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Formal mathematical proof, which students meet at university 
when they are introduced to the culture of pure mathematics, is 
built on earlier experiences that the learners have met before. 
These are the more fundamental conceptual embodiments that 
occur in thought experiments imagining mental situations and 
in the experience of manipulating symbols in arithmetic, 
algebra and symbolic calculus. In this paper we consider the 
ways in which embodiment and manipulation of symbols 
underpins formal proof and the elements that may support or 
act as obstacles to formal thinking.  

Introduction 

When students begin to study formal proof at university, they already 
have a wealth of preceding experience on which to build. In mathematics 
there is the use of visual diagrams, dynamic images and thought 
experiment on the one hand and the use of symbols of arithmetic, algebra 
and the calculus on the other. Formal mathematics builds on a 
combination of embodied and symbolic thought (figure 1). 

 
Figure 1: Formal mathematics building on embodied and symbolic thought 

The terms ‘embodied’. ‘symbolic’, ‘formal’ here have specific meanings 
described briefly as follows: 

• Embodiment refers to conceptual embodiment in which we 
reflect on our sensory perceptions and imagine relationships 
through thought experiment. 
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• Symbolism here refers not to symbols in general, but to 
those symbols used in mathematical calculation and 
manipulation in arithmetic, algebra and subsequent 
developments. These arise through actions on objects (such 
as counting) symbolised and manipulated as concepts (such 
as number). A symbol used dually to represent process (such 
as addition) and concept (such as sum) is called a procept 
(Gray & Tall, 1994). 

• Formalism refers to the formal theory defining mathematical 
concepts as axiomatic structures whose properties are 
deduced by formal proof. 

Tall (2004) theorizes that this categorization of mathematical thought 
involves three substantially different worlds of mathematics: 

• An object-based conceptual-embodied world reflecting on 
the senses to observe, describe, define and deduce properties 
developing from thought experiment to Euclidean proof. 

• An action-based proceptual-symbolic world that compresses 
action-schemas into thinkable concepts operating dually as 
process and concept (procept). 

• A property-based formal-axiomatic world of concept 
definitions and set-theoretic proof. 

These will be referred to as embodied, symbolic and formal in the 
remainder of this paper. 

It transpires that each world has its own development of deductive 
argument. For instance, in the embodied world, we can see that addition 
is commutative by re-arranging 5 objects as 3+2 or 2+3. In the symbolic 
world, a child can calculate that the two sums give the same answer. In 
the formal world, x + y = y + x is true because it is an axiom. 

Furthermore, each world has its own manner of development in 
sophistication. The embodied world is based on sensory perception but 
its percepts are then analyzed, described, defined and verbal arguments 
adeveloped to formulate inferences typified by Euclidean geometry. The 
symbolic world shifts from a focus on action to increasingly sophisticated 
procedures and on to the conceptual structure of arithmetic and the 
generalized symbolism of algebra. Formal thinking reverses experience. 
Instead of analyzing existing concepts to determine their properties, it 
begins with selected properties as axioms and constructs other properties 
of the structure through formal proof. 

Each world also has its own special use of language. In the embodied 
world, language is used in increasing sophistication to describe properties 
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of objects, then to categorise and define. In the symbolic world, the 
symbolism has a new part of speech, the procept, acting dually as process 
and concept in a special way that extends everyday language use of verb 
participles such as ‘writing’ in ‘I am writing’ to gerunds acting as nouns, 
as in ‘writing is a mode of communication’. In the formal world, 
language modifies its role once again, using set-theoretic technical terms 
to define concepts in a special tone of meaning that Alcock & Simpson 
(1999) call ‘the rigour prefix’. 

Formal thinking necessarily builds on the students’ prior experience of 
embodiment and symbolism. For instance the notion of vector space 
defined as an axiomatic system is embodied geometrically in two and 
three dimensions and symbolised as n-tuples in  

n . This is typical of 
cognitive development in which embodiment offers an insightful 
meaning into a mathematical concept in 2 and 3 dimensions, but requires 
the symbolism of  

2
 and  

3
 to imagine generalizations to  

n
 and 

subsequently to the formal definition of a vector space. 
The same occurs in many areas, so that identities such as 

x(y + z) = xy + xz  can have simple embodiments for positive values of x, 
y, z but soon become more complicated if these variables take on positive 
or negative values of different sizes. 

