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This paper presents a long-term framework for the development of mathematical 
thinking from the thought processes of early childhood to the formal structures of 
formal mathematics and proof. It sees the development building on what the 
individual has met before which affects current thinking. Initially the child begins to 
coordinate perception and action to build thinkable concepts in at least two different 
ways. One focuses on objects, exploring their properties, describing them, using 
carefully worded descriptions as definitions, inferring certain properties imply others 
and on to coherent frameworks such as Euclidean geometry. The other focuses on 
actions (such as counting) and uses them as procedures and at a more sophisticated 
stage compresses them into thinkable concepts (such as number) using symbols such 
as 3+2, ¾, 3a+2b, f(x), dy/dx which operate dually as computable processes and 
thinkable concepts, termed procepts.  This leads to two quite different but 
complementary forms of cognitive development: conceptual embodiment through 
perception, action and reflection and proceptual symbolism based on procepts. Our 
major interest here is the transition from the discovering and deducing relationships 
between properties of these concepts to the more sophisticated axiomatic formal 
mode of mathematical thinking where concepts are defined in axiomatic systems and 
their properties deduced by formal proof.  
INTRODUCTION 
In recent years, a framework of cognitive development from child to mathematician 
has been developed in the Mathematics Education Research Centre at the University 
of Warwick, based on the work of Eddie Gray, David Tall, and their research 
students (Tall, 2006). A paper indicative of the collaborative nature of this effort is 
presented by Tall, Gray, Bin Ali, Crowley, DeMarois, McGowen, Pitta, Pinto, 
Thomas, and Yusof (2001) under the title Symbols and the bifurcation between 
procedural and conceptual thinking; the authors address the broader question of why 
some students succeed in mathematics, yet others fail, based on research studies 
carried out for doctoral dissertations in mathematics education at the University of 
Warwick. These papers may be found via the website davidtall.com. 
In this presentation we focus specifically on the transition from school mathematics 
to the formal theory of mathematics as published in journals, crucially taking into 
account the concepts that undergraduate students have met before their introduction 
to the mathematics as it is practiced by mathematicians. Technically, a met-before is 
part of the individual’s concept image in the form of a mental construct that an 
individual uses at a given time based on experiences they have met before. Human 
beings bring their previous experiences to bear on new situations that they meet. As 
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they grow more sophisticated, this prior knowledge is compressed into thinkable 
concepts that, connected together in knowledge schemas, frame the way in which 
individuals think. 
The theoretical framework presented in this paper builds on these foundations: 

• The child is born with generic capabilities set-before in the genetic structure; 
• Current cognitive development builds on experiences that were met-before; 
• This occurs through long-term potentiation of neuronal connections which 

strengthens successful links and suppresses others; 
• Actions are coordinated as (procedural) action-schemas; 
• Ideas are compressed into thinkable concepts using language & symbolism; 
• Thinkable concepts are built into wider (conceptual) knowledge schemas; 
• Mathematical thinking builds cognitively through embodiment, symbolism 

and, later, formal proof, each developing in sophistication over time; 
• Success in mathematical thinking depends on the effect of met-befores, the 

compression to rich thinkable concepts, and the building of successive levels 
of sophistication that is both powerful and simple; 

• This success in long-term theory building in mathematics, science, 
philosophy and so on requires the implicit or explicit suppression of links 
considered unimportant in addition to cumulative building on selected ideas 
met-before that are seen by the various communities to be of importance. 

THEORETICAL FRAMEWORK 
The child is born with a genetic structure set-before birth in the genes, but the generic 
facilities of perception and action need to be coordinated and refined into coherent 
perceptions of the world and integrated action schemas such as see-grasp-suck. 
Mathematical procedures are extensions of these natural propensities that may be 
learnt in a basic procedural sense but are usually better appreciated within a more 
coherent meaningful framework of connections. 
In the final chapter of Advanced Mathematical Thinking, Tall (1991) reflected on the 
nature of mathematical proof and theorized that there were two different sources of 
meaning prior to the introduction of formal definition and proof. One focused on 
objects and their properties, classified into categories and leading to a van Hiele type 
development of increasing sophistication, building from primitive perception, to 
more refined conceptions, descriptions, then definitions used for making inferences, 
building a coherent deductive framework characteristic of Euclidean Geometry. The 
other builds through the compression of process into concept as powerful procepts 
capable of being used for calculation and manipulation (Gray & Tall, 1994). Some 
students may focus on the procedures to do mathematics, but more successful 
students usually develop flexible use of symbols dually as process and concept. 
In subsequent years, this framework has been developed into what Tall (2006) 
described as three mental worlds of mathematics: 
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• the conceptual-embodied (based on perception of and reflection on 
properties of objects); 

