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This paper investigates the novice university students’ understanding of the formal
definition of “equivalence relations”, especially their understanding of the
quantifiers in the definition. Even though the definition is relatively simple and only
involves the universal quantifier, we find that half of a class of highly qualified
university students are unable to test whether an explicit relation on a set with three
elements is an equivalence relation. Analysis of the data, from a questionnaire
answered by 277 students and interviews with 36, reveals subtle influences of
language and of conceptual embodiments. In particular, the transitive law, which is
shared with the notion of order relation, may evoke an embodied image of order that
is highly misleading.

INTRODUCTION

Chin & Tall (2000) proposed a theory of development of formal thinking, moving
from informal concepts, to the introduction of definitions, to ‘definition-based’
deduction and on to ‘theorem-based’ deduction, in which we hypothesised that
successful students would compress formal concepts into cognitive units appropriate
for powerful formal thinking. In particular, we focused on ‘equivalence relations &
partitions’ which students claimed to be the most difficult topic in the course. Our
purpose was to determine why the students found the topic to be problematic.

In our first study above, there was evidence of responses in the categories of
informal responses, definition-based deduction, theorem-based deduction, with some
evidence of a few students having cognitive units that linked the notions of
equivalence relation and partition. Our second study (Chin & Tall, 2001) followed
the development over a period of time and revealed a general shift from ‘definition-
based’ deduction using the formal definition to ‘theorem-based’ deduction referring
to already proven theorems. However, it also revealed quite different developments
for ‘equivalence relation’ and ‘partition’. An equivalence relation has an apparently
simple definition that almost all students are able to reproduce but it does not seem
to have a natural embodiment. A partition has a subtler definition but has a simple
prototypical embodiment as a set broken into subsets. Even though equivalence
relations and partitions are mathematically equivalent, they develop as qualitatively
different cognitive units linked by a formal theorem.

Our focus here is on the way that students employ the definition of ‘equivalence
relation’. Is the definition operable in the sense that it can be used as the basis for
formal deduction (Bills & Tall, 1998)? In particular, do they have a full



understanding of the use of the quantifiers, as, for instance, in ‘a~a for all a Œ S’, or
are there other aspects of the definition that the students use intuitively or implicitly?

THEORETICAL FRAMEWORK

Formal definitions and deductions are the essential ingredient in advanced
mathematical thinking (Tall, 1995), but they are known to cause great difficulties
(Vinner, 1991). Some formal thinkers attempt to use logical deductions, others use a
natural approach that relies more on their concept image (Pinto, 1998). The latter
often involves thought experiments using embodied images in the sense of Lakoff
and Johnson (1999, pp16-44). Our earlier papers showed that the notion of
equivalence relation did not have a strong embodied image in the same way as the
notion of partition. So, precisely how do students reason when they use the
definition? For instance, how do they use the universal quantifier which occurs in
the reflexive law ‘for all a Œ S, a~a’? The use of quantifiers in definitions has been
considered “one of the least often acquired and most rarely understood concepts at
all levels, from secondary school on up — even, in many cases, into graduate
school” (Dubinsky, et al., 1988, p.44).

The definition of equivalence relation, uses only the universal quantifier:

An equivalence relation on a set S is a binary relation ~ on S that is
reflexive: a~a for all a Œ S

symmetric: if a~b then b~a for all a, b Œ S

and transitive: if a~b and b~c then a~c for all a, b, c Œ S. (Stewart & Tall, 1977)

However, the quantifier here plays a very subtle role, as is shown by the following
question, (which the first author well remembers being unable to answer for several
days whilst studying Birkhoff & Maclane (1953) as an undergraduate):

Given an equivalence relation “~” on A. Let a~b, then b~a (by symmetry) and a~b, b~a,
implies a~a (transitivity). So symmetry and transitivity imply reflexivity.

The subtlety is two-fold. The first axiom asserts that the relation a~a must hold for
all a Œ S. The second and third axioms use implication in a more subtle way, that if
the premises holds, then the consequence follows. We decided to use a specific
instance of this idea to test if the students’ definitions are truly operable.