In general, therefore, the trend in elementary mathematics is for 
successful students to move from embodiment, which is meaningful in 
simple cases, to symbolism that is powerful in more sophisticated 
contexts (Krutetskii, 1976; Presmeg, 1986; Gray, Pitta, Pinto, Tall, 1999). 
However, embodiments continue to have powerful effects on meaning in 
formal mathematics that can be beneficial in some instances and 
deceptive in others. 

An example 

We begin with an example of a mathematics student attacking the proof 
of a theorem that can be approached by a variety of different methods 
(Mejia & Tall, 2005). Grad is a competent student at a high-ranked 
university who had completed three years of study and found 
mathematics difficult. He used embodiment to gain insight into the 
theorem, making links that were plausible but not formally sound, used 
symbolism in a way that lacked confidence yet had been sufficient for 
him to pass his degree, and acknowledged the need to give fully formal 
proofs. 

Grad was given the following task (based on a problem from Raman 
(2002)). 
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Task: Determine whether the statement below is true or false. 
Explain your answer by proving or disproving the statement. 

The derivative of a differentiable even function is odd. 

As he read the statement out loud, Grad drew a parabolic shape in the air 
with his finger (figure 2) and thought for a few seconds. He continued as 
follows: 

First the even function. … I don’t 
think the derivative can be even […]. 
It’s symmetric to the y-axis 
(gesturing with his hand to show a 
vertical axis) … effectively, I’m 
talking about two dimensional … so 
it’s (err) … quadratic function (draws 
a parabola in a form similar to y = x2 

on the desk with his finger) … so the 
derivative is decreasing all the way 
(traces the parabola again) … so it 
can’t get the same value twice, so it 
must be odd, so from that it’s 
definitely not even. 

In this excerpt he appears to shift from the general notion of even 
function (“symmetric to the y-axis”) to a more specific even power, 
(perhaps y = x2 ) and deduces that its derivative can’t be even so it must 
be odd. This deduction is false for a general even function, but is true for 
even and odd powers that seem to be his current focus of attention. 
Without further discussion, he concludes, saying, “generally I think it’s 
true, but [laughs] I’m not so sure”. 

Analysing Grad’s use of embodiment (through enactive drawing) and 
symbolism (through focusing on even and odd powers), we see that both 
lead to him making deductions that are true in specific cases but which 
do not hold in a general formal proof. 

When asked for a proof of the statement, he used the two-sided 
definition of derivative, and manipulated it to give his version of the 
proof (figure 3). The use of the two-sided derivative would be justified 
because the statement claimed that the function is differentiable, but Grad 
did not seem to be aware of this. His manipulation lacked fluency but he 
was able to give a proof that had the fundamental essentials. 

 

Figure 2: Grad imagines a parabola, 
drawing it in the air 
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Figure 3: Grad’s symbolic solution 

Grad was then shown a number of pre-prepared responses to the problem, 
from which we focus on three: 

Response A: 

If f (x)  is an even function it is 
symmetric over the y-axis. So the 
slope at any point x is the opposite 
of the slope at –x. In other words 

f ( x) = f (x) , which means the 
derivative of the function is odd. 

 

Response B: 

Want to show if f (x) = f ( x)  then f ( x) = f (x) . 

f ( x) = lim
h 0

f ( x + h) f ( x)

h
 by the definition of the derivative. 

f ( x) = lim
h 0

f (x h) f (x)

h
 since f is even. 

Let t = h  

f ( x) = lim
t 0

f (x + t) f (x)

t

= lim
t 0

f (x + t) f (x)

t

 

f ( x) = f (x) , as required. 

Response C: 

Given f (x)  is even, so f (x) = f ( x) . Take the derivative of both sides. 
f (x) = f ( x)  by the chain rule. So f (x)  is odd. 



 6 

Grad considered the embodied visual proof (A) to show the best 
understanding and considered that a school pupil giving this response 
should be given a mark of 100% while a university student would 
probably get less than 50% because it needed further explanation. He 
thought response (B) was more formal and very convincing, but still in 
need of more explanation, so the mark given would “depend on the 
marker”. He felt Response (A) and (C) were the best arguments, 
suggesting that Response (C) would get full marks, because it is more 
convincing and has “… less steps, the less mistakes you can make … less 
assumptions made … yeah, straightforward.” 

