads to a wide range of success from those who focus on the 
essential elements that compress into thinkable concepts and those who focus, if at 
all, more on incidental elements that lead to a more diffuse cognitive structure. 
The framework will be exemplified in three important areas—algebra, calculus and 
proof—to reveal how difficulties of algebra relate to the shift from embodiment to 
symbolism which underpins arithmetic but causes difficulty in algebra, how the 
embodied notion of local straightness can give a wider conceptual meaning to the 
calculus complementing the symbolic meaning of local linearity, and how proof 
develops in different ways in each world, with generic examples and thought 
experiments in conceptual embodiment, specific calculation and generic 
manipulation in proceptual symbolism and deduction from concept definitions in 
axiomatic formalism. The paper concludes by considering how formal proof often 
leads to structure theorems that link axiomatic systems back to more sophisticated 
forms of conceptual embodiment and proceptual symbolism. 
INTRODUCTION 
The development in interest in Research in Undergraduate Mathematics Education 
takes us a step further in looking at the whole framework of mathematical 
development from the young child to the research mathematician. It lies at the 
crossroads between school mathematics studying space and number and the formal 
mathematical theories and more sophisticated applications at college and university. 
In recent years I have begun to build a simple framework that starts from the genetic 
inheritance of the newborn child and is broad enough to cover the spectrum of 
development of different individuals as they mature over the longer term. At the root 
of this increasing sophistication is the use of language to compress a complex 
phenomenon into a thinkable concept whose meaning can refined by experience and 
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discussion and connected to other thinkable concepts in rich cognitive schemas. This 
occurs both in the van Hiele development of generic conceptions in geometry and the 
symbolic process-object compression in arithmetic and algebra, leading eventually to 
the major compression of set-theoretic definitions into single axiomatic concepts such 
as infinite cardinal number or complete ordered field.  
Three worlds of mathematics 
The framework is based on three different but intertwined worlds of development, 
two of which dominate elementary mathematics, and the third develops in advanced 
mathematical thinking: 

• the conceptual-embodied (based on perception of and reflection on 
properties of objects); 

• the proceptual-symbolic that grows out of the embodied world through 
action (such as counting) and symbolization into thinkable concepts such as 
number, developing symbols that function both as processes to do and 
concepts to think about (called procepts); 

• the axiomatic-formal (based on formal definitions and proof) which 
reverses the sequence of construction of meaning from definitions based on 
known concepts to formal concepts based on set-theoretic definitions. 

 (Tall, 2004, quoted from Mejia & Tall, 2006) 

Terms such as ‘embodied’, ‘symbolic’, ‘formal’ have all been used in a range of 
different ways. Here I use a technique that arose from my friend and supervisor, the 
late Richard Skemp, in putting two familiar words together in a new way to signal the 
need to establish a new meaning (such as ‘instrumental understanding’ and ‘relational 
understanding’ or ‘concept image’ and ‘concept definition’). 
‘Conceptual embodiment’ refers not to the broader claims of Lakoff that all thinking 
is embodied, but to the more specific idea of embodiment conceptualised through 
thought experiment based on perception and reflection on the properties of objects. 
We conceptually embody a geometric figure, such as a triangle consisting of three 
straight line-segments; we imagine a triangle as such a figure and allow a specific 
triangle to act as a prototype to represent the whole class of triangles. We ‘see’ an 
image of a specific graph as representing a specific or generic function. 
‘Proceptual symbolism’ refers to the use of symbols that arise from performing an 
action schema, such as counting, where the symbols used become thinkable concepts, 
such as number. A symbol such as 3+2 or    ∫ sin x dx  represents both a process to be 
carried out or the thinkable concept produced by that process. Such a combination of 
symbol, process, and concept constructed from the process is called an elementary 
procept; a collection of elementary procepts with the same output concept is called a 
procept (Gray & Tall, 1994). I theorize that it is the flexible use of symbols as 
procepts in arithmetic, algebra, trigonometry, symbolic calculus, and so on, that 
enables the human mind to manipulate such symbols with great power and precision.  
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‘Axiomatic formalism’ refers broadly to the formalism of Hilbert that takes us 
beyond the formal operations of Piaget. In the famous lecture announcing his twenty-
three problems that dominated the twentieth century, Hilbert remarked: 

