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There is nothing as practical as a good theory. (Richard Skemp, 1989, p. 27.) 

This paper reports the coming together of two major goals, the first to build a 

cognitive theory of mathematical development that has wide application at different 

stages of development and in different contexts, the second to address a particular 

practical problem in the classroom. This problem related to the teaching of vectors, 

which lies at the confluence of mathematics and physics and builds from practical 

contexts to theoretical mathematics. We seek to generate a coherent theory that is 

consonant with many aspects from the literature rather than aggregating disparate 

aspects of different theories. In the practical context we listened to the voices in the 

classroom, both teachers and students, seeking a practical solution that would make 

sense to the participants and be of direct value in both teaching and learning. 

INTRODUCTION 

This paper is a contribution to a discussion on “Different theoretical perspectives in 

research: From Teaching problems to Research Problems”. Our purpose is to see how 
the development of a broad cognitive theory and a rich practical problem can be of 

mutual benefit. The specific problem considered is the teaching of vectors in the 

context of school physics and mathematics. The broader cognitive theory is the 
theory of three worlds of mathematics, which begins with the child’s perception and 

action on the world to carry out thought experiments to develop an increasingly 

sophisticated conceptual-embodied world, a focus on actions that are symbolised to 
give a proceptual-symbolic world of arithmetic and algebra and beyond, and a long-

term focus on properties that, for some, leads to a formal-axiomatic world of 

definitions and proof (Tall, 2004). The specific problem is the teaching of vectors in 
school with its embodiments in physics and mathematics developing into the 

symbolism of vectors in two dimensions (Watson
1
, Spyrou & Tall, 2002). Here we 

focus on the relationship between the worlds of embodiment and symbolism. 

The British culture is one of practical approaches to practical problems. The 

pragmatic solution to teaching vectors is to introduce them in practical situations in 

physics as forces, journeys, velocities, accelerations, and only later to study the 
mathematical theory in pure mathematics. The teaching of vectors has not gone well. 

It has followed the path of many other topics that students find difficult. The initial 
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presentation has been made more and more practical and less and less dependent on 
mathematical theory. It shares a similar fate to other ‘difficult’ parts of mathematics, 

including fractions and algebra. 

In the pragmatic culture of Britain, the teachers are professionals. They take their 
work seriously, work hard with long hours and relatively little time scheduled for 

analysis and reflection. Our experience (Poynter & Tall, 2005) of interviewing 

colleagues show that they are aware that students have difficulties, but their 
awareness relates more to an episodic memory of what didn’t work last year rather 

than a theory that attempts to explain why it went wrong and what strategies might be 

appropriate to make it go right. Where there are problems, the response it to try a new 
strategy the following year in an attempt to improve matters. 

As an example, consider the case of adding two vectors geometrically. The students 

are told that a vector depends only on its magnitude and direction and not on the 
point at which the vector starts. Therefore vectors can be shifted around to start at any 

point and so, to add two vectors, it is simply a matter of moving the second to start at 

the point where the first one ends, to give a combined journey along the two vectors. 
All that is necessary is to draw the arrow from the start point of the first vector to the 

end point of the second to give the third side of the triangle, which is the sum. 

The problem is that many students don’t seem to be able to cope with these 
instructions. Some ‘forget’ to draw the final side of the triangle to represent the result 

of the sum, others have difficulties when the vectors are in non-standard positions to 

start with, such as two vectors pointing into the same point, or two vectors that cross. 
Some find it difficult to cope when two vectors start at the same point, and draw the 

‘result’ of the two vectors   AB  and   AC  as the third side of the triangle,  BC . 

Here we have a specific teaching problem that requires a solution. What theories are 
available to solve it? The science education theory of ‘alternative frameworks’ 

(Driver, 1981) suggests that that the students may have their own individual ways of 

conceptualising the concept of vector. However, it does not offer a theory of how to 
build a new uniform framework for free vector in a mathematical sense. Our goal is 

to study this problem not only in its own right to be meaningful to students and 

fellow teachers, but also within the goal of developing a wider theoretical framework. 