Grad is an example of a student who works to come to terms with formal 
ideas using embodied thought experiments yet is aware of the public 
aspect of formal proof and the need to build a proof in a way that will be 
approved by the mathematical community. 

The role of prior experience and the notion of ‘met-before’ 

Grad is just one individual responding to the notion of proof in his own 
way. However, all of us respond to new ideas based on our prior 
experiences. In Tall (2004). I introduced the notion of ‘met-before’ as a 
current cognitive structure that arises from previous experience and 
which is evoked to make sense of a current situation. 

Met-befores are essential in curriculum building and curriculum 
builders necessarily sequence topics so that later topics build on earlier 
ones. However, such sequences are often conceived in a logical way, 
building new mathematical structures on previously introduced 
mathematical ideas. In practice, the student builds on his or her own 
personal met-befores in ways that may not fit with the intended new 
developments. 

Different approaches to proof based on embodiment and symbolism 

The shift to the formal world initiates students into the culture of 
mathematicians who base their public communications in terms of formal 
definitions and proof. Students trying to make sense of this new culture 
must build on their experience of embodiment and symbolism. 

Pinto (1998) found that, when introduced to the formal limit concept in 
analysis, some students built explicitly on their previous embodied 
images in an attempt to give meaning to the formal idea from their 
current knowledge structure. She called this a natural approach. Others 
attempted to gain insight by focusing on the definition and the way it is 
used in formal proofs to extract meaning from the definition to give a 
formal approach. 
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Chris used a natural approach to build from his embodied imagery. He 
imagined the definition arising from the picture of a graph of a sequence 
approaching a limiting value L by noting that given any desired error , 
there is a value of N such that the values of the sequence to the right of N 
lie in the range L ± . Chris was able to build from his imagery to build 
relationships about limits, continuity in various contexts that both make 
sense to him and also satisfy the mathematical community. In some 
instances, such as the constant sequence 1, 1, 1, …, he could sense that it 
did not fit in with his met-before that a sequence approached a limit, 
nevertheless, he was perfectly happy that it fitted the definition (Pinto & 
Tall, 2002). 

Ross, on the other hand, approached the task formally by repeating the 
definition until he could say it in full detail and then carefully reading 
proofs to see how they were constructed logically. Indeed, he made sense 
of the notion of limit from his experience of considering the convergence 
of sequences. In the case of the constant sequence 1, 1, 1, … he thought 
about the speed of convergence and remarked that some sequences 
converged faster than others, and that the constant sequence converged 
the fastest of all. While the natural thinker Chris adds the constant 
sequence to his imagery as a special case, the formal thinker Ross places 
it centrally in his concept of limit. 

Many students made only partial attempts at natural or formal 
approaches. Cliff tried to make sense of the ideas based on his embodied 
imagery. For instance, his image of continuity was based on the met-
before that a continuous graph is drawn without taking the pencil off the 
paper. When the lecturer proved that an arbitrary function defined on the 
integers is continuous, Cliff did not believe it because the graph of the 
function consisted of disconnected dots over integer values. He failed to 
overcome the conflict between his embodied imagery and the formal 
theory. 

Another student, Rolf, built upon his experience working with 
symbolic calculations and saw his initial task to gain fluency at using the 
definition of the limit of a sequence. This entailed working with specific 
sequence, for example, an = 1 / n2 , and for a specific numerical value of 
, say, 10 6 , then he could calculate the value of N = 103

 for which 
an <  when n > N. However, this strategy is not sufficient to give the 
limit concept its full logical meaning A problem which proves difficult 
for such procedural students is to show that if an 1, then for n beyond 
some value N, the terms an  must be bigger than 3

4 . Not knowing the 
formula for an  in this problem means that it is not possible to carry out a 
numerical calculation to find N (Pinto 1998). 

Weber (2004) refined this analysis by a qualitative case study on a 
particular analysis lecturer and his students. He found that the lecturer 



 8 

began with an initial logico-structural teaching style in which he guided 
the students into constructing a sequence of deductions to prove a 
theorem. He divided his working space on the board into two columns, 
with the left column to be filled in with the text of the proof and the right 
column as ‘scratch work’. He wrote the definitions at the top of the left 
column and the final statement at the bottom, then used the scratch work 
area to translate information across and to think about the possible 
deductions that would lead from the assumptions to the final result. Later 
in the course, he became more streamlined in his proofs, working in a 
more sequential procedural style, writing the proof down in the left 
column and using the right column to work out detail such as routine 
manipulation of symbols. At a later stage, he used what Weber termed a 
semantic style, teaching topological ideas building on visual diagrams to 
give meaning, then translating this embodiment into formal proof. 