To new concepts correspond, necessarily, new signs. These we choose in such a way that 
they remind us of the phenomena which were the occasion for the formation of the new 
concepts. So the geometrical figures are signs or mnemonic symbols of space intuition and 
are used as such by all mathematicians. Who does not always use along with the double 
inequality a > b > c the picture of three points following one another on a straight line as the 
geometrical picture of the idea “between”? Hilbert 1900 ICM lecture 

The formal axiomatic world of mathematicians is predicated on giving formal 
definitions to concepts and proving theorems by mathematical proof, but it is also 
underpinned by the experiences of mathematicians that suggests what theorems may 
be worth proving and how the proof might be carried out, which in turn builds on the 
mathematicians’ embodied and symbolic experience. 
The question often arises as to why the framework refers to three worlds of 
mathematics, as opposed to, say, three different modes of operation. The reason is 
because the modes of thinking used in different contexts become more sophisticated 
in each world as the individual matures. For instance, the conceptual-embodied world 
has a long-term development essentially formulated by van Hiele: objects are first 
seen as gestalts, then various properties are described; there is a shift of attention in 
which the objects are defined and new objects tested to see if they fit the definition; 
then these definitions are used in verbal ‘if … then …’ statements that lead to 
Euclidean geometry and beyond. Meanwhile the proceptual-symbolic world grows 
out of embodiment of counting procedures that are compressed into manipulable 
whole number concepts, with successive process–object encapsulations not only in 
whole number arithmetic, but also in broader number systems through fractions, 
negatives, integers, rationals, reals, complex numbers each expanding to the 
generalised arithmetic expressed in algebra and on to the potentially infinite limit 
processes in the calculus (Tall et al., 2001). The fundamental shift to the axiomatic-
formal world occurs through a shift in attention from the focus on properties that 
belong to known objects to properties formulated as concept definitions to define 
mathematical objects. 
Having formulated the terms ‘conceptual-embodied’, ‘proceptual-symbolic’ and 
‘axiomatic-formal’, I make a conceptual compression by using the shortened forms 
‘embodied’, ‘symbolic’ and ‘formal’, with new meanings given to them in the 
theoretical framework of three worlds. This enables us to consider new combinations, 
such as ‘symbolic-embodied’ where symbolism is embodied, ‘embodied-formal’ 
where embodied ideas are translated into formal structures, and ‘symbolic-formal’ 
where symbolic ideas are translated into formalism (figure 1). (Not shown in the 
figure is the supporting language structure which operates in ways appropriate for 
each world and the underlying conscious and sub-conscious mental processing.) 
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Compression, Connection and Thinkable Concepts 
Compression into thinkable concepts occurs in several different ways. One, discussed 
thoroughly by Lakoff (1987) in Women Fire and Dangerous Things, is through 
categorisation where concepts are connected in various ways in a category and the 
category itself becomes a thinkable concept. Another described by Dubinsky and his 
colleagues is APOS theory where an Action is internalised as a Process and is 
encapsulated into an Object, connected to other knowledge within a Schema; a 
schema may also be encapsulated as an object. Following Davis (1983, p. 257) who 
used the term procedure to mean a specific sequence of steps and a process as the 
overall input-output relationship which may be implemented by different procedures, 
Gray, Pitta, Pinto & Tall (1999) represented the successive compression from 
procedure through multi-procedure, process and procept, expanded in figure 2 in 
parallel to the SOLO taxonomy sequence: unistructural, multi-structural, relational, 
extended abstract (Pegg & Tall, 2005). This models the way in which a procedure 
which is thinkable sequence of steps to do in time is steadily enriched to give the 
efficiency of choosing the most suitable procedure to perform the task in a particular 
concept, condensed into a process and compressed as a procept to think about and to 
manipulate mentally in a flexible way. 
Some students who may have difficulty with the procedure may become entrenched 
at the procedural level, perhaps reaching the multi-procedural stage that can lead to 
procedural efficiency. Others who focus on procedures as overall processes and then 
as flexible procepts can lead to a far more sophisticated proceptual level of operation.  