SOME EXISTING THEORIES 

The embodied theory of Lakoff and his colleagues offers a viewpoint that encourages 

us to consider how students embody a concept such as vector. However, this theory 
takes a high-level view of mathematical concepts to perform a top-down idea 

analysis theorizing how such concepts have their origins in embodiment rather than a 

global view that integrates the genesis of the mathematical concepts with the actual 
conceptual development of the child. For instance, Where Mathematics Comes From 

(Lakoff & Núñez, 2000) includes references from mathematics education papers in 

its bibliography but makes no reference to them anywhere in the main text. We find 
the notion of ‘idea analysis’ formulated by Lakoff and Núñez to be a valuable 



  

technique, but prefer to use an analysis that relates to the cognitive development of 
the individual. For us, cognitive development builds from perception and action 

through reflection to higher theoretical conceptions. We use the term ‘embodiment’ 

first in the colloquial sense that a sophisticated concept may be ‘embodied’ 
physically (such as fractions represented as part of a physical whole or a vector as a 

physical transformation) after the manner of Skemp (1971) and later in the sense of 

conceptual mental embodiment using thought experiments. This sense relates to 
Bruner’s notions of enactive and iconic modes of operation as distinct from his 

symbolic mode, which we see in three distinct parts: language which underpins all 

increasingly sophisticated modes of thought, and the two increasingly sophisticated 
worlds of proceptual symbolism in arithmetic and algebra and the more advanced 

logical symbolism of axiomatic mathematics. 

Focusing on the development from physical actions to mental conceptions, a relevant 
approach may be found in the APOS theory of Dubinsky (Dubinsky & MacDonald, 

2001). Dubinsky theorizes that mathematical objects are constructed by reflective 

abstraction in a dialectic sequence A-P-O-S, beginning with Actions that are 
perceived as external, interiorised into internal Processes, encapsulated as mental 

Objects developing within a coherent mathematical Schema. The actions with which 

the theory begins may be physical or mental and, in the case of vector, we see 
transformations as actions on physical objects being routinized into thinkable 

processes and then encapsulated as mathematical objects in the form of free vectors. 

There is, however, a possible problem. Several papers in the literature show how 
students may routinize actions as processes but in several cases (including the notion 

of limit or of function) the further step to an object conception is less easily 

accomplished (e.g. Cottrill et al 1996, Dubinsky & Harel, 1992). This signals a 
possible problem in the shift from a procedural action to a conceptual mental object. 

We considered Skemp’s (1976) theory of instrumental and relational understanding. 

It seemed evident that many students were learning instrumentally how to add vectors 
without any relational understanding. But what is the relational understanding that is 

necessary and how is it formulated? Likewise the theories of procedural and 

conceptual knowledge (Hiebert & Lefevre, 1986, Hiebert & Carpenter, 1992) suggest 
that the students may be learning procedurally and not conceptually. But here again, 

what is the conceptual structure and how are procedures and concepts related? 

It is apparent that students learn based on their own experiences. They meet various 
practical examples of vectors, including vectors as journeys and vectors as forces. 

Many theories (e.g. Dienes 1960) suggest that students must experience variance in 

different examples and abstract the essential properties that are common while 
ignoring incidental properties that occur in some examples but do not generalise. In 

the case of vector, these incidental properties are coercive and lead to alternative 

frameworks that are difficult to shift. 

We considered other frameworks, for example the framework of intuition and rigour 

that occurs in Skemp’s (1971) distinction between intuitive and reflective thinking or 



  

in Fischbein’s (1987, 1993) tripartite system of intuitive, algorithmic and formal 
thinking. Indeed the latter theory is strongly related to our own development of three 

worlds of mathematics except that the three categories exist as separate aspects, as 

they did in the first design of the English National Curriculum where Concepts and 
Skills were put under separate headings. 

Our inspiration for putting these elements together in an integrated manner arose 

from several theories that include both a global development of successive modes of 
operation (such as Piaget’s stage theory or the enactive-iconic-symbolic modes of 

Bruner) and also a local sequence of concept formation within each of these modes. 

In particular, the SOLO taxonomy of Biggs and Collis (1982) made a significant step 
forward involving not only successive development of different modes (sensori-

motor, ikonic, concrete-symbolic, formal and post-formal) but also local cycles of 

concept formation within each mode which were termed uni-structural, multi-

structural, relational, extended abstract. 

