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This chapter is dedicated to, and fundamentally influenced by, Richard
Skemp’s pioneering work on schemes. Both of us were present in
Warwick when Richard died, and we sang at his funeral. This is no
maudlin sentiment but a deeply felt gratitude for the man and his work.
David Tall occupies Skemp’s Chair of Mathematics Education at
Warwick, and both of us were influenced, as have been many
mathematics educators, by Skemp’s highly polished works. His
contributions have an enduring quality because he tackled basic issues
of mathematical intelligence.

Schemes: Psychology to Mathematics Education

The terms “schema” and “schemata” were apparently introduced into
psychology by Bartlett (1932), in his study of memory. Bartlett took
the term from the neurologist Henry Head who had used it to describe
a person’s conception of their body or the relation of their body to the
world. Bartlett used the term schema in much the same way as Skemp,
following him, did: as an organised structure of knowledge, into which
new knowledge and experience might fit. The utilisation of Head’s
notion of schema in psychology was reviewed by Oldfield and
Zangwill (1942a, 1942b, 1943). Bartlett’s notion of schema was
picked up by Skemp (1962, 1971), and then Rumelhart (1975) also
resurrected Bartlett’s idea and terminology, once again in the study of
memory.

Minsky (1975) introduced his idea of “frames” and Schank (1975)
the idea of “scripts”, both of which are similar to Bartlett’s schemata.
Davis’ (1984) influential book on cognitive science methods in
mathematics learning leant heavily on the idea of schemes. It is fair to
say that whilst the term scheme has been used in mathematics
education (see, for example, Steffe, 1983, 1988; Davis, 1984;
Dubinsky, 1992; Cottrill et al., 1996) there have not been many
attempts to define more precisely what might constitute a scheme.

Notable exceptions, apart from Skemp’s own writings, are the
articles by Dubinsky (1992) and Cottrill et al. (1996), the first of
which at least acknowledged that some sort of definition would help
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people working in the field, and the second of which attempted a
recursive definition.

Skemp (1986) made it clear that schemes play a pivotal role in
relational understanding:

To understand something means to assimilate it into an
appropriate schema. (p. 43; author’s italics).

Chapter 2 of The Psychology of Learning Mathematics is entitled “The
Idea of a Schema”. In that chapter Skemp makes it clear that he views
schema as a connected collection of hierarchical relations. It is this
point of view that we wish to explore.

Structuring the World: Categories

A necessary condition for higher order mental functioning is the
ability of an individual to categorise things in the world. In order to
count, for example, we need things to count. These things are
categorised by us as instances of the same thing for the purposes of
counting. Do you have enough clean shirts to take on holiday? Are
there enough chairs to seat all our guests? In order to answer questions
like these we necessarily have to see different things, such as different
shirts or chairs, as instances of the same category for the purpose of
counting them.

This ability to categorise is possessed by many animals (Edelman,
1989) and is fundamental to the ways in which human beings structure
their worlds. It is critical in mathematics learning because counting,
the first mathematics that most of us engage in, is so clearly predicated
on an ability to categorise.

The patterned records of actions we use in mathematical activity
are themselves instances of categorisation. The categorisation involved
in the formation of schemes is the brain categorising its own activities.
In primary categorisation, perceptual events are categorised, whereas
in secondary categorisation – the type of categorisation in which
schemes are formed – the brain’s own responses to perceptual
categorisation are themselves categorised. This reflective activity of
the brain is an essential part of Piaget’s theories of the development of
logico-mathematical structures. Recently, it has been given a more
detailed functional and structural form by Edelman (1989, 1992):

… the theory of neuronal group selection suggests that in forming
concepts, the brain constructs maps of its own activities, not just of
external stimuli, as in perception. According to the theory, the brain areas
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responsible for concept formation contain structures that categorize,
discriminate, and recombine the various brain activities occurring in
different kinds of global mappings. Such structures in the brain, instead of
categorizing outside inputs from sensory modalities, categorize parts of
past global mappings according to modality, the presence or absence of
movement, and the presence or absence of relationships between
perceptual categorizations. (1992, p. 109, author’s italics)

Action Schemes and Higher Order Schemes

Apart from the ability to subitize numbers in suitably configured
arrays, number involves counting, which is an action scheme – a
sequence of actions performed to achieve a goal. Using counting,
addition is an extended action scheme to obtain the total in two
collections. Children use the initial “count-all” scheme until they
recognise certain parts of the process as redundant. They then make
new connections by omitting the initial counting. This new
reconstructed scheme misses out the first part of the count and
performs a “count-on”. If they sufficiently well manage the “count-on”
to allow a neuronal  trace of the input to link with the output (or the
results are re-corded to see the links), they may make a connection
between input and output to give the known fact.