His students learning approaches were analysed into three types, 
building on the theory of Pinto: 

• a natural approach involved giving an intuitive description 
and using it to lead to formal proof, 

• a formal approach where students had little initial intuition 
but could logically justify their proofs, 

• a procedural approach where students learnt the proofs 
given them by the professor by rote without being able to 
given any formal justification. 

The term ‘natural’ corresponds to that of Pinto in terms of giving 
meaning from intuitive (embodied) knowledge, ‘formal’ now refers to 
those who are successful in following a formal approach and ‘procedural’ 
refers to those who attempt to learn the formal proofs by rote without 
either embodied or logico-structural meaning. Thus the students 
mentioned in Pinto’s research, Chris is successful in giving embodied 
meaning to formal theory via a ‘natural’ route. Ross is successful in a 
‘formal’ approach in extracting meaning from the definitions and the 
logical structure of theorems. Cliff is prevented from making sense of the 
formal procedures because they conflict with his embodied imagery. Rolf 
attempts to extract meaning from the definitions based on his symbolic 
experience and remains ‘procedural’ in the sense of Weber. In essence 
Weber’s ‘procedural’ route is taken by both Cliff and Rolf, but there is a 
difference: Cliff experienced a sense of conflict because it contrasted 
with his embodied ideas, but Rolf was happy to learn procedures by rote. 

Weber’s data shows that students can vary in approach dependent on 
the context in which they work. Six students interviewed after the course 
all responded in a natural manner to a topological question (where 
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topology had been taught in a semantic manner building from visual 
imagery). However, in two other questions about functions and limits, 
only one student responded naturally. The other responses to a question 
on functions were 4 formal and 1 procedural, and to a question on limits 
were 2 formal and 3 procedural. 

From formal definitions back to embodiment and symbolism 

We now have evidence that students moving towards formal proof have a 
variety of ways of building on their previous experience of embodiment 
and symbolism as they attempt to make sense of formal proof as shared 
by the community of mathematicians. Tall (2002) analyses in general 
how previous experiences provide concept images for thought 
experiments that may support formal proof. In parallel, concept 
definitions that arise are used as a basis for formal proof of a succession 
of theorems. A natural approach builds formalism on intuitive embodied 
imagery, supported by experiences in calculation and computation. A 
formal approach focuses less on embodiment and more on the logical 
structure, (figure 4). 

 
Figure 4: From embodiment to formalism and back again (Tall, 2002) 



 10 

However, as successive theorems are proved by formal deduction, there 
may come a special type of theorem called a structure theorem that gives 
an insight to the structure of the axiomatic system itself. Typical 
examples of such structure theorems are as follows: 

• An equivalence relation on a set A corresponds to a partition of A; 

• A finite dimensional vector space over a field F is isomorphic to Fn ; 

• Every finite group is isomorphic to a group of permutations; 

• Any complete ordered field is isomorphic to the real numbers. 

In every case, the structure theorem tells us that the formally defined 
axiomatic structure can be conceived an embodied way and in many 
cases there is a corresponding manipulable symbolism. For instance, an 
equivalence relation on a set A—axiomatized as reflexive, symmetric and 
transitive—corresponds to an embodiment that partitions the set. Any 
(finite dimensional) vector space is essentially a space of n-tuples that 
can (in dimensions 2 and 3) be given an embodiment and (in all 
dimensions) can be handled using manipulable symbolism. Any group 
can be manipulated symbolically as permutations and embodied as a 
group of permutations on a set. A complete ordered field specified as a 
formal axiomatic system corresponds precisely to the symbolic system of 
infinite decimals and to the embodied visualisation of the number line. 
Thus, not only do embodiment and symbolism act as a foundation for 
ideas that are formalized in the formal-axiomatic world, structure 
theorems can also lead back from the formal world to the worlds of 
embodiment and symbolism. These new embodiments are now 
fundamentally different, for their structure is built using concept 
definitions and formal deduction. 