Pegg (2002) took a further step by noting how the Biggs and Collis cycle of concept 

formation operates in a similar sequence to the compression of process to concept, 
linking to the theory of Gray & Tall (1994) in which action-schemas such as counting 

(uni-structural) are developed into more compressed procedures such as count-all, 

count-on, count-on-from-larger (multi-structural), to the overall process of addition 
that may be implemented by different routes (relational), and the concepts of number 

and sum seen as mentally manipulable concepts (extended abstract). 

This opens up a vision of a cognitive development from embodied beginnings 
encompassing the SOLO sensori-motor and ikonic (a combination of Bruner’s 

enactive and iconic modes) through successive encapsulations of actions as processes 

represented by symbols to symbolic manipulation of symbols as thinkable entities, 
relating the worlds of conceptual-embodiment and proceptual-symbolism. 

DEVELOPING A GENERAL THEORY THAT ALSO FITS THE PROBLEM 

At this point, a single incident gave us a sudden insight into the relationship between 
embodiment and symbolic compression. The first-named author (Anna Poynter) was 

convinced that the problem arising from the complications of the examples of physics 

with their different meanings for journey, force, velocity, acceleration and so on, 
could be replaced by a much simpler framework in mathematics, if only (and this is a 

big if) the students could focus on the fundamental mathematical ideas. The problem 

was how to give a meaning to the notion of ‘free vector’ in a mathematical way that 
was meaningful and applied to all the other contexts in an overall coherent way. 

The breakthrough came from a single comment of a student called Joshua. The 

students were performing a physical activity in which a triangle was being pushed 
around on a table to emulate the notion of ‘action’ on an object. Joshua explained that 

different actions can have the same ‘effect’. For example, he saw the combination of 

one translation followed by another as having the same effect as the single translation 



  

corresponding to the sum of the two vectors. He also observed that solving problems 
with velocities or accelerations is mathematically the same. 

This single example led to a major theoretical development. In performing an action 

on objects, initially the action focuses on what to do, but abstraction (to coin a phrase 
of John Mason, 1989) is performed by ‘a delicate shift of attention’, to the effect of 

that action. Instead of saying that two actions are equivalent in a mathematical sense, 

one can focus on the embodied idea of having the same effect. At a stroke, this deals 
with the difficult compression from action to process to object formulated in APOS 

theory, by focusing attention on shifting from embodied action to effect.  

In the case of a translation of an object on a table, what matters is not the path taken, 
but the change from the initial position to the final position. The change can be seen 

by focusing on any point on the object and seeing where it starts and ends. All such 

movements may be represented by an arrow from start point to end point and all 
arrows have the same magnitude and direction. In this way any arrow with given 

magnitude and direction can represent the translation, and the addition of two vectors 

can be performed by placing two such arrows nose to tail and replacing them by the 
equivalent arrow from the starting point of the first arrow to the end of the second. 

The embodied world of action has a graphical mode of representation that is more 

than a static picture: it represents the mental act of carrying out the transformations so 
that the learner can focus not just on the actions but on their effect. 

This theory of compressing action via process to mental object by concentrating on 

the embodied effect of an action is widely applicable. It is a practical idea that can 
prove of value in the classroom, as well as bringing together a range of established 

theories developed over the last half century by Piaget, Bruner, Dienes, Biggs & 

Collis, Fischbein, Skemp, Dubinsky, Lakoff & Núñez and many others. In the 
following sections we give a brief outline of our empirical evidence from Poynter 

(2004a) which are summarized on the web (Poynter, 2004b). 

EMPIRICAL RESULTS 

Poynter (2004a) compared the progress of two classes in the same school, Group A 

taught by the researcher using an embodied approach focusing on the effect of a 

translation, Group B taught in parallel using the standard text-book approach by a 
comparable teacher. The changes were monitored by a pre-test, post-test and delayed 

post-test, and a spectrum of students were selected for individual interviews. The 

tests studied the students’ progress in developing through a cycle of concept 
construction in both graphic (embodied) and symbolic modes of representation. 