Essential to an understanding of schemes is the focus of attention
of a learner. What it is a person focuses on in an action scheme
determines the consequent structure of that scheme for them. The first
attempt to use attentional systems as the basis for mathematical
development appears to be von Glasersfeld’s (1981) attentional model
of unitizing operations. These operations play a major part in his
theoretical model for an operation of the human mind that creates a
unitary item from perceptual experience. They are still our only model
for how it is humans form units and pluralities. So, in this sense,
attention is fundamental to how we understand numerosity. von
Glasersfeld stated very clearly what he meant by attention for this
purpose:

... I want to emphasize that ‘attention’ in this context has a special
meaning. Attention is not to be understood as a state that can be extended
over longish periods. Instead, I intend a pulselike succession of moments
of attention, each one of which may or may not be ‘focussed’ on some
neural event in the organism. By ‘focussed’ I intend no more than that an
attentional pulse is made to coincide with some other signal (from the
multitude that more or less continuously pervades the organism’s nervous
system) and thus allows it to be registered. An ‘unfocussed’ pulse is one
that registers no content. (p. 85)
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and he cites  neurophysiological experiments that support the view

that:
… attention operates above, and independently of, sensation and can,
therefore, function as an organizing principle; second, if attention can,
indeed, shift from one place in the experiential field to another, it must
have a means of regarding ... these places and disregarding what lies in
between. (p. 85).

Von Glasersfeld’s model is fundamental to the Steffe-Cobb-von
Glasersfeld-Richards theory of children’s counting types and
arithmetic operations (Steffe, von Glasersfeld, Richards & Cobb 1983;
Steffe, Cobb & von Glasersfeld, 1988). von Glasersfeld provides a
model of how records of experience can be obtained by a focus of
attention on the perceptual stream of data. It is a basic tenet of a
constructivist theory of learning, as we understand it, that these records
of experience – the memories – are not veridical records of any thing
in the world external to the recorder. Rather they are chemical traces
of neuronal activity occurring as a result of perceptual interaction with
the world. Importantly, for our theme, these traces are themselves
capable of being taken as the primary material for experience:

Perceptual categorization, for example, is non-conscious and can be carried
out by classification couples, or even by automata. It treats signals from the
outside world – that is, signals from sensory sheets and organs. By
contrast, conceptual categorization works from within the brain, requires
perceptual categorization and memory, and treats the activities of portions
of global mappings as its substrate. (Edelman, 1984, p. 125, author’s
italics)

This, for us, is in essence how schemes come into being, so we make
the following definition:

∑  An action scheme (or 0-order scheme) is a sequence of actions
performed to achieve a goal.

∑ An nth-order scheme is a categorization of lower order schemes.

Our brains take as basic data for reflection the records of our previous
experience, and just as we categorize visual perceptions from cup-like
things into the category of cups, so we categorize patterns of action
such as directed movement with synchronized standard utterances into
the category of counting.
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Examples of Scheme Formation

A well-studied action scheme is children’s dealing, or distributive
counting, to allocate fair shares (Miller, 1984; Davis and Pitkethly,
1990; Davis and Hunting, 1990; Davis and Pepper, 1992). This is a
sequence of actions that children in many, if not all, cultures can carry
out to allocate fair shares , but one which, at a young age, 4– 5 years,
they usually do not internalize  as a 1st order scheme. By the time
children are about 8 years of age, however, it is not uncommon for
them to refer to dealing as “just like when you play cards”. At this
point, we infer, they have conceptually categorized various action
schemes of dealing and so established a 1st-order scheme for dealing.

An example of higher order scheme formation appears in the
thought of a student, Stephanie, described by Maher and Speiser
(1997). Carolyn Maher at Rutgers University, and her colleague
Robert Speiser, at Brigham Young University, reported a beautiful
series of episodes involving a young high school student, Stephanie.
She found the formula for calculating the binomial coefficients by
relating the problem to one of counting towers of blocks – a problem
she, along with many other children, had studied in elementary school.