EMPIRICAL STUDY

The study was performed on 277 (first year mathematics) students taking a course on
‘foundations’ in one of the top five ranked mathematics departments in the UK, 151
from a class of pure mathematics majors and 126 in a class consisting of those
following courses such as statistics, economics, or physics. Both classes covered the
same material over a ten-week period with three-hour lectures per week supported
by weekly examples classes in groups of up to four students. The second author
acted as supervisor for 12 pure mathematics students selected to cover a range of
abilities The topic of ‘equivalence relations’ and ‘partitions’ was formulated in the



third week and developed in subsequent weeks. The students conceptions were
studied by a questionnaire given to all students in the ninth week, (six weeks after
the definition of equivalence relation was given and subsequently developed) and the
responses were triangulated with interviews with the other 24 selected students,
fourteen in pure mathematics and ten in other mathematically-linked subjects,
together with field notes made in tutorials with the 12 pure mathematics students.

In this study we focus on the following question to investigate how the students
understand the definition of “equivalence relations”:

Let X={a, b, c} and the relation ~ be defined where a~b, b~a, a~a, b~b, but no other

relations hold. Is this an equivalence relation? If not, say why?

Student Responses & Analysis

The student responses to the main question were categorised as follows:

• Correct deduction & answer,
• Incorrect deduction with correct answer,
• Incorrect deduction & answer,
• Don’t know/ no response.

The following examples illustrate the categories.

To be classified as ‘Correct’, an answer must either have a general statement that the
reflexive property does not hold for all elements, or specifically note that c~c does
not hold. For instance, ANNWAN (pure mathematics) wrote:

GILWIN (other mathematics) was classified ‘Incorrect deduction with correct
answer.’ Not only did he miss the universal quantifier in the reflexive property, he
tested the symmetric property only with the distinct elements a, b, then denied
transitivity because “b~c doesn’t hold” for making a~b, b~c fi a~c. However, he
even did not notice that a~c does not hold either when making the deduction. In the
interview, he explained what he means is it needs three different elements to make
transitivity hold.

JOAITE (pure mathematics) was classified as ‘Incorrect deduction and answer’.



He used only the four related pairs and assigned each of them to his own versions of
the three rules, (presumably in the order 1: symmetry, 2: reflexivity, 3: transitivity)
without exhibiting any conception of the subtlety of the universal quantifier.

Incorrect deductionCorrect
deduction
 & answer “correct”

answer
incorrect
answer

Don’t know/
No response

Total

Pure mathematics 94 24 30 3 151
Other mathematics 45 44 18 19 126
Total 139 68 48 22 277

 Table 1: Responses to the “use of quantifiers” question

The distribution of the categorisation is shown in table 1. Visibly, the pure
mathematics students give more correct responses (in terms of both deduction and
answer) than the other mathematics students (c2=19.34, p<0.0001). These ‘correct’
responses show a satisfactory use of the universal quantifier in the reflexive property
at either a general or specific level. (This is not to say that a student who gives a
correct response to the reflexive property necessarily understands the whole
definition, for there are seven students who correctly assert the falsehood of the
reflexive property who are categorised as having an ‘incorrect deduction’ because of
difficulties with the symmetric or transitive properties (usually the latter)).

We investigated whether the nature of these responses correlated with the quality of
the definition that the students offered for an equivalence relation. To determine the
latter we combined the results of the following question:

Say what “equivalence relation” means to you,

and a later question focusing on their concept definition:

Look back at what you wrote about the meaning of “equivalence relation”, do you
consider it to be a formal definition? If you consider it is not a proper formal definition,
please write down the formal definition.

The combined response to these questions were placed into four categories:

• formal-detailed (including full use of quantifiers),
• formal-partial (giving the three properties in symbolic form without quantifiers),
• informal outline (mentioning ‘reflexive, symmetric, transitive’ only)
• other, or no response

The student responses are cross-tabulated in tables 2, 3. There is no statistical
correlation between the responses of the pure mathematicians and the quality of their
definitions (c2=10.94, p=0.28). But for the other mathematicians, the correlation is
highly significant (c2=29.39, p<0.001). However, closer examination shows that the
significance arises from the correlation between those students responding ‘other/no
response’ in both categories. If these are removed, then the correlation on the
remaining data is c2=3.11, p=0.54 for the pure mathematicians and c2=5.91, p=0.21



for the others. Thus the statistical difference is due solely to the fact that a
significant minority of the other students cannot handle the definition at all.

