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This study of the learning of vectors is situated in the intersection of embodied theory
relating to physical phenomena, and process-object encapsulation of actions as
mathematical concepts. We consider the subtle effects of different contexts such as
vector as displacement or force, and focus on the need to create a concept of vector
that has greater flexibility. Our approach refocuses the development from ‘action to
process’ as a shift of attention from ‘action to effect’ in a way that we hypothesise is
more meaningful to students. At a general level we embed this development from
enactive action to mental concept within a broad theoretical perspective and at the
specific level of vector we report initial experimental data.

INTRODUCTION

This study is part of an ongoing enterprise to build a practical cognitive theory
embracing human learning and the powerful use of symbolism in mathematics (Gray
& Tall, 2001). As such, it stands at the conjunction of two major theories of
cognitive development: the embodied cognition of Lakoff and others (Lakoff &
Johnson, 1999, Lakoff & Nunez, 2000) and the development of symbolic
mathematics through process-object encapsulation (Dubinsky, 1999, Tall et al,
2001). The current three-year study focuses on the concept of vector. This is
particularly appropriate for the wider development of the theory as it encompasses
embodied aspects in Physics—such displacement, force, velocity, acceleration—and
a complementary approach in Mathematics that is based on a text with an implicit
process-object approach (Pledger et al, 1996).

In the first year, (September 2000 — July 2001), the first author followed a strategy
using full class plenaries to encourage students to construct their own coherent
conceptions. As we shall see, this had positive effects in improving the flexibility of
the students’ concept of vector. In the second year, which is now in progress, a new
initial emphasis focuses on embodied activities in which the new students enact
vectors as transformations moving a shape on a flat surface. The movement of any
point on the shape can be represented by an arrow from start to finish, and all the
arrows have the ‘same effect’. This idea (formulated by a student, Joshua) has
proved to be a helpful bridge in translating the sophisticated theory of process-object
construction to a practical idea of action-effect. In this article we discuss the findings
of the exploratory study and data analysis of the first stages of implementation.
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THE COMPLEXITY OF THE LEARNING SITUATION

Students meet the notion of vector in different contexts with subtle differences in
embodiment. For instance vectors may be encountered as displacements sensed as
physical journeys from one place to another, or as forces acting at particular points.
In the addition of displacements, one journey followed by another is naturally
interpreted using the triangle law, but the addition of forces operating at a point is
more naturally represented by the parallelogram rule. In the curriculum we are
considering, the notion of vector is first introduced as a translation in the plane and
dealt with as a column matrix in mathematics, or as the separate horizontal and
vertical components in physics. Both versions are linked to a picture of the vector as
the hypotenuse of a right-angled triangle with components as horizontal and vertical
sides. In turn this links more easily to the triangle law than to the parallelogram law.
Given a problem solvable by horizontal and vertical components such as figure 1a,
25 out of 26 students were able to solve it. However, given a more complex physical
problem such as that in figure 1b, asking the student to mark the forces involved
with an object on a rough sloping plane, only 4 out of 26 students were successful.
In interviews, it transpired that several students, who used the triangle law to draw a
picture as in figure lc, used the triangle of forces to mark the components; because
the force parallel to the plane is drawn well below the object, it did not seem to be
acting on it and was ignored.

Fig 1a: find F\, F, Fig 1b: describe & mark forces Fig 1c: forces as marked

The research project therefore focuses on two main objectives, the first is to analyse
the cognitive development of the notion of vector in the curriculum, the second is to
help students develop the notion of vector as a flexible cognitive unit that can be
applied transparently in its various incarnations.

METHODOLOGY

The research method draws upon qualitative and quantitative data and includes
lesson observations, standard class tests to assess progress, and a specially designed
conceptual questionnaire coordinated with clinical interviews with students and
Mathematics and Science teachers (Ginsburg, 1981; Swanson ef al., 1981). The data
was triangulated, by analysing the books used by students and teachers, by videoing
and observing classes, by interviewing teachers on their preferences and their
expectations of the students’ knowledge about vectors, with particular emphasis on
the questions used in the conceptual questionnaire.
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The research is conducted at a Comprehensive School with a good academic
reputation (for example, in 2001, 63% attained a grade C or above in mathematics in
the GCSE examination taken at age 16, as compared with a national average of
54%). The research involved 23 Lower Sixth students (aged 16-17), 26 Upper Sixth
students, (aged 17-18), 2 teachers of Physics, and 4 teachers of Mathematics (two
covering the preliminary work on vectors at GCSE level, and two teaching the two-
year ‘A’ level course in the Sixth Form).