 
Figure 1: Cognitive development through three worlds of mathematics 
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The earlier work of Dubinsky and his colleagues (e.g. Cottrill et al., 1996) focused 
mainly on a symbolic approach by programming a procedure as a function and using 
the function as the input to another function. The data shows that, while the process 
level was often attained, encapsulation from process to object was more problematic. 
The symbolic compression from procedure to process to object has an embodied 
counterpart. The move from procedure to process simply involves shifting the focus 
of attention from the steps of a procedure to the effect of the procedure. For example, 
a translation of an object on a plane is an action in which each point of the object is 
moved in the same direction by the same magnitude. Any arrow of that given 
magnitude and direction represents the effect of the action and can be imagined as a 
single free vector that may be moved to any point to show how that point moves. The 
free vector is a conceptual embodiment of the vector translation as an object. Adding 
free vectors as objects by placing them nose to tail gives the unique free vector that 
has the same effect as the two following one after the other. 
In this way, we see a parallel between symbolic compression in APOS theory and 
embodied compression through shifting attention from the steps of an action to the 
effect and imagining the effect as an embodied object (figure 3). This link between 
symbolism and embodiment can play its part in the compression of process into 
object, enabling the individual to refer mentally to the encapsulated process as a 
conceptual embodiment. From this viewpoint, conceptual knowledge makes links 
between thinkable concepts, not only with ‘real world’ applications, but also within 
and between proceptual symbolism and conceptual embodiment (figure 4). 

 

Figure 2: Spectrum of outcomes from increasing compression of symbolism 
(expanded from Gray, Pitta, Pinto & Tall, 1999, p.121). 
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Figure 3: Procedural knowledge as part of conceptual knowledge (from Tall, 2006) 
As different individuals follow through a mathematics curriculum that introduces 
ideas in increasing levels of sophistication, they cope with it in different ways. Piaget 
hypothesised that all individuals pass through the same sequence of stages at different 
rates but Gray and Tall (1994) observed the proceptual divide in which children 
develop in different ways, some clinging to the security of known step-by-step 
procedures, while others compress their knowledge into the flexible use of symbols 
as process and concept (procepts). Procedures occur in time and work in limited cases 
but are not sufficiently compressed into thinkable concepts to be used flexibly for 
more sophisticated thinking. 