• the proceptual-symbolic that grows out of the embodied world through 
actions (such as counting) and symbolization into thinkable concepts such as 
number, developing symbols that function both as processes to do and 
concepts to think about (called procepts); 

• the axiomatic-formal (based on formal definitions and proof) which 
reverses the sequence of construction of meaning from definitions based on 
known concepts to formal concepts based on set-theoretic definitions. 

The term ‘world of mathematics’ is used here with special meaning. It has often been 
suggested that these should be simply considered as different ‘modes of thinking’, in 
particular these ideas may easily be reformulated in what the French school refer to 
as different ‘registers’, such as verbal, spoken, written, graphic, symbolic, formal, 
etc. (Duval, 2006), or as different representations in American College Calculus such 
as verbal, numeric, algebraic, graphic, analytic. 
The choice of the word ‘world’ is used here deliberately to represent not a single 
register or group of registers, but the development of distinct ways of thinking that 
grow more sophisticated as individuals develop new conceptions and compress them 
into more subtle thinkable concepts. The focus on long-term development involves 
making new links and suppressing earlier aspects which are no longer relevant to 
develop an increasingly sophisticated world of mental thought, rather than a cross-
sectional study of the use of different registers or representations to focus on different 
aspects of a particular problem situation. 
The embodied world grows from the immediate perception and action of the young 
child to the focus of attention on aspects such as the idea that a point has location but 
not size, that a line has no thickness and can be extended as far as desired. In this way 
the focus of attention moves from the specifics of human perception to the subtle 
essence of underlying regularities which some experts may see as a separate and 
more essential platonic world of ideal conceptions with an existence separate from 
human thought, while others may see it as a natural product of human mental 
construction focusing on essentials and suppressing detail that is no longer central to 
the growing sophisticated thought processes. 
The symbolic world grows in quite a different way, encapsulating counting as 
number, addition as sum, repeated addition as product, generalised arithmetic process 
as algebraic expression, infinite approximating sequences as limit, as described with 
its growth and discontinuities in Tall et al. (2001). The properties arising in 
embodiment and symbolism offer a foundation to introduce proof based on set-
theoretic definitions in the formal axiomatic world of definition and proof (Tall, 
1991; Tall, 2002). 
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Figure 1: The cognitive growth of three mental worlds of mathematics 

There is a concern that each of the terms used here is employed with different 
meanings in the literature. For instance, Lakoff (1987) says that all thought is 
‘embodied’, Peirce (1932) and Saussure (1916) use the term ‘symbolic’ in a wider 
sense than this, Hilbert (1900) and Piaget (Piaget & Inhelder, 1958) use the term 
‘formal’ in different ways—Hilbert in terms of formal mathematical theory, Piaget in 
terms of the ‘formal’ operational stage when teenagers begin to think in logical ways 
about situations that are not physically present. 
It is for this reason that the two-word names are introduced as ‘conceptual-embodied’ 
referring to the embodiment of abstract concepts as familiar images (as in ‘Mother 
Theresa is the embodiment of Christian charity’), ‘proceptual-symbolic’ referring to 
the particular symbols that are dually processes (such as counting, or evaluation) and 
concepts (such as number and algebraic expression), ‘axiomatic-formal’ to refer to 
Hilbert’s notion of formal axiomatic systems. However (and this is a simple but 
important compression of knowledge), when these terms are used in a context where 
their meaning is clear, they will be shortened to embodied, symbolic and formal. This 
will allow the worlds to operate in tandem, such as the embodied-symbolic 
combination which can operate in both directions, for instance, representing algebraic 
equations as graphs or projective geometry as homogeneous coordinates. Later the 
embodied and symbolic worlds may underpin formal thinking as embodied 
formalism or symbolic formalism or even an integrated combination of all three. 
Professional mathematicians have a variety of working methods, some performing 
embodied thought experiments to suggest theorems which may then be published in 
purely formal terms, others basing their mathematical proofs explicitly on powerful 
computations and symbol manipulations. 
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DIFFERENT TYPES OF REASONING AND PROOF 
Each world carries with it aspects that are more than simply ways of thinking, they 
also involve ways of perception, action and reflection and the emotions and meanings 
that accompany that thinking. Tall (2004a,b) suggests that each world of mathematics 
carries with it different kinds of warrants for truth that grow in sophistication as the 
individual matures. 
For instance: 