New embodiment and symbolism may be a springboard for imagining 
new developments and new theorems; it may not. For instance, the 
embodied interpretation that a complete ordered field is the real line gave 
generations of mathematicians the belief that including the irrationals 
completed the real line geometrically by ‘filling in the gaps between 
rationals’. This is not true, for it is possible to imagine (as did earlier 
generations) that the embodied number line has yet more elements that 
are infinitesimally close, but not equal, to real numbers. Using a symbolic 
representation of an ordered field containing the real numbers (such as 
the field of rational functions with an appropriate order) it is a simple 
matter to construct an ordered field containing infinitesimals. The 
structure theorem tells us that such a field not technically complete. 

The structure theorem that every group is isomorphic to a group of 
permutations does not really help us solve problems symbolically for the 
use of permutations in large finite groups becomes so unwieldy that other 
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techniques need to be developed to prove more sophisticated theorems. 
However, the structure theorem does provide an insight that brings some 
sense of unification between the theory of three worlds of mathematics. 

Subtle embodiments of formal definitions 

Embodiment is a natural mode of operation for human beings. Axiomatic 
structures arise from everyday concepts of counting, measuring, sorting, 
ordering, sharing, moving, categorising, thinking. In his famous lecture 
given at the turn of the twentieth century, Hilbert (1900) asserted: 

To new concepts correspond, necessarily, new signs. These we choose in 
such a way that they remind us of the phenomena which were the 
occasion for the formation of the new concepts. So the geometrical 
figures are signs or mnemonic symbols of space intuition and are used as 
such by all mathematicians. Who does not always use along with the 
double inequality a > b > c the picture of three points following one 
another on a straight line as the geometrical picture of the idea 
“between”? 

However, not only are embodied ideas an inspiration for formal theories, 
we know that they can also act as met-befores causing obstacles in 
understanding. 

Definitions are built up from individual parts that I call ‘definitional 
elements’. For instance, an equivalence relation has three definitional 
elements: 

 R: a~a for all a; 

 S: a~b implies b~c; 

 T: a~b and b~c implies a~c. 

Another possible definitional element might be: 

 T*: a~c and b~c implies a~b. 

It is easy to prove that the definition RST gives the same structure as 
RST*. However, the definitional elements T and T* are not the same; 
they have different meanings in themselves and in other systems. For 
instance, T is a definitional element for an order relation (a<b and b<c 
implies a<c) but T* is not (since a<c and b<c does not imply a<c). 

Asghari (2004) investigated how individuals who had not met the 
concept of equivalence might write down their own rules to formulate the 
structure and found that an entirely unexpected law arose. His problem 
concerned a mad dictator who restricted travel between the ten cities in 
his country, so that a ‘visiting-city’ that one is allowed to visit must obey 
two conditions: 
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 1. When you are in a particular city, you are allowed to visit other 
people in that city. 

2. For each pair of cities, either their visiting-cities are identical or they 
mustn’t have any visiting-cities in common. 

The problem was for his officials to formulate valid visiting laws, 
which they demonstrate on a 10 10  grid (figure 6). While the diagonal 
and reflection in the diagonal occurred often, the transitive law was more 
opaque and several respondents suggested an alternative that might be 
called ‘the box law’ (figure 7): 

If three corners of a box (with horizontal and vertical sides) are in the 
relation, then so is the fourth corner. 

 
Figure 6: The problem grid 

 
Figure 7: The ‘box law’ 

It is left to the reader to find the relationship between this box law and 
the formulations RST and RST* for an equivalence relation mentioned 
earlier. A fundamental idea taken from this research is that the formal 
definitions given in mathematics are not necessarily evident for the 
learner and may not be ‘natural’ ideas that arise from the students’ prior 
knowledge. 

For many years, at the University of Warwick, students were first 
introduced to a ‘foundations’ course focusing on the development of the 
formal elements of mathematics. Over all this time, the topic that was 
consistently considered the most difficult was the introduction of 
relations and specific types of relations such as functions, order relations 
and equivalence relations. We were mystified why a simple idea like an 
equivalence relation should provoke such a reaction when it involved 
only the universal quantifier “for all” with none of the apparent 
difficulties coordinating multiple quantifiers in analysis. 

Chin (2002) investigated the situation and it became apparent that the 
notion of relation was embodied very differently from the notion of 
equivalence relation. Whereas a relation from A to B has a natural 
representation as a subset of A B  and this is inherited by the concept of 
function from A to B, apparently students do not see an equivalence 
relation on A being naturally represented as a subset of A A . While the 
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reflexive law R is easily embodied as the diagonal of A A  and the 
symmetric law S as reflection in the diagonal, the transitive law T is 
altogether more subtle. 