 
Figure 4: compressing a schema into a thinkable concept (from Tall, 2006) 
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More generally, a schema may be compressed into a thinkable concept by naming it. 
For example, ‘whole number arithmetic’ names the full range of operations and 
concepts a person builds from the arithmetic of whole numbers. However, such 
schemas need not be thinkable mental objects that can themselves be operated upon. 
In the formal world, a further compression is possible, in which a schema such as 
whole number arithmetic may be described as a list of axioms, such as the Peano 
axioms, giving rise to the thinkable concept    which can be an object in a higher 
theoretical framework, such as category theory. Likewise, other thinkable concepts 
can have representations in different worlds, such as the real numbers as an embodied 
number line, infinite decimals as a proceptual symbolic system and the axiomatic 
system   . I note with interest that Lakoff and Nunez come to the same three aspects 
by ideas analysis from intellectual reflection, though I see these building upwards 
from an interplay between embodiment and symbolism followed by formalism. 
Set-befores and met-befores 
Long-term human learning is based on a combination of facilities set-before birth in 
the genes and builds on successive constructions based on conceptions met-before in 
development. For instance, the visual structure of the brain has built-in systems to 
identify colours and shades, with structures to see changes in shade, identifying 
edges, coordinating the edges to see objects stand out from the visual background. 
Thus the child is born with a generic system to recognise small numbers of objects 
(one, two, or perhaps three) which gives a set-before for the concept of ‘twoness’ 
before building the counting schema that is compressed into the number concept. 
In our analysis we will mainly focus on met-befores where previously constructed 
cognitive connections are used to interpret new situations. Sometimes a met-before is 
consistent with the new situation, sometimes it is inconsistent. For instance, the met-
before ‘2+2 makes 4’ is experienced in whole number arithmetic and continues to be 
consistent with the arithmetic of fractions, positive and negative integers, rationals, 
reals and complex numbers. But the met-before ‘taking away gives less’ remains 
consistent with (positive) fractions, but is inconsistent with negatives where taking 
away –2 gives more. The same met-before works consistently with finite sets, where 
taking away a subset leaves a smaller number of elements, but is inconsistent in the 
context of infinite sets, where removing the even numbers from the counting numbers 
still leaves the odd numbers with the same cardinality. In this way, met-befores can 
operate covertly affecting the way that individuals interpret new mathematics, 
causing internal confusion that impedes learning. 
As we look at the framework of development through three distinct worlds of 
mathematics, we need to take into account the actual learning of students at 
successive stages and the met-befores they have available to make sense of new 
experiences, particularly those which become inconsistent with a new experience. 
Written curricula almost always focus on met-befores that remain consistent in the 
new context; problems occur with subtle met-befores that are inconsistent. 
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ILLUSTRATIONS OF THE FRAMEWORK IN ACTION 
To illustrate the framework of three worlds and the related ideas of cognitive 
compression and met-before, we consider college algebra, calculus, and proof. 
College Algebra 

Algebra is a nightmare for many adults: 
For some, audits and root canals hurt less than algebra. Brian White hated it. It made 
Julie Beall cry. Tim Broneck got an F-minus. Tina Casale failed seven times. And 
Mollie Burrows just never saw the point. This is not a collection of wayward 
students, of unproductive losers in life. They are regular people […] with jobs and 
families, hobbies and homes. And a common nightmare in their past.  
 (Deb Kollar, Sacramento Bee (California), December 11, 2000.) 

Why does algebra cause so much anguish? Its predecessor, arithmetic is built on 
embodiment: collecting objects into sets and counting them, putting them together to 
add, dividing them into equal size subsets to share, putting them in order of size, 
measuring lengths, adding lengths by putting them one after another. Some aspects of 
algebra can be embodied, for example, the expression    2a + 3b+ 4a  can be 
simplified by ‘picking up the 4a and moving it next to the 2a’ then grouping them 
together as 6a, to give    6a + 3b . This ‘fruit salad’ version of algebra, treating letters 
as objects (apples and bananas), works in simple cases but soon fails. If we have ‘six 
apples and three bananas’ then we have ‘nine apples and bananas’, but do we write it 
as ‘9 a b’. What does    6a−3b  mean? How can we take 3 bananas from 6 apples? 
Expressions like 3+2x may not be understood and the student may do what s/he 
knows (adding 3 and 2), leaving the x that makes no sense to write 5x. For many 
struggling to find meaning, algebra is a minefield of dysfunctional met-befores. 
Equations bring new problems. There is the long-standing observation (christened the 
‘didactic cut’ by Filloy and Rojano, 1989) that an equation such as    5x + 3= 13  with 
an expression equal to a number is easier to solve than an equation with the unknown 
on both sides such    5x + 3= 9x−5 . The former may be seen as an operation which 
can be ‘undone’ by taking off 3 from the 13, and then dividing by 5 to get x is 2. 
According to APOS theory, the latter would be more sophisticated because it requires 
the two sides to be seen as equal expressions that need to be manipulated as objects. 
Instead of a process-object interpretation, equations can be seen as a ‘balance’, with 
the operations on both sides embodied as a strategy to maintain the balance. This 
makes sense to a wide range of the population when algebraic equations are first 
introduced (Vlassis, 2002). However, it soon fails with equations with negative terms 
or negative solutions. Introducing this embodiment can act as a met-before that 
enhances meaning for those that focus on the principle ‘do the same thing to both 
sides’ but acts as an impediment for cannot imagine it working with negative terms. 
Lima & Tall (2006) reveals data that suggests that neither process-object 
compression nor the embodied balance approach covers the full range of cases. The 
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students were taught to maintain the balance by ‘doing the same thing to both sides’.  
In interview, it transpired that many students focused not on the general principle, but 
on two specific principles: shifting 3 in the equation    2x + 3= 9  to the other side by 
‘change sides, change sign’ and shifting 2 to the other side in    2x = 6  by ‘shift it over 
and put it underneath’. Instead of the balance embodiment, many students combined 
an embodied shifting of terms with added ‘magic’ of rules that made no sense to 
them. The ‘didactic cut’ (and the related APOS interpretation) was not applicable 
because the students had similar proportion of success and failure solving the two 
equations 835 =−t  and xx +=− 313 . 

