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In this paper the notion of “procept” (in the sense of Gray & Tall, 1994) is extended to
advanced mathematics by considering mathematical proof as ‘‘formal procept”. The
statement of a theorem or question as a symbol may evoke the proof deduction as a process
that may contain sequential procedures and require the synthesis of distinct cognitive units
or the general notion of the theorem or question as an object like a manipulable entity to be
used as inputs to other theorems or questions. Therefore, a theorem, for example, could act
as a pivot between a process (method of proof) and the concept (general notion of the
theorem). We hypothesise that mature theorem-based understanding (in the sense of Chin &
Tall, 2000) should possess the ability to consider a theorem as a “formal procept”, and it
takes time to develop this ability. Some empirical evidence reveals that only a minority of
the first year mathematics students at Warwick could recognise a relevant theorem as a
“concept” and these did not have the theorem with the notion of its proof as a ‘‘formal
procept”. A year later some more successful students showed a concept of the theorem as a
“formal procept” and their capability of manipulating the theorem flexibly.

Introduction

Mathematical proof is one of the most important aspects of formal mathematics. From most
mathematics textbooks we can simply see the process of a mathematical proof as the
development of a sequence of statements using only definitions and preceding results, such
as deductions, axioms, or theorems. The process of a mathematical proof occurs when the
proof is built up and looked at subsequently as a process of deducing the statement of the
theorem from definitions and the specified assumptions. A proof becomes a concept when
it can be used as an established result in future theorems without the need to unpack it
down to its individual steps. We choose to focus on this sequence of proof as a process of
deduction becoming encapsulated as a concept of proof in a manner that would seem
natural to most mathematicians. We note that there are alternative theories, for example,
Dubinsky and his colleagues (Dubinsky, Elterman & Gong, 1988) focus on the use of
quantified statements as processes becoming turned into mental objects by applying the
quantifiers. Pinto and Tall (2002), in contrast, show how some students are capable of
building formal proofs by reconstruction of prototypical imagery used in thought
experiments.
Gray and Tall (1994) suggest the notion of “procept”, which was taken to be characteristic
of symbolism in arithmetic, algebra and calculus, defined in the following terms:

An elementary procept is the amalgam of three components: a process which produces a

mathematical object, and a symbol which is used to represent either process or object.

A procept consists of a collection of elementary procepts which have the same object.

(Gray & Tall, 1994, pp.3-4)
The original definition was made in the context where the authors were aware of a wide
range of examples and the definition was framed to situate the examples within the
definition. In this primary consideration it is a “descriptive definition”, in the sense of a
definition in a dictionary, rather than a “prescriptive definition”, in the sense of an
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axiomatic theory. However, if we consider the definition of “procept” in a prescriptive
view, it seems applicable to extend the notion of “procept” to the notion of formal proof,
which can be called “formal procept”, by adding the following analysis.

It should be noticed that there are three components of an elementary procept: process,
object, and symbol. Now we can put the frame of Gray & Tall’s “procept”, particularly in
the form of an “elementary procept”, on the notion of mathematical proof. The symbol is
the statement of what is going to be proved [which can be a theorem or a question]. The
process is the deduction of the whole proof. And the object is the concept of the notion of
proof, i.e. the real meaning of the theorem [or question]. The statement of a theorem [or
question] as a symbol may evoke the proof deduction as a process that may contain
sequential procedures and require the synthesis of distinct cognitive units or the general
notion of the theorem or question as an object like a manipulable entity to be used as inputs
to other theorems or questions. Therefore, a theorem, for example, could act as a pivot
between a process (method of proof) and the concept (general notion of the theorem). With
the above interpretation we could see the role of a symbol as being pivotal not only in
elementary mathematical thinking but also in advanced mathematical thinking to allow us
to change the channel between using a symbol as a concept to reflect on and link to other
concepts and as a process to offer the detailed steps to deduce a proof. However, an
immediate argument arises. It seems that the above corollary does not always follow
because even mathematicians sometimes use certain theorems without fully understanding
their proofs. However, we find this viewpoint an advantage to our analysis, for it simply
shows that such individuals are not using theorems as formal precepts, they only have part
of the structure, usually the statement of the theorem which they then use as an ingredient
in another proof without fully understanding the totality of the structure. Our evidence
shows that few students understand the notion of proof as a formal procept, but our
empirical research shows that, over time, more students grasp the subtlety of the idea.