In figure 1, two cycles of concept construction are involved. Stage 1 refers to the 

earlier cycle formulating the notion of a signed number in one dimension as journey 
or as a signed number. Stages 2, 3 and 4 are successive stages of encapsulation of the 

notion of free vector in two dimensions, starting from a graphical representation of an 

arrow as a journey represented symbolically as horizontal and vertical components, 
then focusing on the effect of the shifty as shifts with the same magnitude and 



  

direction or as a column vector as a relative shift, then finally as a manipulable free 
vector that can be given a single symbol that can be operated upon. A similar cycle 

was formulated for the encapsulation of the process of adding two vectors to give the 

concept of sum, starting from addition of signed numbers in one dimension, then in 
two, where the arrows are seen, for example, as one journey following another then 

focusing on the effect to see the sum of two vectors as the single vector with the same 

effect and finally as free vectors added as mental entities. 

Poynter (2004a) focused on several aspects of the desired change that could be tested. 

Here we consider three of them. It was hypothesised that students, who encapsulate 

the process of translation as a free vector, are able to focus on the effect of the action 
rather than the action itself. This should enable them to add together free vectors 

geometrically even if the vectors are in ‘singular’ (non-generic) positions, such as 

vectors that meet in a point or which cross over each other. It should enable them to 
use the concept of vector in other contexts, e.g. as journey or force. In the case of a 

journey, it should allow the student to recognise that the sum of free vectors is 

commutative. (As a journey, the equation   AB + BC = BC + AB  does not make sense, 
because   AB + BC  traces from A to B to C but,   BC + AB  first represents a journey from 

B to C and requires a jump from C to B before continuing. As free vectors,    u = AB  

and v =  BC , we have  u + v = v + u .) 

It was hypothesised that experimental students would be more able to: 

1. add vectors in singular (non-generic) cases 

2. use the concept of vector in other contexts (eg as journey or as force) 

3. use the commutative property for addition. 

Students were asked to add two vectors in three different examples: 

 
  

2) In each case add the two 

vectors together 

3) If there is any other way 

you could have done any of 

the additions of the two 

vectors in Q2 show it. 

(a) (b) (c)  

Figure 2: questions that could be considered singular 

Stage Graphical Symbolic 

0 No response No response 

1 Journey in one dimension A signed number 

2 Arrow as a journey from A to B Horizontal and vertical components 

3 Shifts with same magnitude and direction Column vector as relative shift 

4 Free vector Vector u as a manipulable symbol 

Figure 1: Fundamental cycle of concept construction of free vector  



  

When we asked other teachers what they felt students would find difficult, we 
encountered differences between the responses of a colleague who taught physics and 

two others who taught mathematics. As mathematicians, we saw part (a) to be in a 

general position, because it only required the right-hand arrow to be pulled across to 
the end of the left-hand arrow to add as free vectors; (b) evoked the idea of a 

parallelogram of forces; (c) was considered singular because it was known to cause 

problems with some students embodying it as two fingers pressing together to give 
resultant zero. 

All teachers considered part (c) would cause difficulties. However, they differed 

markedly in their interpretations of parts (a) and (b). The physics teacher considered 
that the students would see the sum of vectors either as a combination of journeys, 

one after another, or as a sum of forces. For her, (a) was problematic because it does 

not fit either model, but (b) would invoke a simple application of the parallelogram 
law. As an alternative some students might measure and add the separate horizontal 

and vertical components. The two mathematics teachers considered that students 

would be more likely to solve the problems by moving the vectors ‘nose to tail’ with 
the alternative possibility of measuring and adding components. One of them 

considered that students might see part (a) as journeys and connect across the gap, 

and in part (b) might use the triangle law in preference to the parallelogram law. The 
other sensed that (b) could cause a problem because ‘they have to disrupt a diagram’ 

to shift the vectors nose to tail—an implicit acknowledgement of the singular 

difficulty of the problem—and part (c) would again involve shifting vectors nose to 
tail although she acknowledged that some students might do this but not draw the 

resultant (which intimated again that they see the sum as a combination of journeys 

rather than of free vectors). 

The performance on the three questions assigning an overall graphical level to each 

student is given in Table 1. 

