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This article considers two students who both pass a preliminary course in college 
algebra at the same level; one proceeds satisfactorily in the next course whilst the 
other finds it impossibly difficult. We analyse the responses of the students in semi-
structured interviews on topics from the first course to seek reasons for this 
difference in later performance. We propose a theory that explains the difference in 
terms of the nature of the students’ mental connections and the richness of their 
mental concepts as revealed in their interviews. We suggest that this theory can be 
used to analyse students’ thinking in terms of the cognitive units they have to use and 
reflect upon in their mental structures which prove to be rich and well-connected in 
those who succeed, but limited and poorly connected in those who eventually fail. 

INTRODUCTION 
Attainment is increasingly being measured in terms of criterion based tests, to decide 
whether students have the required pre-requisites to succeed in a given course. 
Invariably end-of-course tests focus on what students have learned in order to pass an 
exam, rather than whether they are likely to succeed in a subsequent course. In this 
article we consider two students, both with a grade “B” in their intermediate algebra 
course, yet who fare very differently in the following college algebra (pre-calculus) 
course. We analyse interviews on material from their preliminary course to see if 
there is any evidence of higher level thinking that will explain reasons for their 
different performances on the subsequent course. We weave the empirical evidence 
with a theory of cognitive development relating to existing theories that give insight 
into the different performance of individuals in a variety of different contexts. This 
theory is founded on Barnard and Tall’s (1997) idea of ‘cognitive units’ (the elements 
of thought that an individual manipulates in his or her conscious focus of attention), 
the richness of interior structure of these units (in the sense of Skemp, 1969) and a 
range of other theories from the analysis of Krutetskii (1976) through the notions of 
procedural and conceptual knowledge (Hiebert and Lefevre, 1986, Hiebert and 
Carpenter, 1992), and the nature of cognitive structure and conceptual linkages.   
We hypothesize that the student who is ready to proceed to the next course has 
fundamental differences in his or her knowledge structure from the student who is not 
ready, and that these fundamental differences are not necessarily evident from 
performance on exams in the prerequisite course.  
The college intermediate algebra course in this study is for all the students enrolled in 
it a preliminary course for entry to a college algebra course (pre-calculus). These 
community college students are adults who may have failed at an earlier stage, have 
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often been traumatised by their previous experiences, and are committed to attempt to 
overcome their previous difficulties. Nevertheless, we hypothesise that our general 
theory of cognitive structure is of value in a far wider domain of mathematical and 
more general cognitive development. It concerns the difference between those 
individuals who reflect on their knowledge in ways that create rich, mentally 
manipulable concepts and productive linkages that are powerful, and those who 
merely acquire knowledge in bits and pieces without organizing them into a 
connected structure. In this sense, we claim that the theory has a wider general 
applicability than simply the performance of students in remedial algebra courses. 

BACKGROUND 
“I’m telling you, I’m not good at math…I don’t really know. I hate math. I have a bad 
attitude with math.” 
“Math is my hardest subject, all through high school and everything…” 
“I’m not too good in math, I’ll tell you that…I’ve just never been real good. I’ve never 
gotten hold of basics in high school too good” 

All of these comments were made by community college students during interviews 
covering intermediate algebra topics. Each of the students struggled in intermediate 
algebra, was ultimately successful (some with grades as high as “B”), but then had 
serious difficulty in the next course, the one required for university general studies. 
Colleagues of the author frequently describe the students as “stupid”, “lazy” and 
“unmotivated”, with “no carry-over from one course to the next”. 
Leaving aside the pejorative nature of these comments, we should ask a deeper 
question: why it is that some students who have done “well” in intermediate algebra 
have extreme difficulty in pre-calculus, while others—who have done equally 
“well”—find it routine?  
Our search for an explanation has drawn us to an investigation of student cognitive 
structures—what do students actually do when they are working problems, and how 
do they do it? What is it about their cognitive structure, as evidenced by their 
problem-solving processes, that allows one to succeed while the other does not? Does 
the successful student merely have more available procedures, or is there a 
fundamental difference in his or her cognitive activities? 
We use semi-structured interviews to gain some insight into why some are ready to 
progress, while others are not. A major focus in such an interview would be to look at 
not only what the student does, but how and why. However, before we address the 
specifics of such a quest, it is necessary to review a number of major ideas already 
well-established in the literature. 