While the students did not appear to be using a conceptual embodiment such as a 
balance, they were performing a mental action corresponding to shifting the symbols 
around from one place in the equation to another, with added rules. Lakoff (1987, 
p.12,13) makes a distinction between conceptual embodiment and functional 
embodiment. He does not expand on this distinction later in the book, nor in his other 
books (Lakoff & Johnson, 1999; Lakoff & Nunez, 2000). However, if ‘conceptual 
embodiment’ is interpreted in terms of thought experiments and ‘functional 
embodiment’ in terms of functioning as a human being, then the mental shifting of 
terms may be a functional embodiment. In this way there may be a broader link 
between the three worlds of mathematics and Lakoff’s theory. However, Lakoff 
makes no explicit mention of compression of knowledge and APOS theory focuses 
more on compression of symbolic knowledge rather than embodiment. 
After thinking about the teaching of algebra for many years, I have a sense that both 
embodiment and symbolism play essential roles. The met-befores from arithmetic 
often have embodied underpinnings while the embodiments applied to algebra—such 
as the balance model for equations, or a pictorial representation of    a2 −b2  as the 
difference of two squares —only copes with positive values. Students with a 
proceptual sense of arithmetic are very likely to find algebra a natural generalisation 
of their arithmetic knowledge, but those already limited to procedural operations and 
hampered by a lack of embodied meaning are likely to be limited to the fragility of 
learned procedures supported by meaningless rules such as ‘change sides, change 
signs’ or ‘move it over and put it underneath.’ 
Calculus 
The categorisation of mathematical thinking into embodied, symbolic and formal is 
particularly appropriate in the calculus. Reform calculus in the USA builds on 
combining graphic, symbolic and analytic representations of functions using 
computer software and graphical calculators. However, those of us occupied in 
research in undergraduate mathematics need to look a little deeper into how the 
concepts of calculus are constructed. Mathematicians, who live in a world built on 
the met-before of the limit concept have a view of calculus that sees the need to 
introduce the limit concept explicitly at the beginning of the calculus sequence. My 
own view is different. For students building on the embodiment and symbolism of 
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school mathematics, I see a more natural route into the calculus that has the full 
potential to lead either to standard mathematical analysis, non-standard infinitesimal 
analysis, or practical calculus in applications. 
There is an essential difference between the embodied notion of local straightness and 
the symbolic notion of local linearity. Local straightness involves an embodied 
thought experiment looking closely at graphs to see that, as small portions of certain 
graphs are highly magnified, they look straight. Of course, this is difficult to 
formalise at first encounter. But it makes sense to students as they look at a computer 
screen successively magnifying a graph of a familiar function composed of 
polynomials, trigonometric functions, exponentials or logarithms. For instance it is 
enactively and visually evident that the slope function of the cosine is minus sine 
because its graph is the graph of   sin x  upside down (figure 5). 