In 1989 Maher, and her colleague Al Martino, began working with
a small group of first graders to encourage the children to explore and
explain their differences in thinking as they solved problems.
Stephanie was one of the children in this group and when she was in
grade 4 worked on the problem: how many different towers of a fixed
height can we make from blocks of two colors? (Maher and Martino,
1996; 1997). In the fall of 1995 – coincidentally, just after Richard
Skemp passed away – Stephanie had moved to a different school and
was in grade 8.  Maher and Speiser worked with Stephanie on her
reasoning in mathematics problems, which now revolved around
algebra. Stephanie had calculated the binomial coefficients for ( )a b+ 2

and ( )a b+ 3 . One of the researchers asked her about these numbers for
( )a b+ 3  and Stephanie replied: “So there’s a cubed. ... And there’s
three a squared b and there’s three ab squared and there’s b cubed.”
She then said: “Isn’t that the same thing?” The researcher asked what
she meant, and Stephanie replied: “As the towers.”

It’s fair to say that the researchers were surprised at this sudden,
unannounced, appearance of towers in an algebra problem. Stephanie
had not systematically counted towers of blocks in school since
elementary classes.  Maher and Speiser’s hunch was that Stephanie
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was visualizing towers of height 3 in order to organize the products of
powers a bi j  of a  and b.  They got support for this hunch when, in
questioning Stephanie further about the terms in the expansion of
( )a b+ 3 , she said: “I don’t want to think of a’s. I want to think of red.”
In the same session Stephanie was asked: “What about b squared?”
and she replied: “Um. Two yellow.”

Stephanie seemed to interpret the numbers a  and b  in the
expression ( )a b+ 3  as colours of blocks – red or yellow – and the
index “3” as the height of a tower of red or yellow blocks. She could
then bunch together those towers that had the same number of red (and
so same number of yellow) blocks. This was because, in her
interpretation, the order of the red and yellow in the towers didn’t
matter: the towers were standing in for products of a’s and b’s, just as
the individual red and yellow blocks were standing in for individual
a’s and b’s.

Imagery can act as a generator of mathematical thought, when the
imagery acts to reduce the load on working memory. This is what
happened to Stephanie when she formed images of the expansion of
( )a b+ 3  as a row of towers of red and yellow blocks. Far from being a
dead weight, filling up working memory with irrelevant detail, the
images acted as a powerful engine for her, allowing her to accelerate
rapidly and easily through some complicated counting.

Two weeks after the episode reported above, Stephanie was asked
to explain to a researcher who was not previously present, what she
had said about binomial coefficients and towers. As she began to
explain Stephanie described, in vivid detail, episodes from a grade 4
class in which she and two classmates had figured out how to build
towers of a given height from those of height one less. Stephanie was
able to write a recursive formula for the binomial coefficients by
utilising her recalled images of towers of blocks.

That Stephanie had established a 1st-order scheme from conceptual
categorization of the action schemes of building blocks was evident
from her previous conversations about them. At the time of the first
interview, above, there does not seem to be evidence that she had
similarly schematized the action schemes of expanding a power of a
sum of two terms. However Stephanie made the remarks: “Isn’t that
the same thing?” and “As the towers” in her explanation of her
algebraic calculations. At this point we infer that she has, by analogy,
established a 1st-order scheme for binomial expansions. When, two
weeks later, she is able to write down the recurrence relation for the



147

binomial coefficients by reference to counting towers we infer that
Stephanie is able to express clearly that she sees essentially the same
process occurring in these two 1st-order schemes. In other words, she
has established a 2nd-order scheme through conceptual categorization
of 1st-order schemes.

Schemes and Symbols

The operations of arithmetic benefit from being written in signs. These
signs enable a subtle form of compression that is not immediately
apparent. For many students the signs are simply indicators – for
example, the sign “2 + 3” indicates to some students that one should
carry out an action, whereas for other students the same sign also
functions as a symbol. For these latter students there is a symbolic
relation with other signs and a flexibility in interpreting a frame of
reference for the signs. This is essentially what Gray and Tall (1994)
refer to as a procept. Steffe (1988) has written in relation to symbols
that:

Children's operations seem to be primarily outside their awareness, and,
without the use of symbols, they have little chance of becoming aware of
them nor can they elaborate those operations beyond their primitive forms.

In answer to the question of whether his use of the word “symbols”
referred to conventional mathematical signs, or whether there was a
deeper interpretation in which the symbols were records of a process
of interaction between a student and teacher, Steffe (personal
communication) replied:

I was thinking of, for example, the way in which a child might use the
records of past experience that are recorded in the unit items of a sequence
to regenerate something of that past experience in a current context. The
figurative material that is regenerated may act as symbols of the operations
of uniting or of the results of the operations in that the operations may not
need to be carried out to assemble an experiential unit item. The figurative
material stands in for the operations or their results. In this I assume that
the records are interiorized records – that is, records of operating with re-
presented figurative material.