• in the embodied world, the individual begins with physical experiments to 
find how things fit together, for example, squares fit together to form a 
pattern that covers a flat table, so that four corners make a complete turn, 
and two corners make a straight line. Later verbal descriptions become 
definitions and are used in Euclidean geometry both to support the visual 
constructions with verbal proofs and to build a global theory from 
definitions and proof. 

• In the (proceptual) symbolic world, arguments begin with specific numerical 
calculations and develop into the proof of algebraic identities such as 

   (a!b)(a + b) = a
2
!b

2  by symbolic manipulation. 
• In the formal world, proof is by formal deduction, such as the intermediate 

value theorem, being proved by using the completeness axiom. 
In this way we see that the categorization into three worlds each of which develops in 
sophistication is not simply a question of three different modes of thinking, but of 
different strands of long-term development that complement and extend each other. 
DEGREES OF CONFIDENCE IN PROOF 
In addition to these different kinds of justification, there is also considerable variation 
in the level of confidence that students and mathematicians have in the conclusion of 
a given mathematical argument. Proof in mathematics requires that each statement 
must be true or false with no middle 
ground. But this is only the tip of the 
iceberg: as a proof is constructed, 
arguments may be used at various times 
with varying levels of confidence. Toulmin 
(1958) put forward a perspective of 
argumentation that takes into account the 
kind of arguments that may be used in 
proof building, and he introduced a scheme 
for modelling argumentation that 
differentiates six main types of statements 
in an argument. Starting from a claim that 
one wishes to support with given data, 
some kind of reason is produced to link the 

 

Figure 2: Toulmin’s argumentation 
scheme 
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data and the claim. This linking statement is called the warrant of the argument, 
which may be supported by some kind of backing. Most importantly, a qualifier may 
be used to express the strength with which the claim may be taken, and a rebuttal 
may be used to state the possible limitations in the scope of the argument (Figure 2). 
The following example from Inglis & Mejia-Ramos (submitted), illustrates how a 
student uses a non-absolutely-qualified embodied argument to gain insight into a 
possible proof. Linvoy is a 2nd year maths undergraduate in a top ranked U.K. 
university. In an interview, he was asked to work on the following task (based on a 
problem by Raman, 2002): 

Determine whether the next statement is true or false (explain your answer by proving or 
disproving the statement): The derivative of a differentiable even function is odd. 

After working unsuccessfully for a couple of minutes with the definitions of even/odd function and 
that of the derivative of a function, Linvoy said: 

“Perhaps if I think of it in a bit of a less formal way, if I just think of it as the derivative of a 
function being the gradient at a particular point… and… um… [draws the graph of an even 
sinusoidal function] I think of some graph like this which happens to be [inaudible] because 
it’s an even function, and then… yes, I suppose one way of looking at this is that at any 
point here, like say you take this point [picks a point of the function in the first quadrant], 
you’ve got this gradient going like that, if you compare the exact other part, you’ve got the 
gradient going in the opposite direction because it’s exactly, ummm, it’s like a mirror 
image, so... and that is, that is odd, because that gradient would be exactly the negative of 
that gradient.  
So, yeah, I suppose, just from that basic example I suppose that intuitively does, does seem 
like it would make sense, but what about… maybe it’s just the example of the function I’ve 
chosen, but that can’t be right, because, what I’m thinking is… if you take, I mean, any 
[draws another set of axis]… this can do whatever it likes, but say we’re interested at some 
point where it’s doing that [draws a small portion of the graph of a generic function in the 
first quadrant], then it’s going to have that gradient and then if we transfer it it’s going to be 
like that, so it’s going to have that gradient, which would be the exact opposite of that… 
yeah, thinking of it like this, it does seem true, just thinking of it in those terms, ummm… 
like before I’d be happier if I could think of some way to prove it…” 
 