Group A (Experimental) (N=17) Group B (Control) (N=17) Graphical 

stage Pre-test Post-test Delayed Pre-test Post-test Delayed 

4 0 1 12 2 0 7 

3 1 9 4 1 10 3 

2 4 6 1 1 3 2 

1 4 1 0 4 1 0 

0 8 0 0 9 3 5 

Table 1: Graphical responses to the singular questions 

Using the t-test on the numbers of students in the stages reveals that there is a 
significant improvement in the experimental students from pre-test to delayed post-

test (p < 0.01) but not in the control students. 

Similar results testing the responses to questions in different contexts and questions 
involving the commutative law are shown in tables 2 and 3. 



  

Group A (Experimental) (N=17) Group B (Control) (N=17) Graphical 

stage Pre-test Post-test Delayed Pre-test Post-test Delayed 

4 0 0 8 0 0 2 

3 0 9 3 2 3 5 

2 1 2 2 0 3 3 

1 1 5 4 0 2 3 

0 15 1 0 15 9 4 

Table 2: Graphical responses to questions set in different contexts 

The change is again statistically significant from pre-test to delayed post-test 
(p<0.01) using a t-test. 

Graphical stage Group A (Experimental) Group B (Control) 

 Pre-test Post-test Delayed Pre-test Post-test Delayed 

TOTAL 0 7 12 4 6 5 

Table 3: Responses using the commutative law of addition 

In this case the change is from a significant difference in favour of Group B on the 
pre-test (p<0.05 using a 

2
-test) to a significant difference in favour of Group A 

(p<0.05 using a 
2
-test). Further details may be found on the web (Poynter, 2004a, b). 

What is clearly important here is not the statistical significance, but the evident 
changes which can be seen not only to improve the situation for Group A from pre-

test to post-test, but more importantly to increase the level of success by the delayed 

post-test. There is a clear difference in the long-term effect of the experimental 
teaching programme. 

BROADER THEORETICAL ASPECTS 

The theory reveals a parallel between focusing on the effect of embodied actions and 
the compression of symbolism from procedure to process to object has the potential 

to be simple to describe and implement with teachers and students. The theory has 

proved to be a practical theory, in that the idea of focusing on the effect of an action 
in the case of vector has proved to be not only successful with students, as in the 

experiment described, but also in subsequent discussion with other teachers (Poynter 

2004b). All that is necessary to have appropriate activities and to mentor the 
participants to focus on the effects of carefully designed actions. 

This applies in a variety of areas, not only in representing vectors dually as 

transformations and as free vectors, but also in other areas where symbols represent a 
process being encapsulated into a concept. For instance the process of counting is 

compressed to the concept of number by focusing on the effect of counting in terms 

of the last number spoken in the counting schema. Likewise, the process of sharing 
and the concept of fraction, in which, say, sharing something into 4 equal parts and 

taking 3 of them has the same effect as sharing into 8 equal parts and taking 6. This 

corresponds symbolically to having equivalent fractions (
 
3

4
or

 
6

8
). Likewise different 

algebraic procedures having the same effect gives an alternative way of looking at the 



  

idea of equivalent algebraic expressions. Other processes in mathematics, such as the 
concept of function, also result from a focus on the effect of an input-output action, 

rather than on the particular sequence of actions to carry out the process, revealing 

the wide range of topics in mathematics that benefit from this theoretical analysis. 

This research into a single classroom problem has therefore stimulated developments 

in the relationship between embodiment and (proceptual) symbolism as part of a 

wider general theory of the cognitive development of three worlds of mathematics 
(embodied, symbolic and formal), (Watson, Spyrou & Tall, 2003, Tall, 2004). This 

theory, in turn, also builds on earlier work that theorizes three distinct kinds of 

mathematical object: “One is an embodied object, as in geometry and graphs that 
begin with physical foundations and steadily develop more abstract mental pictures 

through the subtle hierarchical use of language. The second is the symbolic procept 

which acts seamlessly to switch from an often unconscious ‘process to carry out’ 
using an appropriate algorithm to a ‘mental concept to manipulate’. The third is an 

axiomatic concept in advanced mathematical thinking where verbal/symbolical 

axioms are used as a basis for a logically constructed theory” (Gray & Tall, 2001). 

In this way, looking at how a particular teaching problem benefits from different 

theories can be fruitful, not only in addressing the teaching problem in a way that 

makes practical sense to pupils and teachers, but also in analysing and synthesising 
aspects of a range of theories to produce a practical theory. 
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