Our attention focuses on those students who gave unsatisfactory responses.

Unsatisfactory responses declaring the relation to be an equivalence relation

Forty eight students asserted incorrectly that the relation is an equivalence relation.
Thirty gave no explanation. Of these, three were interviewed and in each case the
response indicated that the students concerned did not think deeply about the
problem. For instance, one was capable of giving a ‘formal/detailed’ response with
full quantifiers in the interview, but was unable to explain any further.

Of the 18 students offering a written explanation, there was a tendency to simply
overlook the role of the quantifier in the reflexive property. SANSON (pure
mathematics), for example examined the reflexive rule for all four given relational
pairs, then indicated one clear example of the transitive law, but did not consider
symmetry in detail.

Incorrect deductionDeduction

Definition

Correct
deduction
 & answer correct

answer
incorrect
answer

Other/
No response

Total

Formal-detailed 31 7 5 1 44
Formal-partial 25 6 7 1 39
Informal-outline 35 10 15 0 60
Other/no response 3 1 3 1 8
Total 94 24 30 3 151

Table 2. Pure mathematics students: giving definitions versus making deductions

Incorrect deductionDeduction

Definition

Correct
deduction
 & answer correct

answer
incorrect
answer

Other/
No response

Total

Formal-detailed 9 5 1 0 15
Formal-partial 21 23 6 4 53
Informal-outline 12 12 9 11 41
Other/no response 3 4 2 8 17
Total 45 44 18 19 126

Table 3. Other mathematics students: giving definitions versus making deduction



MAROOD (pure mathematics) wrote out the definition in full, but then did not
apply the definition to the specific example.

In general, even though many of these students could give the definition in detail,
they failed to implement it in the given case.

Saying the relation is not an equivalence relation

The case of students who asserted the relation was not an equivalence relation, but
made errors in explanation, is the most revealing category of all. Eighty two percent
of them (19 of 24 pure mathematicians and 37 of 44 other mathematicians) offered
the same reason: “the relation is not transitive so it’s not an equivalence relation”.

Their reasons varied. SUSDLE (pure mathematics), who could give a formal/
detailed definition, correctly dealt with the reflexive property, but noted incorrectly,
that the symmetry law needed to hold for more elements:

In the interview, he was asked how about transitive property. He replied that it must
include all the relations between each two out of any three different successive
elements. He also explained that he thought in this way because the universal
quantifier is used in all three axioms.

LUCCCO (other mathematics), classified as ‘formal/detailed’, misunderstood
transitive property because he did not think a~b, b~a fi a~a. He clearly pointed out

there should be three elements for transitivity to hold.

SUSURT (pure mathematics), classified as ‘formal/ partial’ because he omitted
quantifiers in his definition, missed the universal quantifier in reflexivity, only
examined symmetry with the distinct elements a and b, then disagreed with
transitivity “as c is not involved”.

In the interview SUSURT was asked why he thought c should be involved for
transitivity to hold. He echoed the thinking of LUCCCO and GILWIN (quoted
before) by replying “because it needs three elements to make transitivity hold”. In



the interviews, we found that six of the seven interviewees who asserted transitivity
failed also shared this view. Furthermore, when asked, ‘If the two relations a~b, b~a

are removed from this question, what will happen?’, five out of these seven replied,
‘symmetry will not hold either’. Three students said explicitly that they used the
concept of an order relation as an embodiment of transitivity and two of these
explicitly said they used ‘a<b, b<c imply a<c’ as a special example for transitivity
in their concept image.