THEORETICAL FRAMEWORK

The topic of vectors spans both mathematics education and science education. In
science the ideas often begin from what we would now call a real-world embodied
viewpoint. For instance, in dealing with vectors, Aguirre and Erikson write:

Teachers could [...] build upon students intuitions (developed through experience in
everyday settings) by relating these intuitions to the more formal problem settings in
the scientific domain. (Aguirre & Erikson, 1984, p 440.)

They proceed by detailing networks of vector concepts to support this approach,
however, their network shows no indication of the mathematical concept of vector.
After many years of such developments, Rowlands, Graham and Berry observe:

. various attempts at classifying student conceptions has been by and large
unsuccessful [... ]. A taxonomy of students conceptions may be impossible because the
considerations of ‘misconceptions’ require a specific regard for the framework from
which the ‘misconception’ occur [..] and how misconception is linked to the other
forms of reasoning. (Rowlands, Graham & Berry, 1999, p 247.)

The recent development of embodied cognition, particularly in the formulation of
Lakoff (eg. Lakoff & Johnson, 1999, Lakoff & Nunez, 2000) even formulate the
idea that a// thought is embodied. Here we are faced with a genuine quandary. If the
attempts to classify the development of vector through intuitive student concepts is,
by and large, unsuccessful, and the evidence is that the notion of vector has subtly
different meanings in different contexts, how are we to progress in teaching the
subject? One strategy that seems evident is to encourage students to reflect on the
different aspects of different embodiments and to help them rationalise the various
contexts to give an entry into the mathematical notion of vector wherein the ideas of
the triangle law and parallelogram law are different aspects of the same theoretical
idea, not distinct rules that each have their separate domain of meaning. To gain
insight into this possibility, the first author began a programme of plenary
discussions with the Upper Sixth based on the underlying unity of the idea of vector.

In linking various embodied ideas to the mathematical notion of vector, we were
conscious of the large number of theories relating embodied experiences with
mathematical symbolism. These include Piagetian stage theory developing through
sensori-motor via concrete operational and formal operational, the Bruner (1966)
theory of enactive-iconic-symbolic representations, the work of Krutetskii (1976) on
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geometric, harmonic and symbolic styles of thought, the van Hiele (1986)
development in geometry, and the SOLO taxonomy (Structure of Observed
Learning Outcomes) of Biggs & Collis (1991), not to mention the wide range of
work in using visual and symbolic interfaces with computers. Amongst all of these
we found most empathetic was the notion of how successive modes of thought arise
in the SOLO taxonomy whereby each broadens to be included in the next and how
physical action (in the sensori-motor mode) is broadened to the ikonic mode, then,
through the introduction of symbols, to the symbolic mode and on to successive
formal modes of operation. As each of these becomes available and is added to
previous modes, we found ourselves dealing with students in a situation where the
two main modes of operation are a combined sensori-motor/visual embodied mode
of thought and a fundamentally concrete-symbolic mode.

ANALYSIS OF THE SCHOOL APPROACH TO VECTORS

The text-book (Pledger et al, 1996) used in the school for introducing vectors to the
students in the previous year followed a pattern that is reminiscent of the
encapsulation of processes as objects. In this approach, the processes are translations
of objects in the plane and these lead to vector concepts, as follows:

()

positive x direction and 1 unit in the positive y direction. ~ L——eeeeeeeeeeene g :

X
1. translations are described using column vectors, ( )
y

[...] with the column vector [1] meaning 6 units in the

2. an alternative notation which can be used to describe the

translation is AB representing where A is the starting / B
point and B is the finishing point. [...] The lines with A
arrows are called directed line segments and show a

unique length and direction

3. athird way to way to describe a translation is to use

single letters such as a .... Translations are referred to /

simply as vectors. [...] [Each vector] has a unique
length and direction ...

X
4. Position Vectors. The column vector ( ) denotes a ./'
y

translation. There are an infinite number of points which
are related by such a translation. ... The diagram shows
several pairs of points linked by the same vector. The

vector which translates O to P, OP, is a special vector,
the position vector of P.
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This pragmatic approach has some of the aspects of process-object encapsulation.
Stage 1 sees a vector as an action on a physical object. The translation is already
represented as an arrow. In stage 2 the object is omitted and the focus of attention is
on the line segment as a journey from a point 4 to a point B. Stage 3 shifts the focus
to the vector as a single entity drawn as an arrow and labelled with the single symbol
a. This entity has both an enactive aspect (the movement from tail to nose of the
arrow) and an embodied aspect (as the arrow itself). In stage 4 the column vector is
used to denote an infinite family of arrows with the same length and direction, with
one specific vector starting at the origin singled out as a position vector as a special
representative of the whole family.

