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This paper considers the difference between the development of the concept of vector 
that is met as force and acceleration in physics, but as translation in mathematics. It 
studies cognitive problems that arise and tests an approach to the concept of free 
vector that focuses on the effect of the physical action of translation. The result is a 
more subtle conception of free vector that applies not only to translations but also to 
a wider range of vector concepts in mathematics and physics. 

The person who says ‘Don’t worry me with theory – just give me the facts’ is speaking 
foolishly. A set of facts can be used only in circumstances to which they belong, whereas 
an appropriate theory enables us to explain, predict and control a great number of 
particular events in the classes to which it relates. (Skemp, 1971, p. 29.) 

INTRODUCTION 
The English National Curriculum and the corresponding versions in Scotland and 
Northern Ireland prescribe a global strategy to raise standards in school. This 
involves a pragmatic overall framework for teaching each of the major school 
subjects, and over the years, modifying the details to deal realistically with practical 
issues in the classroom. In recent years the mathematics curriculum is taking an 
increasing focus on correcting misconceptions that students encounter (Askew, 1995). 
Here we focus on the concept of vector and consider the misconceptions and the 
reasons that they occur, in order to formulate a practical theory to improve student 
understanding of the concept. 
The National frameworks for mathematics and physics take very different approaches 
to the concept of vector. In recent years it has all but vanished from the National 
Curriculum in mathematics, surviving only in the final higher level of key stage 4; it 
is not mentioned at all in physics. Instead, the two subjects follow different routes, 
physics focusing on the concept of force and its relationship to motion (including 
graphical representations of distance, velocity and acceleration), mathematics 
focusing on the concept of translation, which is later used as a foundation for the 
mathematical concept of vector. In physics A-level when forces are considered in two 
dimensions, the topic is made more accessible by resolving quantities into horizontal 
and vertical directions to retain the one-dimensional flavour. Meanwhile, in 
mathematics, the notion of translation is first described as a column vector, say,  ⎟
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representing a shift of 2 units horizontally and 6 vertically. An alternative notation is 
used representing a translation from A to B as an arrow AB  where arrows with the 
same magnitude and direction are considered equivalent, and then a single symbol u 
is used that effectively represents a ‘free’ vector of given magnitude and direction, 
irrespective of its particular starting point. 
Poynter (in Watson [1], 2002) discovered that, although almost all of her students 
arriving in the sixth form could deal with calculating the horizontal and vertical 
components of forces, many had difficulties with other problems involving forces and 
vectors. Poynter (2004) studied the underlying reasons for such misconceptions and 
formulated a new approach to address the problem. She found that many of her 
students initially approached the idea of adding vectors geometrically by moving 
them ‘nose to tail’ and yet they were liable to be confused by experiences that they 
had met in their earlier work in mathematics and physics. 
Teachers are already aware of the kinds of problem that students may face. 
Interviewing teaching colleagues in mathematics and physics however, revealed that 
there were very different expectations from those teaching the two subjects. We begin 
by considering those difficulties and then building and testing a new approach to 
teaching the topic that is intended to address the difficulties. 
WHAT IS IT THAT STUDENTS FIND DIFFICULT? 
Two physics and two mathematics teachers were interviewed from a sixth-form 
college that performed very highly in the National tables measuring the improvement 
of performance in school. They were shown questions given to pupils in a research 
questionnaire and asked what problems they thought the students might encounter. 
Examples of selected questions are shown in figure 1. 

Add the two 
vectors 

Add the two 
vectors  

Add the two 
vectors 

In the picture the triangle has been moved from 
position A to position B. 
How can you represent 
the translation of the 
triangle? 
Can you draw a vector 
starting at the origin (0,0) 
which will represent the translation of the 
triangle from A to B? If so, show it on the 
drawing. 
Can you draw a vector not starting at the origin 
and not touching either of the triangles which 
will represent the translation from A to B? 
If so, show it on the drawing. 