Linvoy uses particular and generic examples as warrants to reach conclusions paired 
with non-absolute qualifiers such as “[it] does seem like it would make sense”, and 
“it does seem true.”  This kind of argumentation proves to be common not only in the 
work of undergraduate students, but also successful mathematicians (Inglis, Mejia-
Ramos & Simpson, in press). This suggests that in considering proof in mathematics 
we need to take into account not only the final form of proof, but the nature of the 
argumentation that leads to the proof which may carry with it different degrees of 
confidence. During the building of a proof, and even at the stage of presenting a 
proof, the warrant for truth need not be absolute, but may be accompanied by 
qualifiers which may be different for different individuals depending on their 
experience. 
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NATURAL AND FORMAL THINKING 
All individuals build on their met-befores. Pinto and Tall (1999, 2002) expressed this 
succinctly by distinguishing between formal thinking that builds on set-theoretic 
definitions to construct formal proofs and natural thinking that uses thought 
experiments based on embodiment and symbolism to give meaning to the definition 
and suggests possible theorems to translate into formal proof. 
The met-befores evoked in the building of proof include not only conceptual 
embodiments, as in the example given, but also proceptual symbolic calculations, for 
instance, in group theory developing from permutations, in vector space theory 
handling matrices, or in analysis performing calculations in specific cases to provide 
a warrant for the truth of a possibly more general statement. Thus a natural approach 
can be based on embodiment, symbolism or a combination of both. 
Weber (2004) added to this framework a procedural approach that simply involves 
learning the proof by rote. This fits into our framework with a procedural approach 
corresponding to a more primitive action-schema form of learning while natural and 
formal thinkers attempting to build up knowledge schemas based on concept image 
and/or concept definition. 

 
Figure 3: From embodiment and symbolism to formalism and back again (Tall, 2002) 
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FROM FORMAL PROOF BACK TO EMBODIMENT AND SYMBOLISM 
A major goal in building axiomatic theories is to build a structure theorem, which 
essentially reveals aspects of the mathematical structure in embodied and symbolic 
ways. Typical examples of such structure theorems are: 

• An equivalence relation on a set A corresponds to a partition of A; 
• A finite dimensional vector space over a field F is isomorphic to Fn ; 
• Every finite group is isomorphic to a group of permutations; 
• Any complete ordered field is isomorphic to the real numbers. 

In every case, the structure theorem tells us that the formally defined axiomatic 
structure can be conceived an embodied way and in many cases there is a 
corresponding manipulable symbolism. For instance, an equivalence relation on a set  
A—axiomatized as reflexive, symmetric and transitive—corresponds to an 
embodiment that partitions the set. Any (finite dimensional) vector space is 
essentially a space of n-tuples that can (in dimensions 2 and 3) be given an 
embodiment and (in all dimensions) can be handled using manipulable symbolism. 
Any group can be manipulated symbolically as permutations and embodied as a 
group of permutations on a set. A complete ordered field specified as a formal 
axiomatic system corresponds precisely to the symbolic system of infinite decimals 
and to the embodied visualisation of the number line. 
Thus, not only do embodiment and symbolism act as a foundation for ideas that are 
formalized in the formal-axiomatic world, structure theorems can also lead back from 
the formal world to the worlds of embodiment and symbolism. These new 
embodiments are fundamentally different with their structure built using concept 
definitions and formal deduction. Furthermore, the structure theorems have a life of 
their own which may go beyond and extend human imagination, as for instance with 
vector space theory where two dimensional space can be embodied in a plane and 
three-dimensional space in the human world we live in, yet higher dimensions require 
conceptual embodiments that are only obtained by deep introspection, as in the case 
of Zeeman (1960) visualising how to unknot spheres in five dimensions. 
New embodiment and symbolism may be a springboard for imagining new 
developments and new theorems; it may not. For instance, the embodied 
interpretation that a complete ordered field is the real line gave generations of 
mathematicians the belief that including the irrationals completed the real line 
geometrically by ‘filling in the gaps between rationals’. This is not true, for it is 
possible to imagine (as did earlier generations) that the embodied number line has yet 
more elements that are infinitesimally close, but not equal, to real numbers (Tall, 
2005). Thus the embodiment of structure theorems proved formally still need to be 
considered as warrants for truth that may suggest possible new theorems that may in 
fact be flawed. 
Even well-accepted theorems may later prove to have ‘gaps’ in their proof that are 
not justified by their assumptions that may be based not on logic, but on embodied 
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conceptions of the mathematics. For instance, after 2000 years of belief in the logic 
of Euclidean proof, Hilbert found a subtle flaw in the proof that the diagonals of a 
rhombus meet inside the figure at right angles. The Euclidean theory had not defined 
the notion of ‘inside’ and so new axioms were added to specify when a point C on a 
line AB was ‘between’ A and B. 
STUDENTS AND EMBODIMENT IN PROOF 
The role of embodiment proves () to be a two-edged sword in the learning of 
students for it can mislead as well as inspire. For instance, Chin (2002) found that 
students learning about equivalence relations may embody not the whole definition, 
but subtly embody individual axioms. Thus the transitive axiom  