 
Figure 5: The gradient of   cos x is minus   sin x  (  sin x upside down), 

drawn using Blokland & Giessen, 2000 

 It also makes sense that a function like   sin x  has a corner at every multiple of π so 
that on can begin to imagine not only local straightness, but also situations that are 
not locally straight. It is also relatively simple to give an embodied proof with hand 
gestures, that the recursive blancmange function is everywhere continuous, but 
nowhere differentiable. Here magnification of the graph shows tiny blancmanges 
growing everywhere, so the magnification never looks straight (figure 6). 
The arguments and pictures are found in several of my papers (see for example, Tall 
1982, 2003). Defining the ‘nasty function’    n(x) = bl(1000x) / 1000  then   sin x , and 

   sin x + n(x)  look the same when drawn on a computer over a range say –5 to 5, but 
one is differentiable everywhere and the other is differentiable nowhere! This gives 
an embodied insight into the concept of differentiability as a global phenomenon: it is 
the slope of the graph and you can see the changing slope as the eye follows the 
curve looking at its changing slope as a function of the position of the graph. 
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Figure 6: A graph that nowhere looks straight under magnification 

Local linearity, on the other hand, is a symbolic concept, seeking the best linear 
approximation to the curve at a single point. It involves an explicit limiting concept 
from the start instead of an implicit limiting concept that occurs when zooming in to 
see how steep the curve is over a short interval. Non-differentiability is the non-
existence of a limit, which lacks the immediacy of the embodied idea of not being 
locally straight, which applies just as easily at a point as it does over an interval. 

More generally, the function 
   
a(x) = bl(t) dt

0

x

∫  is differentiable once everywhere 

and twice nowhere. When I showed a class of students the graph of   a(x)  calculated 
numerically by a computer program, one of the students (not a mathematics major) 
said, ‘you mean that function is differentiable once but not twice.’ If you know of any 
other mathematics professor who has had a student imagine a function that is 
differentiable once and not twice, tell him or her to e-mail me. 
Local straightness is particularly apt when dealing with differential equations. A 
differential equation    dy / dx = F(x, y)  tells us the slope of a locally straight curve at 
a point   (x, y)  is   F(x, y) , so it is easy to program software to draw a small segment of 
the appropriate slope when the mouse points to   (x, y)  and by depositing such a 
solution end to end, this constructs an approximate solution. This was done in the 
Solution Sketcher (Tall, 1990) and has been implemented in the currently available 
Graphic Calculus software (Blokland & Giessen, 2000, figure 7). 
The Reform Calculus Movement in the USA focuses on the notion of local linearity, 
where the derivative is introduced as the best linear approximation to the curve at a 
single point. It seeks a symbolic representation at a point, using a limiting procedure 
to calculate the best linear fit perhaps even with a formal epsilon-delta construction. 
Then the fixed point is varied to give the global derivative function. I cannot imagine 
a worse approach to the concept to present to beginning calculus students. 
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Figure 7: building the solution of a differential equation 

by following its given slope (Blokland & Giessen, 2000). 
Thurston (1994) imaginatively suggests seven different ways of thinking about the 
derivative, as distinct from different logical definitions: 

(1) Infinitesimal: the ratio of the infinitesimal change in the value of a function to 
the infinitesimal change in a function. 

(2) Symbolic: the derivative of  xn  is    nxn−1 , the derivative of sin(x) is cos(x), the 
derivative of   f  g  is    ′f  g ∗ ′g , etc. 

(3) Logical:    ′f (x) = d  if and only if for every ε there is a δ such that when 

    
0 < Δx < δ , then 

    

f (x +Δx)− f (x)
Δx

−d < δ.      

(4) Geometric: the derivative is the slope of a line tangent to the graph of the 
function, if the graph has a tangent. 
(5) Rate: the instantaneous speed of f(t), when t is time. 
(6) Approximation: The derivative of a function is the best linear approximation to 
the function near a point. 
(7) Microscopic: The derivative of a function is the limit of what you get by looking 
at it under a microscope of higher and higher power.                (from Thurston, 1994) 

Such a list is built by a great mathematician looking down from the formal world at a 
range of possible meaning which include local straightness (item 7). However, I 
suggested long ago (Tall, 1982) that the conception of derivative of a real function 
can be built from an even more primitive notion, from which all others grow: 

(0) Embodied: the (changing) slope of the function itself, seen by magnifying the graph. 