   

(i) (ii) (iii) (iv) 

Fig. 1 vector as translation and three examples of vector addition 

The four teachers predicted a number of problems that they would expect for each 
question (i)-(iv) in turn, based on their experience of how students worked in class. 
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The physics teachers commented on successive questions as follows: 
P(i): students may ignore the direction and not place an arrow on the line; 
P(ii): they might think that the two vectors should be attached to each other; 
P(iii): they are taught to use the parallelogram if the two vectors are connected at one 
point. When you give them a question with the two tugs, they find it more useful to 
answer using a parallelogram [...] The triangle is used for resolving vectors […] in 
Physics […] if it was a displacement; 
P(iv): many students do not get the idea that the arrows have to follow ends. Some of 
them might add the vectors by resolving them in the horizontal and vertical direction and 
by using matrices. (The teacher refers to the use of column vectors). 

The mathematics teachers included the following remarks: 
M(i): better students would be expected to be happy with representing translation as an 
arrow however the weaker students would go across and along. To go from a point on 
shape A to a corresponding point on B is another building block; 

M(ii): students would be expected to add vectors by placing them ‘nose to tail’ or by 
using column vectors. Some students might think that these vectors are fixed in space and 
will draw two vectors between them to close the polygon; 

M(iii): they might put vectors ‘nose to tail’ without drawing the resultant because 
sometimes they think that adding vectors means putting one at the end of the other; 

M(iv): they might think that the vectors are connected in the wrong way and simply join 
them up with a third vector. 

Some of the students’ responses are shown in figure 2. 

 
 

  
(i)(a) (ii)(a) (iii)(a) (iv)(a) 

  
(i)(b) (ii)(b) (iii)(b) (iv)(b) 