 if a~b and b~c then a~c for all a, b, c 

may be interpreted like the transitive law in a strong order relation, so that a, b, c are 
seen to be different. 
In his famous lecture given at the turn of the twentieth century, Hilbert (1900) 
referred to embodiment of the transitive law in the following terms: 

To new concepts correspond, necessarily, new signs. These we choose in such a way that 
they remind us of the phenomena which were the occasion for the formation of the new 
concepts. So the geometrical figures are signs or mnemonic symbols of space intuition and 
are used as such by all mathematicians. Who does not always use along with the double 
inequality a > b > c the picture of three points following one another on a straight line as the 
geometrical picture of the idea “between”? Hilbert 1900 ICME lecture 

Even Hilbert, the architect of the formalist viewpoint, took inspiration from 
embodiment. 
This may be one explanation of the following statement where a student was unable 
to deduce that if a~b and b~a then a~a: 

  
An alternative explanation put forward by Asghari (2005) noted that the Greek notion 
of equivalence (in terms of lines being parallel or triangles being congruent) was 
always conceived in terms of a relation between two different things. According to 
this explanation, an element cannot be equivalent to itself, just as a line fails to be 
parallel to itself, for it meets itself and two parallel lines do not meet. 
Thus it is always necessary to look at the interpretations that individuals place on 
concepts to find the more subtle sources of their beliefs. As their cognitive structure 
is built genetically on structures set-before birth and experiences met-before 
throughout their lives, previous conceptual embodiment and proceptual symbolism 
will colour their thinking in subtle ways. 
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CONCLUSION 
Our analysis of how the mathematical thinking is built up by individuals over their 
life-time from child to mathematician reveals how a combination of various kinds of 
conceptual embodiment and proceptual symbolism leads on to axiomatic formal 
proof and how concepts that have been met-before affect new thinking. Proof as 
practiced by mathematicians builds on the experiences that they have integrated into 
their thinking. Even though proof as an ideal may be considered to be absolute, proof 
as practiced by human beings, even mathematicians, is a human construct with 
human strengths of insight and human weaknesses of construction. In practice, it is 
not ‘all or nothing’, but is based on implicit or explicit ‘warrants for truth’ that carry 
with them a measure of uncertainty that varies between individuals and between the 
ways in which their proofs are framed. 
In this paper we have put forward a framework based on conceptual embodiment 
leading to proceptual symbolism, combining to underpin the axiomatic-formal world 
of mathematical proof. We have given examples of how mathematicians and students 
think about proof and how not only does embodiment and symbolism lead into 
formal proof, but how structure theorems return us to more powerful forms of 
embodiment and symbolism that can support the quest for further development of 
ideas. We have also cautioned how proofs presented by students (and also 
mathematicians) can contain subtle meanings that are at variance with the formalism. 
Mathematical proof may indeed be the summit of mathematical thinking but it is just 
the top of one mountain and requires human ingenuity, with all its strengths and 
flaws, to attempt to reach for the peak of ultimate perfection. 
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