Mathematicians, with their met-befores based on the limit concept have long passed 
beyond this missing level 0. Learners without experience of the limit concept may 
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benefit from such an embodied introduction. In a range of papers, I have shown how 
such an embodied beginning can lead either to a standard analysis approach, a non-
standard infinitesimal approach or a more practical combination of embodiment and 
symbolism taken in applications by engineers, biologists, economists and so on. 
Those applying the calculus are more likely to use a combination of embodiment to 
imagine a situation and symbolism to model it to seek a solution while rarely using 
the formalism of mathematical analysis. 
It is my contention (Mejia and Tall, 2004) that the calculus belongs not to the formal 
world of analysis, ‘looking down’ on it from above; it belongs in the vision of 
Newton and Leibniz, looking up from met-befores in embodiment and symbolism 
used appropriately. The framework of embodiment, symbolism and formalism 
suggests how learners may be mentored to comprehend the calculus, building up to 
the limit concept from experience rather than down from the formal definition.  
Using a framework of embodiment and symbolism, Hahkiöniëmi (2006) studied his 
own calculus teaching to find students following different developments, including 
an embodied route, a symbolic route and various combinations of the two. He found 
that ‘the embodied world offers powerful thinking tools for students’ who ‘consider 
the derivative as an object at an early stage.’ 
This simple observation is at variance with APOS theory suggesting the building up 
of the limit concept from (symbolic) Action to Process and then to Object. It 
questions Sfard’s (1991) theory of structural and operational thinking that suggests 
that operational thinking invariably must precede structural. Using a computer to 
zoom in to magnify a graph, students do perform actions and do operate and then 
begin to conceptualise the graph of the changing slope as an object in itself. But it is 
still an embodied object in a thought experiment imagining the relationship between 
the graph and its slope. If one can see it, then one can attempt to calculate it, 
numerically or symbolically. Here embodiment gives meaning and symbolism gives 
precision of numeric computation and symbolic representation. 
Given the complexity of the concept of the derivative, human meaning needs to be 
created in a way that makes sense. Hahkiöniëmi proposes a learning framework in 
which the teacher is responsible for guiding the student through the ideas, taking 
account of different possible conceptual routes rather than seeking a single genetic 
decomposition characteristic of APOS theory (figure 8). 
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Figure 8: Hypothesised learning framework (Hahkiöniëmi, 2006). 

Proof 
Proof is handled differently in each of the three worlds. In the embodied world it is 
handled initially in terms of thought experiment using specific, then generic pictures, 
and later, as language takes over from description to definition, the properties of 
figures and their relationships are verbalised in Euclidean proof. In the symbolic 
world, proof is first by arithmetic calculation, (first specific then generic), then by 
general algebraic manipulation. There are connections between embodiment and 
symbolism in the embodied symbolic world. Finally, in the formal world, formal 
proof is based on concept definition and formal deduction (figure 9). 