Fig. 2 Examples of student misconceptions 

Both responses (i)(a) and (i)(b) show students who draw the figures in different 
positions using horizontal and vertical components and yet do not have the flexibility 
to place an arrow starting from any point (as suggested in M(i)), with (i)(b) missing 
out the arrow (as suggested by P(i)). 
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Response (ii)(a) shows the student first drawing a line joining the end of the first 
arrow to the beginning of the second, as if to fill in the middle part of the journey, 
then adding the line at the bottom, possibly as an equivalent path (M(ii)). Response 
(ii) shows an arrow ‘a+b’ joining the end of vector a to the end of b, and a 
corresponding arrow ‘b+a’ joining the end of a to the end of b, as if both represent a 
‘total path’, equivalent to moving along both vectors, and jumping over the gap, 
consistent with M(ii) and also consistent with the problem noted by P(ii).  
Response (iii)(a) draws one arrow followed by the other inaccurately without filling 
in the third side (as indicated in M(iii)). Response (iii)(b) makes the picture into a 
journey by moving back along b then along a, giving the third side denoted by 
‘–b+a’ (or equivalently by ‘a–b’). In total, only one student out of 34 responded 
using the parallelogram law, contrary to the comment P(iii). 
Response (iv)(a) fills in the third side of the triangle as suggested by M(iv), Response 
(iv)(b) uses the same technique as (iii)(b), this time following down e and back along 
j represented as ‘e–j’. This time the student fails to draw the third side. Other 
solutions (not represented here) do draw approximate horizontal and vertical 
components to add together (as suggested by P(iv)), but, in general, the errors relate 
more to the views given by the mathematics teachers than the physics teachers, which 
is perhaps to be expected in a test given in the context of a mathematics course, 
prompting responses that students may think are required in mathematics. 
WHY DO THE PROBLEMS OCCUR? 
The Physics teachers’ responses seem to suggest that students will relate vectors to 
different contexts (using the triangle law for displacements and the parallelogram law 
for forces). They also suggest that when the students have difficulty, they will work 
with horizontal and vertical components. In practice these responses occur rarely. 
Many students respond using the notion of vector as a journey which occurs at an 
early stage of conceptual development, before the flexible concept of free vector is 
constructed. This difficulty was intimated in response M(i), that going from any point 
on A to the corresponding point on B is ‘another building block’. The mathematics 
teachers’ responses are sensitive to the problems of students, however they tend to 
indicate what the students might do incorrectly, without saying why. 
From interviews with selected students it became apparent that their responses do not 
always represent the whole of their difficulty, and that interpretations relating to the 
physical context might prevent them from thinking of a solution. Overall therefore we 
see that all the teachers are sensitive in different ways to the problems that the 
students encounter. However, their knowledge of the difficulties relate in the main to 
their episodic memories of what happened in their previous experience. We propose 
that it would be of help to teachers to develop a practical theory of how students learn 
that makes sense to both teachers and students. 
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THEORETICAL FRAMEWORK 
Some research studies in science education reveal how students’ ‘intuitions’ arise 
from working in different contexts and how it effects their problem-solving 
capabilities. For example, Aguirre and Erickson (1984) talk about “ten implicit vector 
characteristics” involved in “three vector concepts: position; displacement; and 
velocity” and suggest that students gain “a number of intuitions about various 
characteristics” which need to be overcome. On the other hand Jagger (1988) says 
that, “The problem is in moving from one-dimensional motion to motion in two or 
more dimensions”; Graham and Berry (1997) suggest that the students “need to 
overcome this misconception at an early stage,” (p 847). 
These research studies in science education focus on the misconceptions that occur. 
They report on the specific differences between the contexts that cause problems 
rather than seek the essential mathematical concepts that are common to them. There 
is also no reference to the mathematical development in which a translation as a 
journey is reconceptualised flexibly as the concept of free vector. 
Skemp (1971) theorized that the way to higher order thinking involves focusing on 
the essential properties in various context and filtering out the “noise” (the data which 
is irrelevant to the required abstraction). He also suggests that, “The greater the noise, 
the harder it is to form the concept,” (1971, p. 28).  
Physics teachers try to reduce the noise by teaching students to reduce two-
dimensional problems to their components to reduce them back to the one-
dimensional context. The meanings are related to physical objects in the ‘outside 
world’, which in the Physics curriculum include force, distance, velocity, 
acceleration. It is assumed in the National Curriculum that these concepts met early 
in science will be later translated into symbolic form in a mathematical context for 
students to develop the facility to operate, not just on these concepts, but with 
anything that resonates with them. 
In practice, however, the significant distinctions of meaning in different contexts 
continue to affect the way that students think. A possible solution might be to attempt 
to construct the essential mathematical meaning of ‘free vector’ and then apply this 
meaning to addition of vectors in different contexts, so that the parallelogram law, the 
triangle law and the addition of components of vectors are all seen to be different 
aspects of the same concept. 
Skemp suggested a strategy that begins in a particular real-world context with 
minimal “noise” to focus on essential higher order mathematical concepts. These 
higher order concepts are then used by “re-embodying the result in the physical realm 
to give the answer to the original problem,” (1971, p. 223). This cycle “reduces 
noise” ... “and by abstracting only mathematical features it allows us to use a model 
which we are well practised in working,” (1971, p. 223). 
A real-world context that is a candidate for building the higher order concept of ‘free 
vector’ is already found in the mathematics curriculum. It is the physical notion of 
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‘translation’. The problem is how to encourage students to construct the flexible 
concept of ‘free vector’. In a preliminary study, one of the students saw that what 
matters is not the translation itself, but the effect of that translation.  
The effect of a physical action is not an abstract concept. It can be seen and felt in an 
embodied sense. The idea is that, if students had such an embodied sense of the effect 
of a translation, then they could begin to think of representing it in terms of an arrow 
with given magnitude and direction. For instance, if the student’s hand was moving a 
triangle on the table, then the arrow could be taken to show the movement of the tip 
of a particular finger, or thumb. The particular choice of arrow does not matter. It 
does not even need to be attached to the object being moved. Any arrow of the given 
magnitude and direction will give the required effect. The idea is to use the students’ 
physical experience as a foundation for the building of the concept of free vector and 
to give an underlying embodied foundation to the symbolism used for vectors within 
a coherent schema of meaning. For example, the addition of vectors is a simple 
extension of the idea that the sum of two free vectors is the free vector that has ‘the 
same effect’ as the combination of one vector followed by another. This would give 
embodied meaning to the technique of placing vectors ‘nose to tail’ to add them, to 
see that the sum is any arrow having the same magnitude and direction given by the 
triangle or parallelogram law, which are now seen as two different ways of looking at 
the same underlying idea. This flexibility of sensing the meaning of ‘free vector’ 
would then relate to other simple ideas, such as the idea that addition of free vectors 
is commutative. 
The goal is to create conceptual knowledge with a relational understanding of the 
concepts rather than procedural knowledge with an instrumental understanding of 
separate techniques. By founding the ideas on coherent physical actions and by 
focusing on the notion of ‘effect’, the strategy is to encourage students to reflect on 
their knowledge and build the notion of free vector as a coherent cognitive unit in a 
rich schema of relationships, which can then be applied meaningfully in other 
contexts (Poynter & Tall, 2005). (Figure 3.) 