RELEVANT RESEARCH LITERATURE 
Hiebert and Lefevre (1986) distinguish between procedural knowledge following 
step-by-step instructions and conceptual knowledge that is “a connected web of 
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knowledge, or network”. Hiebert and Carpenter (1992) further discuss these ideas in 
the following terms: 

We believe it is useful to think about the networks in terms of two metaphors … 
structured like vertical hierarchies or … like webs. When networks are structured like 
hierarchies, some representations subsume other representations, representations fit as 
details underneath or within more general representations. Generalisations are examples 
of overarching or umbrella representations, whereas special cases are examples of details. 
In the second metaphor a network may be structured like a spider’s web. The junctures, 
or nodes, can be thought of as the pieces or represented information, and the threads 
between them as the connections or relationships. Hiebert & Carpenter (1992, p. 67) 

While these ideas have been part of mathematics education theory for many years, 
they have been used primarily as general philosophy rather than specifics about 
cognitive structure. We plan to use the distinction between procedural and conceptual 
knowledge and extend the ideas to an analysis of student cognitive structure in 
college algebra courses. 
In our analysis a particular idea proves to be helpful. Barnard and Tall (1997) 
introduced the idea of a “cognitive unit” as a “piece of cognitive structure that can be 
held in the focus of attention all at one time”, which may be considered as nodes in 
the web metaphor of Hiebert and Carpenter. However, additional insight is possible. 
While these nodes may be viewed individually as cognitive units, a single node may 
be unpacked to reveal an internal structure which is again a web of connected 
cognitive units. This shift from an individual node to a web of nodes, and back again, 
was described by Skemp (1979) as a “varifocal learning theory”, in which the nodes 
of webs are subtly connected conceptual schemas. It is important to be able to “zoom 
in” and “zoom out”, to compress a collection of related ideas, each of which is a 
cognitive unit, into a single cognitive unit. According to Barnard (1999), the entire 
entity can—if necessary—be conceived of as a unit “small enough to be held in the 
focus of attention all at one time”. This describes a form of mental compression, in 
which you “can file…away, recall…quickly and completely…, and use…as one step 
in some other mental process” a concept which can be utilised as a single entity or 
unpacked as a whole schema of ideas (Thurston, 1990). This is discussed further in 
educational terms by Gray & Tall, (1994) as what enables the student to use a whole 
complex of ideas from one context as a foundational unit in a subsequent context.  
Problem 1 
For example, consider the equation y = mx + b. One can consider it a concept as a 
network of internal ideas: m is the slope, b is the y-intercept; any linear equation can 
be represented by substituting appropriate numbers in for m and b; one can draw the 
graph if there are two points available, or one point and the slope, etc. A student may 
thus see y = mx + b as a single entity rich with properties and links easily brought 
into the focus of attention. 
However, consider the following: 
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The equation y = 2x + 3, 
The equation y − 5 = 2 x −1( ), 
The graph of y = 2x + 3, 
The line through 0,3( ) with slope 2, 
The line through the points 1,5( ) and 3,9( ), 

each of which may be considered individually as a cognitive unit which can be linked 
with any or all of the rest as representing the same underlying concept—the same 
straight line or equivalent linear relationship between x and y. We could express this 
diagrammatically as five separate nodes with appropriate connections as in Figure 1. 
 