Chin and Tall (Chin, 2002; Chin & Tall, 2000) postulated a hierarchy running through the
development of systematic proof, in stages consisting of concept image-based, definition-
based, theorem-based, and compressed concept-based. These stages show successive
compressions of knowledge in the sense suggested by Thurston (1990). The first stage,
which is concept image-based sees the student having a concept image of a particular
concept built from experience, but very much at an intuitive stage of development. The
transition to definition-based involves the first compression. From amongst the many
properties of the concept-image, a number of generative ideas are selected and refined
down to give the concept-definition. During the definition-based stage, the definitions are
used to make deductions, all of which are intended to be based explicitly on the definitions.
Many students, however, remain in the concept-image based stage, basing their arguments
not on definitions and deductions, but on thought experiments using concept images (Tall
& Vinner, 1981, Vinner, 1991). Bills and Tall (1998) introduced the term ‘formally
operable’ definition (or theorem), proposing that:

A (mathematical) definition or theorem is said to be formally operable for a given individual if
that individual is able to use it in creating or (meaningfully) reproducing a formal argument.

Tracing the development of five individuals over two terms in an analysis course, focusing
on the definition of “least upper bound”, they found that many students never have
operable definitions, relying only on earlier experiences and inoperable concept images.
Furthermore, it was also possible for a student to use a concept without an operable
definition in a proof using imagery that happens to give the necessary information required.
Thus, we already know that the development from the concept-image based stage to the
compressed notion of operable definition is a difficult one for many students. Even so, they



are then expected to move on to the next, theorem-based stage, when theorems that have
been proved by the process of proof are now regarded as being compressed into concepts of
proof, to be used as entities in the process of proving new theorems. For this to be fully
successful, we hypothesise that students who have developed mature theorem-based
understanding should possess the ability to consider a theorem as a “formal procept”. We
further hypothesise that individuals with this capacity to use theorems flexibly as processes
or concepts are developing a compressed concept level of mathematical thinking that
enables them to think with great flexibility and conceptual power.

Empirical Study

The subjects are fifteen second year mathematics students following a course in one of the
top five ranked mathematics departments in the UK. Their marks for the first year study are
widely distributed — three are over 80, four between 70 to 79, four between 60 to 69, one
between 50 to 59, and three between 40 to 49. The same questionnaire on the topic of
“equivalence relations & partitions”, which they answered for the first time about a year
ago when just having learned the topic for several weeks, was answered again. The fifteen
subjects were interviewed during the first term in their second year. The study designed is
to investigate whether and how the students’ understanding improved.

“Equivalence Relation” at the Theorem-based Level
The following question is designed to examine if the students improve their understanding
from the definition-based level to theorem-based level:

A relation on a set of sets is obtained by saying that a set X is related to a set Y if there is
a bijection f: X—Y. s this relation an equivalence relation?

The difference between the students’ former and recent responses is represented in Table 1.

First Year Second Year
(N=15) (N=15)
Formal Definition 7 1
perhaps with Theorem 3 12
some informal | p,ytition/Equiv. class 1 0
language

Informal Informal definition 3 1
Misunderstanding 0 0

Don’t know 0 0

Others 1 1

No response 0 0

Table 1: Responses to the formal “bijection” question

In the first year, ten students (seven “Formal definition” and three “Informal definition”)
were able to give a definition-based response. Only three could apply the relevant theorem
to make their deductions. One was classified as “Other” because he only answered “Yes”
without giving any explanation. PAUOST, again, was the one who responded to the
problem in terms of partition.

As was found in the cross-sectional study, the students’ concept images were not solid at
that time. Although most of the students knew the relevant theorem, they did not really
have a clear idea how to apply it to this practical problem. JULSON was an example