 
Figure 8: Visual representations of the axioms for an equivalence on a set R. 

Chin studied the development of 15 students over the first two years. 
Their marks for the first year were widely distributed—three over 80, 
four between 70 to 79, four between 60 to 69, one between 50 to 59, 
three between 40 to 49 (where an honours degree pass mark is 40 and a 
first class degree is 70). 

He asked the students the following question: 

 
A = {(x, y) 2 0 x 10, 0 y < 10} . Is A an equivalence relation on  ? 

In the first year no student responded positively to this question, even 
though they had been taught an equivalence relation on S is a subset of 
S S . Several wrote explicitly that they did not understand the question: 

 
 Figure 8: typical response of a first year student (Chin & Tall, 2001)  

In the second year, only one student, Simon, gave a satisfactory response: 

 
Figure 9: the single correct response in the second year (Chin & Tall, 2001) 
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Chin’s work revealed that while it was usual for a student to have a 
mental picture for a partition (as a set A broken into disjoint subsets) they 
were far less likely to have a mental picture of an equivalence relation as 
a subset of A A . 

In this way we find that the different kinds of relations—functions, 
order relations, equivalence relations—have very different embodiments. 
A function f : A A  lives in A A  while order relations and 
equivalence relations live in the set A. 

Even though an order relation and an equivalence relation both live in 
the underlying set, their embodiments are fundamentally different. The 
embodiment of an order relation met-before by students is usually in the 
form a < b < c where a, b, c are three points ordered from left to right. In 
arithmetic we would rarely write 5 ! 6 because we know 5 is less than 6. 
Likewise, we would not write 5 ! 5 because 5 = 5 . Thus in arithmetic we 
use the strong relation < rather than the weak relation . Hence, although 
the transitive law a ~ b , b ~ c implies a ~ c has the same format in the 
case of an order relation and an equivalence relation, the (strong) order 
relation < has the property that the three elements a, b, c are different. 

Chin found that many students found the following question difficult: 
 Let X={a, b, c} and the relation  be defined where a b, b a, a a, b b, but no 
other relations hold. Is this an equivalence relation? If not, say why?  

The simple answer is that it is not an equivalence relation because the 
reflexive law does not hold for c ~ c. However, a quarter of respondents 
(68 out of 277) asserted that this is not an equivalence relation not 
because of the reflexive law, but because the transitive law fails. In this 
case the transitive law is actually true, so there must be some subtle 
reason why this mistake was made. Typical responses included: 

  
and 

  
Both of these students, and others in interview, asserted that the transitive 
law needs three different elements, a, b, c (Chin & Tall, 2002). The 
difficulties students meet from their encounter with relations, and three 
types of relations (function, order relation, equivalence relation) are in 
part bound up by the very different underlying embodiments that they 
bring to bear when they perform thought experiments to solve problems. 

Reflections 
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The discussion presented here has shown how prior experiences (met-
befores) from the worlds of embodiment and symbolism subtly affect 
formal meanings. Professional mathematicians depend on embodiment 
and symbolism to inspire their choice of theorems to prove and use 
symbolic manipulations in their proofs. Conversely, structure theorems 
can lead back to embodiment and symbolism. However, students who are 
learning about formal proof bring their prior experience to bear in 
different ways. Some build on their embodied experience in a natural 
manner to give meaning to the formal theory and some of these are 
successful. Some find their embodied ideas conflicting with the formal 
theory and find it difficult to make sense of the formalism. Others take a 
formal logico-structural approach and work successfully at the 
formalism, but others fail to complete such a formal programme, 
focusing on the procedures that are given in the definitions without 
making sense of the full impact of the formal theory. 

This presents teachers of mathematics at university level with choices 
how to help students make sense of formal proof. Simply presenting the 
theory in a logical order and hoping the students will make sense of it 
will work for some. But to make sense of formalism requires students to 
gain some insight into how they think and to help them realise how their 
prior knowledge—which worked in perfectly well in previous contexts—
may need re-thinking in the new context. Learning about the subtle 
coercive effects of met-befores gives a powerful new meaning to 
Ausubel’s famous dictum from the opening pages of his monumental 
book on psychology (1968): 

“The most important single factor influencing learning is what the 
learner already knows. Ascertain this, and teach him accordingly.” 
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