In practice, the Physics teachers preferred to ‘simplify’ the ideas by referring
separately to horizontal and vertical components of vectors. For example, to add two
vectors, they would consider each vector separately, calculate its horizontal and
vertical components and add them together to get the components of the sum. In
parallel, the students would often use the equivalent matrix method to add vectors in
pure mathematics. Thus, although they had been taken through the spectrum of
development in stages 1 to 4, to make any computations, they were encouraged to
fall back to level 1.

ACTIONS AND EFFECTS - THE INSIGHT OF A SPECIAL STUDENT

In attempting to build a more flexible conception of the notion of vector that
encapsulates the whole structure of embodiment and process-object encapsulation,
we were struck by the interpretation formulated by one particular student whom we
will call Joshua. He explained that different actions can have the same ‘effect’. For
example, he saw the combination of one translation followed by another as having
the same effect as the single translation corresponding to the sum of the two vectors.

By focusing on the effect, rather than the specific actions involved, we realised that
it proves possible to get to the heart of several highly sophisticated concepts. For
instance, in fractions, ‘divide into three equal parts and take two’ is a different
action from ‘divide into six equal parts and take four’ but they have the same effect,
giving rise to the central idea of equivalent fractions. The same idea occurs in
algebra where 2(x + 4) and 2x + 8 involve different sequences of actions with the
same effect, leading to the notion of equivalent expressions. We hypothesize that the
notion of action-effect is a more approachable way of describing the theory of
action-process (Dubinsky, 1991) or procedure-process (Gray & Tall, 1994).

In dealing with this approach, we encouraged students to participate actively by
shifting a triangle placed on the table. Figures 2a and 2b have the same start and
endpoint (and therefore the same effect, even though the journeys they take in
between are different.) The arrows in figure 2b represent equivalent vectors (free
vectors having the same effect) and figure 2¢ represents Joshua’s idea that the sum of
two vectors has the same effect as the two vectors applied one after the other.
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Fig 2a: a translation Fig 2b: a translation Fig 2c: The sum of two vectors

Figures 2a, 2b ‘have the same effect’ Two translations and their total effect

This approach implicitly encapsulates the notion of equivalent free vectors ‘having
the same effect’ and encourages students to feel able to shift free vectors around in
any appropriate manner. We would therefore expect students following this approach
to be more flexible in handling free vectors.

EMPIRICAL DATA ANALYSIS

To investigate the reasons underlying the original problem in figure lc, a question
was given showing a body on an inclined plane, as in figure 3. Figures 3b and 3c
represent the ways in which two students James and Chris split the weight W into
components W; and W,. Are either or both of James and Chris right?

Fig 3a: a body on an inclined plane Fig 3b: Jame’s picture Fig 3c: Chris’s picture

The 23 students beginning the course in the lower 6™ gave a variety of responses, 11
said both were right, 4 chose fig 3b, 1 chose fig 3¢ and 6 said neither. All of the
students in the sixth form who had taken part in the reflective plenaries found the
question trivial and saw the triangle and parallelogram as equivalent.

To test the student’s ability to deal with vectors graphically, we gave the question in
figure 4. The first part is a natural triangle problem with the vector AB followed by
BC, the other two benefit from being able to see the vectors as free vectors to be
able to move them so that they follow on end to end.

In the test, all the students were easily able to cope with the sum AB+ BC.
However, parts (ii) and (iiil) were more problematic. When we consider those

students who were able to solve all three problems, we get the data in tables 1a and
1b.
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Fig. 4: Testing the visual sum of two vectors

In table 1a those upper sixth students who participated in reflective plenaries were
more successful than those following standard class lessons and in table 1b, those
following an embodied approach also had more success.

Upper 6th| Reflective | Standard Lower 6th| Embodied | Standard
All 3 correct 7 1 All 3 correct 5 1
Other 8 10 Other 2 15
Table 1a: effect of reflective plenaries Table 1b: effect of embodied approach in

reflective plenaries

Interviews with six selected students in the lower sixth confirmed that students
following a standard course had problems adding two vectors that did not follow on
one after the other, especially in cases where they were joined head to head. In the
latter case, two out of three students thought that two vectors pointing to the same
point would have resultant zero, because they would cancel out.

REFLECTION

The study so far has revealed the complexity of the meaning of vectors as forces and
as displacements and the subtle meanings that are inferred in differing contexts.
Studies in science education have attempted to build a classification of
misconceptions without clearly identifying the underlying problems. Our approach is
to develop a pragmatic method that will work in the classroom. One aspect is the use
of conceptual plenaries, which are already becoming part of the formally defined
curriculum in England. The other is to continue to develop a theory that links
physical embodiments to mathematical concepts via a strategy that focuses on the
effects of actions. Our experience shows that such an approach can be beneficial in
the short-term and we are continuing our practical and theoretical developments over
the longer term.
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