offering a definition-based response (as follows) but he vividly expressed in the interview
— “I remember I learned it [the theorem] in the lecture a couple weeks ago, but I’'m sorry |
haven’t put it in my head yet.”
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(JULSON(68%), 1* year)
After being given a period of time to digest what they had been taught, whilst three were
theorem-based in the first year test, twelve were able to upgrade their understanding to the
theorem-based level in the second year. In addition, compared with their former responses,
the quality of their deductions seemed to indicate that the concept of the theorem had
become more workable in their concept images. JULSON’s recent response (classified as
“theorem-based’) could offer us some evidence.
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(JULSON(68%), 2™ year)
In the second year, JULSON not only stated the theorem but also explained how the
theorem can be proved. He clearly showed that the notion of proof of this theorem had
become a “procept” in his concept image as he knew both the method of proof (as process)
and the statement of theorem (as concept).
As to the other three, one was classified as “Formal definition” because he answered the
question by checking the three axioms without referring to the theorem, another only
simply replied “all 3 axioms are satisfied”, the other gave a wrong answer by saying “not
symmetric or transitive as a bijection does not allow elements to be bijective to one another
in Y”. These three students’ understanding on this question did not seem to be improved.
The following quoted conversations recorded in the interview and e-mail discussion with
DIAHUM might offer us some more delicate insight into how the successive moves —
from informal to definition-based, then on to theorem-based conceptions — happened with
the individual.
DIAHUM gave the following response (classified as “Informal definition”) in the first
year:
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(DIAHUM(48%), 1*' year)

He cleared up what he meant in his response through an e-mail.
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I was trying to apply the definition of equivalence relation to make the answer more
formal. But I don’t think my answer was formal enough because I didn’t really know
how to apply the definition even though I can remember it. And another problem is I
can’t recall the definition of bijection. What I can remember is a bijection is one-to-one
and onto. That means the two sets have the same number of elements (he explained later
that this idea was from what he learned at A-level).

He also expressed that he knew the theorem which is directly relevant to this question.
(Please refer to the chapter “Design of Questionnaire”.) But the theorem seemed to be
something only in his understanding in a theoretical manner rather than in his intuition
which can be freely referred to at any time.

In the second year, he responded in terms of the relevant theorems as follows:
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(DIAHUM(48%), 2™ year)

Although he did not use the term “identity” to mention the bijection mapping from the set
X to itself, he could precisely write down the composition of two bijections whilst some
others mentioned it in the wrong order. When being asked why he answered in this way this
time, he gave the following explanation:

Well, I think it’s fairly natural for me to make the deduction like this. When I faced the
question, the theorems burst upon my head and I just wrote down the proof.

DIAHUM’s case seems to suggest that he cannot freely apply a formal conception until it is
assimilated in his concept image as an embodiment. When DIAHUM could only recite the
formal definition of equivalence relation but was still struggling with the implication of it,
it is natural for him to consult the relevant ideas he learned at school to make his first
deduction because they were more embodied in his concept image. Having a year to digest
all these notions, the theorem he only knew about before, had been assimilated into his
concept image as embodiments that he could recall intuitively in the second test.

Summary of evidence of moving from definition-based to theorem-based

In the students’ (written or oral) responses, we can see that most students seemed to apply
the relevant theorem directly to this practical question in the second year whilst most of
them only gave a definition-based response in the previous year. This kind of result is
consistent with the successive move from definition-based conceptions to theorem-based
conceptions over time during which the ideas are being used formally. From the improved
quality of the students’ deductions, I consider, at least for some students, the notion of
proof of the theorem seemed to have become a “procept” in their concept images. Since
they only seemed to know the concept (statement of the theorem) but not the process
(method of proof) of the notion of proof of the theorem before. But, a year later, some
students appeared to be able to unpack the notion of the theorem to the proof process and to
apply the theorem to the question more flexibly.



Linkage between “Equivalence Relations” and “Partitions”
(at the compressed-concept level)

Theoretically the notion of “equivalence relations” is linked to the notion of “partitions” as
there is a theorem connecting these two notions together. The following question is asked
in order to examine whether the students appreciate the idea practically.

Write down two different partitions of the set with four elements, X={a,b,c,d}. For the

first of these, please write down the equivalence relation that it determines.
Table 2 shows that most of these fifteen students could handle this practical problem better
than a year ago.