 
 
 
 
 
 

Figure 1. Relationships 
To seek insight we will explore the cognitive structure demonstrated in interviews 
with two students working problems involving graphs of linear functions from the 
Intermediate Algebra course. They took place when the students were enrolled in the 
pre-calculus course, so would already show longer-term understanding rather than the 
knowledge the students may have learned at the time of an exam. 

INTERVIEWS 
We asked the students to answer the question, “What is the slope of the line on the 
graph here?” (shown in figure 2) 
Natasha  had a flexible solution. 

Natasha:  What is the slope on the graph here? It goes down…do you want me to 
solve it using the points? 

Researcher:  I don’t care how you solve it. 
Natasha:  Because you can just really look at it and tell…it’s a negative 2 slope. 
Researcher:  So you did it by counting squares. 

The equation 2 3y x= +  

The line through 
( )0,3  with slope 2 

The equation 
( )5 2 1y x− = −  

The graph of 
2 3y x= +  

The line through 
( )1,5 and ( )3,9
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Figure 2. The Graph 

 

Figure 3. Kathy’s solution

Natasha:  Yeah, just by looking at it. I 
mean, if the squares weren’t there, I could do it 
by taking the two points and finding the slope 
like I’ve done… 

Kathy’s solution process (in figure 3) was 
less straightforward: 
Kathy:  One, negative one, and 
negative one, three. …shoot. 
Researcher:  (pointing at the left and right 
sides of the equation.) So how did you get 
from here to here?  
Kathy:  By subtracting…you’ve got 
me all bamboozled. My handy-dandy 
calculator, I rely on that. That would be four.  
Researcher:  Four over two? Does that 
look right? 
Kathy:  I think it does, but I could be 

wrong. 
Researcher: Well, you made a mistake, not a very big one… 
Kathy:  One I can’t catch, though. It’ll make me feel really stupid later. 
Researcher:  (Encouraging.) I’m just trying to protect you from making a dumb 

mistake on your exam! … The denominator, what’s minus one minus 
one? 

Kathy:  Zero. 
Researcher: No, it’s not. 
Kathy:  Two, is that it? 
Researcher: It’s negative two, isn’t it? 
Kathy:  Yeah. 

Kathy had great difficulty with negatives and fractions; 
she froze when asked to manipulate them without a 
calculator. When she had a calculator, she used it to do 
her arithmetic and only then was able to cope with simple calculations. Her solution 
process is illustrated in the figure 4. 
Analysis 
Natasha had flexibility; she could either read the slope off the graph, if that was easy, 
or she could find the slope by identifying two points and using the slope formula. 
This flexibility saved her a lot of effort on this particular problem. Kathy only evoked 
a formula for the slope, which required two points. She was unable to link the slope 
to the change in y over the change in x from the graph. This problem was, for her, 
consequently much more complicated, ultimately involving computations with 
negatives, which caused her much difficulty. She was also insecure when she finished 
the problem; she always checked with an authority figure—the instructor, the 
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Need to
find slope

Check answer
with instructor or
other authority

Plug into

m = ——
y – y

2 1

x – x2 1

Begin to
simplify

Read off
points

Get help with
negatives

Get out and
use calculator

 

Figure 4. Kathy’s Solution Process 

interviewer, or the answers in the back of the book—for assurance that she had found 
the correct answer. 
Problem 2 
In a second problem to write the equation of 
a straight-line graph (figure 5), Natasha’s 
solution was not the most efficient. She was 
able to read off the slope, but then used the 
point-slope formula to write the equation, 
whereas it would have been more efficient 
to simply use the y-intercept from the graph. 
Nevertheless, she demonstrated flexibility in 
finding the slope, and again in checking to 
ensure that the point she was using in the 
formula was correct. An outline of her 
strategy is given in figure 6. 
Meanwhile, Kathy approached the problem 
by reading off two points (1,2), (4,5), using 
the formula for the slope to find it is 1, and 
then the formula for a line through (1,2) with slope 1. She too made an error, but 
made no effort to correct it until she was prompted by the researcher. 
Problem 3 
A third problem to find the equation of a straight-line graph had the same format of 
problem 2, but with the negative slope from problem 1. Natasha again showed 
flexibility; she read the slope m=–1 by inspection and then read off the y-intercept b 
numerically to give the equation in the form y = −1x +1. 