 
Figure 9: cognitive development of proof 
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I leave it to others to compare this map of cognitive development with the proof 
schemes of Harel & Sowder (1998) and subsequent developments. For instance, the 
framework as presented does not include authoritative proof. However, it should be 
remembered that the whole cognitive development is recursive and students are 
trying to comprehend what mathematicians who have already passed through such a 
development are conveying to them. Procedural thinking fits into the framework as a 
primitive form of rote-learning by repetition to reproduce written proofs from 
memory. 
In considering the development of proof at the undergraduate level, account should 
be taken of earlier forms of argument, such as embodied arguments using 
prototypical generic examples on the one hand and symbolic developments starting 
from specific arithmetic calculations seen as generic arguments and then moving to 
symbolic arguments using algebraic manipulation. 
The major shift in proof occurs from the embodiment and symbolism of school 
mathematics to the formalism of advanced mathematical thinking (Tall, 1991). Proof 
in the embodied and symbolic worlds is based on concepts that are given definitions, 
so the concepts underpin any sense of proof. Proof in the formal world is ostensibly 
based only on set-theoretic definitions and mathematical deduction. However, as 
students come to appreciate formal proof, they build on their previous experience. 
My colleague and PhD student, Marcia Pinto (1998) followed through students 
learning concepts in formal mathematical analysis and found there were two distinct 
routes, one a ‘natural’ route giving meaning to definitions from the met-befores of the 
individual’s concept image (including both embodiment and symbolism), the other a 
‘formal’ route extracting meaning from the concept definition (figure 10). 

 
Figure 10: natural thinking building on embodiment and symbolism, 

formal thinking building on concept definition 
Weber (2004) added to this framework a procedural approach that involves learning 
the proof by rote as was mentioned above. While an attempted formal approach can 
fall back to procedural learning of formal proofs by rote, a natural approach can lead 
to conflict between concept image and formal theory, from which rote-learning is 
again a strategy used in an attempt to cope. 
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FROM FORMAL PROOF BACK TO EMBODIMENT AND SYMBOLISM 
A major goal in building axiomatic theories is to construct a structure theorem, which 
essentially reveals aspects of the mathematical structure in embodied and symbolic 
ways. Typical examples of such structure theorems are: 

• An equivalence relation on a set A corresponds to a partition of A; 
• A finite dimensional vector space over a field F is isomorphic to Fn ; 
• Every finite group is isomorphic to a group of permutations; 
• Any complete ordered field is isomorphic to the real numbers. 

In every case, the structure theorem tells us that the formally defined axiomatic 
structure can be conceived an embodied way and in the last three cases there is a 
corresponding manipulable symbolism. 
Thus, not only do embodiment and symbolism act as a foundation for ideas that are 
formalized in the formal-axiomatic world, structure theorems can also lead back from 
the formal world to the worlds of embodiment and symbolism. These new 
embodiments are fundamentally different with their structure built using concept 
definitions and formal deduction. They lead to greater sophistication and future 
development leavened with the insights and flaws of human thinking. 

REFLECTIONS 
The final return of formalism to a more sophisticated form of embodiment and 
symbolism through structure theorems leads me to see the three worlds of 
mathematics as a natural structure through which the biological brain builds a 
mathematical mind. 
At the point were undergraduates study mathematics there is a range of questions to 
address. In college algebra we need to have a far better insight into the underlying 
problems that cause students anxiety. I suggest that this is a problem in the transition 
between embodiment and symbolism. The embodiments of arithmetic work well with 
whole numbers and fractions but need modification for negative numbers and have 
limited application in algebra. My own view is that the major shift from arithmetic to 
algebra is far easier when the student has a flexible proceptual view of arithmetic and 
can easily shift to algebra as generalised arithmetic. 
An embodied approach has a so-far-untapped potential to give meaning in college 
calculus. The met-befores of mathematicians give a view of the subject based at the 
very start on the limit concept computed at a fixed point that is then allowed to vary. 
An embodied locally linear approach gives the student the vision to see the whole 
derivative function as the graph of the changing slope. 
The development of proof is seen as generic proof in embodiment and manipulative 
proof in symbolism, first through specific calculations, then generic arithmetic, then 
general algebra, and, as the framework of relationships between properties grows, it 
becomes possible to base proofs on set-theoretic definitions of axiomatic systems. 



 17 

Proof as conceived by university mathematicians grows from embodiment and 
symbolism and has structure theorems that can take us on to more sophisticated 
embodiment and symbolism. A theoretical framework of conceptual embodiment, 
proceptual symbolism and axiomatic formalism provides a rich structure in which to 
interpret mathematical learning and thinking at all levels, and in particular in 
undergraduate mathematics. 
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