First Year Second Year
(N=15) (N=15)

Correct with correct ER 3 8
Partitions with wrong ER 3 1
without giving ER 7 3
Incorrect with correct ER 2 2
Partitions with wrong ER 0 0
without giving ER 0 1
Don’t know 0 0
No response 0 0

Table 2: Responses to the “link between Equivalence Relation & Partition” question

When being asked to give examples of partitions of a set, thirteen out of fifteen gave two
satisfactory partitions in the first year but the number decreased by one in the second year.
The two who failed to give correct examples of partitions (in both years) misunderstood
partition as a subset of the set because they seemed to follow the linguistic meaning of a
partition. This kind of result seems to be consistent with the students’ feeling that they
understood partition better than equivalence relation, yet actually gave unsatisfactory
formal responses. In addition, please note that all fifteen students said that they
remembered they had seen in the lecture the theorem which links the two notions together.

In the first year, seven students gave satisfactory partitions but did not manage to write
down the corresponding equivalence relations that their given partition determined. Two
gave a wrong equivalence relation because they seemed to get confused when dealing with
too many pairs whilst the other one, VICMOR, tried to define an exact relation as follows:
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(VICMOR(85%), 1* year)

As I have mentioned in the chapter of cross-sectional study, VICMOR thought the question
was not to ask them to write down something like a~b, b~c,... etc. because it was trivial.
He had no problem offering the equivalence relation determined by his given partition in
the interview. However, being a very successful student, he immediately recognised his
own mistake saying “in the same partition” when reviewing his answered questionnaire.
He said that he did not notice he answered the question in that way. It seems that this kind
of idea came out from his thinking intuitively. VICMOR has said that he always focuses on
the formal definition to grasp the implication of it first then he tries to accommodate his



(informal) embodiments to fit into the formal concept in his concept image. This seems to
suggest that we should be more careful about employing embodiments especially when we
are constructing a concept image for a new formal concept because the embodied objects
may turn up in our thinking without noticing.

In the second year, eight students could successfully give two correct partitions with a
correct corresponding equivalence relation. The only one who gave correct partitions but
with a wrong corresponding equivalence relation was VICMOR. He rashly missed the two
pairs (b,d), (d,b) in his equivalence relation. However, he used different symbols precisely
in his response.
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(VICMOR(85%), 2™ year)
Three students within the seven a year ago kept getting confused in determining the
equivalence relation defined by a given partition. The same two students still had the
misconception: that the term “partition” referred to each individual subset, not to the
collection of all subsets. The only student, MAUHAM, who gave wrong partitions without
the corresponding equivalence relation was able to give two correct partitions followed by
a big question mark in the first test.
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~ (MAUHAM (71%), 1* year)
In the second year, he gave the following response:
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In the interview he confessed he just copied the notation from the following question. He
had no idea of the formal notion of a partition so he could not answer the question.

Summary of evidence of developing a compressed concept relating
equivalence relation and partition

Six students seemed to have improved their understanding and became able to link the
notion of partition to the notion of equivalence relation in the second test. However,
because of having no idea of the formal definition of “partitions”, another six appeared to
be drowned in their improper conceptions so that they still could not make the theoretical
linkage operable.

The result of this question appears to parallel QB3 in some instances. All the students
sensed the relevant theorem linking the two notions together but only a few could
practically apply the theorem to the question in the first year. A year later, some students’
understanding had progressed to reach a more mature theorem-based level. The theorem
was no longer a “concept” only but also a “process” which suggests the method of proof to
make the whole notion of proof of the theorem as a “procept” in their concept images.

Conclusions

The concept image-based thinking is based on the embodiments embedded in the
individual’s concept image. As this kind of informal thinking is more strongly linked to the



real world, it is very natural to be concealed in any mode of understanding with or without
being realised.

At the level of definition-based thinking, the role of the definition and whether it is
operable is considered (in the sense of Bills & Tall, 1998). The students need time to digest
the implications of the definition so that they can develop their understanding from making
to having the definition. That means the definition is operable in their concept images so
that they are able to use it to make relevant formal deductions.

The next, theorem-based level, moves on to using the results of theorems as elements in
succeeding proofs. Whether the theorems involved are “procepts” is considered. I notice
that only a relatively low level of proof as procept appeared even in the high quality novice
students studying at Warwick. However, over the period of a year there is a movement from
informal thought to definition-based deductions and on to theorem-based deductions.

The concepts introduced through definitions may be handled as “cognitive units” which are
thinkable elements that can be manipulated as entities. These include operable definitions,
theorems as procepts, and concepts such as equivalence relation and partition which are
mathematically equivalent and may therefore be compressed to a single cognitive unit.
Only a few students display understanding at this level.
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