 
Write the equation of the line. 

Figure 5. Problem 2 
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Figure 7. Kathy’s writing 

Kathy did not exhibit the same flexibility or checking mechanisms: 
Kathy: Three, negative two…I need to find another point… 
Researcher: That’s a good plan. 
Kathy: Four, negative three… 
Researcher: What are you going to do now? 
Kathy: Find the slope first.  Negative three… 
She then uses the formula incorrectly (figure 7) … 
Researcher: Now wait a minute.  Why did you…this is right. Why did you tell me that 

−3 − 2 is –1? 
Kathy: Wait, is it negative 5? 
Researcher: Yes, however, you made a mistake 
earlier. Where you had −3 − 2, it’s −3 − −2( ) , isn’t it? 
Kathy: Oh, yes. 
Researcher: So then what do you want up here? 
Kathy: That would be positive 5? 
Researcher: Isn’t minus a minus a plus? 
Kathy: Yes. 
Researcher: Minus three plus two is minus one. 
Kathy: Which is what I got, I just didn’t 
have the negative sign. 

(a)

Need to find slope

yes, the
slope is 1.

Read off
from graph?

Use two points
and formula?

Find points:
(–2,1),  (1,1).

y – 0 = 1(x – 0)
y = x + 1

Check!
Point should be
(0,10) not (1,1).

two
points?

use point-slope
formula

(b)

Need to find slope

y = x + 1

Find two points:
(1,2) and  (4,5).

intervention

5 – 2
4 – 1

3
3

= = 1

y – 2 = 1(x – 1)

y = x + 2
y – 2 =  x – 1

 

Figure 6. (a) Natasha’s and (b) Kathy’s Solution Processes 
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(note:  she had made canceling errors) 
Researcher: So you’ve got the slope, now what are we going to?  
Kathy: Use the… 
Researcher: What’s the y-intercept on that line? 
Kathy: The y-intercept? 
Researcher: Where does it cross the y-axis? 
Kathy: One, er, zero, one. 
Researcher: So you should get something x plus one, shouldn’t you? 
Kathy: Yeah. 

In each problem, Natasha demonstrated flexibility in choosing a route to a solution, 
thus showing evidence of links between graphs, formulas, and other aspects. She also 
routinely checked her work using alternative methods, another indication of useful 
links. She found her own error in the second problem. Kathy, on the other hand, had 
at most a single procedure in each case and was prone to make mistakes. 

SUMMARY  
In all the questions considered there is a broad common thread. Natasha 
demonstrated links between graphical and symbolic representations, as well as links 
to and between procedures. Although she made mistakes, she had methods of 
checking and self-correcting. She did not always make the necessary connections and 
had some fears about negative numbers, but was broadly successful. Kathy obtained 
the same grade on her examination but merely learned a set of procedures and had 

First need to 
find the slope

Down 2, over 2.
the slope is –1

Read directly
from graph

Two points and
the formula?

not necessary

y – (–2) = –1(x – 3)
    y + 2 = – 1x + 1

       y = –1x + 1

Need to find slope,
must have two points.

y – (4) = – 1(x – 4)

(3, –2) is marked,
find another

on graph:  (4,–3).

intervention

–3 – 2
4 – 3

–1
1

=

y = – x + 1

intervention

Figure 8. Natasha and Kathy’s Solution Processes 
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difficulties with negative numbers and fractions that she coped with in routine 
questions by using her calculator. The procedures she has learned have allowed some 
success, but she must work very hard, and the procedures are not organized in a 
useful way that would allow her to build on them in the subsequent pre-calculus 
course. 
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