DISCUSSION

In our data, approximately half the students are unable to handle the definition in a
simple example using only three elements. The reasons are diverse, but 82% of those
giving an incorrect reason for the example not being an equivalence relation focus
on the transitivity law where there is a sense that ‘the transitivity law must involve
three elements’ and even that the transitive law is interpreted using an embodiment
that is the same as the axiom in an order relation. This has been a fundamental
underlying conception in mathematics even amongst those who insist on formal
thinking. In his famous address to the International Congress of Mathematicians in
1900, David Hilbert said:

Who does not always use along with the double inequality a > b > c the picture of three
points following one another on a straight line as the geometrical picture of the idea
“between”?                                                                                                            (Hilbert, 1900)

The students involved in this study have been given an exposition of the theory in
which the concept of relation is defined first, then, in quick succession, the special
cases of function, order relation and equivalence relations. We therefore hypothesise
that what is happening is that the students fail to get a workable mental image of
each of these three conceptually different kinds of relation. In the case of an order
relation, it is a natural thought process to imagine the elements ordered in a line,
and, in the absence of an embodied image of the notion of equivalence relation, in
using the transitive law, it is natural to link to the self-same image.

This phenomenon is an essential element in the transition from elementary to
advanced mathematical thinking. In moving from a way of thought that uses related
imagery at will to a formal way of thinking that is intended to be formal, the student
can not have conscious control over all the mental connections that are made. Lakoff
and his colleagues (Lakoff & Johnson, 1999; Lakoff & Nunez, 2000) argue
powerfully that all thought is embodied. However, it is tautological to claim that
human thought occurs in a physical brain. A more useful distinction needs to be
made. Mathematicians are acutely aware that their formal thought occurs in an
embodied mind, but they struggle to make their deductions as free from embodied
influences as is humanly possible. Tall (2002) theorises how embodied thought
experiments can suggest formal theorems and how formal deduction can prove them,
sometimes giving structure theorems that have new, more sophisticated,
embodiments.



What is happening with these students is that their introduction to formal thought
concerning equivalence relations, order relations, and functions as examples of
relations occur in a brain in which the concepts are intimately linked together. Some
make connections in a manner familiar to the mathematical community, but most, if
not all, have a variety of other mental linkages which need to be addressed for
serious progress to be made.

References

Bills, L. & Tall, D.O. (1998). Operable definitions and advanced mathematics: the
case of the least upper bound. In A. Olivier & K. Newstead (Eds.), Proceedings
of the 22nd Conference for the International Group for the Psychology of
Mathematics Education, 2, 41-48.

Birkhoff, G. & Mac Lane, S. (1953). A survey of modern algebra, 2nd edition. New
York: The Macmillan Company.

Chin, E-T. & Tall, D.O. (2000). Making, having and compressing formal
mathematical concepts. In T. Nakahara & M. Koyama (Eds.), Proceedings of the
24th Conference of the International Group for the Psychology of Mathematics
Education, 2, 177-184.

Chin, E-T. & Tall, D.O. (2001). Developing formal mathematical concepts over
time. In M. van den Heuvel-Pabhuizen (Ed.), Proceedings of the 25th Conference
of the International Group for the Psychology of Mathematics Education, 2, 241-
248.

Dubinsky, E., Elterman, F. & Gong, C. (1988). The student’s construction of
quantification. For the Learning of Mathematics, 8(2), 44-51.

Hilbert, D. (1900). The problems of mathematics. The Second International
Congress of Mathematics. http://aleph0.clarku.edu/~djoyce/hilbert/problems.html

Lakoff, G. & Johnson, M. (1999). Philosophy in the flesh. New York: Basic Books.

Lakoff, G. & Nunez, R. (2000). Where Mathematics Comes From. New York: Basic
Books.

Pinto, M. M. F. (1998). Students’ understanding of real analysis. Unpublished PhD
thesis, Warwick University, Coventry, UK.

Stewart, I. N. & Tall, D.O. (1977). The foundations of mathematics. Oxford:
Oxford University Press.

Tall, D.O. (1995). Mathematical growth in elementary and advanced mathematical
thinking. In L. Meira & D. Carraher (Eds.), Proceedings of the 19th International
Conference for the Psychology of Mathematics Education, I, 61-76.

Tall, D.O. (2002). Natural and formal infinities. Educational Studies in
Mathematics. In press.



Vinner, S. (1991). The role of definitions in teaching and learning of mathematics.
In D.O. Tall (Ed.), Advanced mathematical thinking, (pp. 65-81). Dordrecht:
Kluwer Academic Publishers.