 
Fig. 3 Focusing on effect to build the concept of free vector 
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EMPIRICAL RESULTS 
Poynter (2004) compared the progress of two classes in the same school, Group A 
taught by the researcher using an embodied approach focused on the effect of the 
translation, Group B taught in parallel using the standard text-book approach by a 
comparable teacher. The changes were monitored by a pre-test, post-test and delayed 
post-test, and a spectrum of students were selected for individual interviews. 
The tests investigated the students’ progress in shifting in stages, from a one-
dimensional conception corresponding to a signed number, to the notion of an arrow 
as a journey in two dimensions with horizontal and vertical components, to a 
recognition of shifts having the same magnitude and direction giving the same effect, 
and, ultimately, the use of free vector itself as a manipulable concept (figure 4). 
Stage Graphical Symbolic 
0 No response No response 
1 Journey in one dimension A signed number 
2 Arrow as a journey from A to B Horizontal and vertical components 
3 Shifts with same magnitude and direction Column vector as relative shift 
4 Free vector Vector u as a manipulable symbol 

Figure 4: Fundamental cycle of concept construction of free vector addition  

The students were assigned stages of development on their overall performance on 
the questionnaire from which (i)-(iv) are taken. This is the highest stage attained on at 
least two questions judged by two independent markers (Poynter, 2004). 

Graphical stage Group A (N = 17) Group B  (N = 17) 
 Pre-test Post-test Delayed Test Pre-test Post-test Delayed Test 
4 3 17 17 6 10 13 
3 9 0 0 6 4 3 
2 5 0 0 1 3 1 
1 0 0 0 1 0 0 
0 0 0 0 3 0 0 

Table 1: Graphical responses to the whole questionnaire 

Symbolic stage Group A  (N = 17) Group B  (N = 17) 
 Pre-test Post-test Delayed Test Pre-test Post-test Delayed Test 
4 6 7 6 4 4 4 
3 1 3 1 2 5 1 
2 4 0 2 5 2 7 
1 5 5 4 5 4 2 
0 1 2 4 1 3 3 

Table 2: Symbolic responses to the whole questionnaire 

The striking change in the graphic response of Group A is clearly apparent and it 
remains over the longer-term. The symbolic scores, relating to the representation of 
vectors as coordinates are not significantly different. 
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The changes in response to the addition of free vectors also affect the performance of 
students in the use of forces in mechanics.  
The improvement in the graphical stages of development dealing with free vectors 
was accompanied by a corresponding improvement with dealing with mechanics 
problems. After the course had ended, students from several classes were presented 
with the problem in figure 5. A similar problem on a 
pre-test had been solved by only 5 students out of 26 
(Watson, 2002). In Group A, all the students 
answered the question. By this time, the students in 
Group B had been given the experimental treatment 
in two revision periods and all these students except 
three answered correctly. The three answering 
incorrectly had all missed the revision periods. In 
another class who had been given the standard 
treatment, only one out of eleven students correctly 
answered the question. Meanwhile, in a class taught by another teacher aware of the 
experimental technique, four out of six gave satisfactory responses. There is therefore 
evidence that technique is transferable and that it causes long-term improvements not 
only in the mathematics of free vectors, but in the physics of forces and acceleration. 

 
A particle of mass 3 kg slides down a 
rough plane at an angle α = 30° to the 
horizontal. If µ = 0.5 find the acceleration 
of the mass. 

Figure 5: Forces in mechanics 

NOTES 
1. Anna Watson now publishes under her married name, Anna Poynter. 
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