My hypothesis is that these operations will continue to be outside the
awareness of the operating child until a stand-in is established in which the
operations are embedded. ... awareness to me is a function of the operations
of which one is capable. But those operations must become objects of
awareness just as the results of operating. To become aware of the
operations involves the operations becoming embedded in figurative
material on which the operations operate. To the extent that this figurative
material can be re-generated the operations become embedded in it.
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The figurative material is also operated on again. In this way the
operations are enlarged and modified.

The idea that operations are outside conscious awareness until a
mental “stand-in”, or symbol, is developed upon which the operations
can act mentally – is of critical importance in the development of
mathematical schemes. For it is these symbols that form 1st-order
schemes: not only is the scope of the operations extended, as Steffe
says, but what the operations operate on becomes a mental object – a
1st -order scheme.

When Bob Speiser talked about Stephanie’s scheme for thinking
about the binomial coefficients at the Psychology of Mathematics
Education conference in Lahti, Finland, we wondered how much of the
connection between the towers and the binomial coefficients Stephanie
had taken on board. We asked him if Stephanie had thought about a
more complicated situation, such as ( )a b c+ + 3  in terms of towers
made from three colours. He affirmed that she had indeed; what’s
more, Stephanie could write down the recursive definition for the
coefficients of the products of powers for any number of variables a, b,
c, d , ... by using images of towers of blocks of the same number of
colours as the number of variables.

This is a singular achievement for a grade 8 student, and it
illustrates the amazing generative power of vivid images that are
tightly coupled to a problem. The complicated looking signs:

( ) ( , ) ,a b C p q a b p q nn p q+ = + = sum of terms  where  and

C p q C p q C p q( , ) ( , ) ( , )+ + = + +1 1 1

with  and C n C n n( , ) ( , )0 1 1= =

are not abstruse to a child who has assimilated a model in terms of
towers of coloured blocks. These signs simply express a recursive way
of building towers. What appears to be complicated mathematics is
just a way of writing this recursive relationship. The written
mathematics – the marks – are what many students focus their
attention on. In so doing they can, and often do, lose sight of the
fundamentally simple idea that the marks, or signs, express. Worse,
their only terms of reference for the signs is likely to be at an indexical
level – a conditioned response. This is how many students see
formulas in mathematics: as something upon which something has to
be done, such as rearrangement, substitution, cancellation or similar
actions. What the signs refer to for students who think this way is the
actions that they themselves could carry out. Furthermore, that is all
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the signs refer to. A student who understands the signs symbolically
can also do things like rearrangement, substitution, and cancellation.
However, they can do more. They can focus on other aspects of the
signs, such as Stephanie’s focus on the recursive formula for the
binomial coefficients in terms of a recursive procedure for building
towers of blocks. This is an essential aspect of Peirce’s (see Deacon,
1997) view of the icon-index-symbol relationship as a hierarchy. The
ability to operate at one level in this hierarchy implies an ability to
operate at a lower level, but not conversely. It is not that children who
learn to operate symbolically in mathematics forget the relationship of
signs to concrete objects or to remembered processes – it is just that in
a particular context some of these memories are not particularly
helpful. Indeed, they may well be just so much clutter, filling up the
available space in working memory. The sign formulas are useful for
programming a machine to calculate the binomial or multinomial
coefficients, but these mathematical signs also behave as a very
compact symbolic expression of the relationships they embody. So a
student capable of interpreting these signs symbolically can choose to
think in terms of models, such as towers of blocks, or can withhold
any such interpretation, knowing that they could interpret it this way if
they wished. Their thinking has become proceptual (Gray and Tall,
1994) and they have gained enormous flexibility and economy of
thought.

This leads to a curious, and critical, chicken and egg situation.
Students may not have a scheme about which they can talk, but their
lack of awareness of the operations used in the procedure inhibits them
from talking about the procedure in the absence of carrying it out. Talk
about the procedure by a teacher would seem to be insufficient for
scheme formation, because many students have no awareness of the
operations of the procedure on which to hang the talk. They have no
symbolic frame of reference for the teacher’s words. Repeated
carrying out of the procedure by itself is no guarantee that awareness
will result, because there may be no necessity to reflect on the
procedure in the absence of carrying it out in practice. This dilemma
was summed up succinctly by von Glasersfeld (1990), who wrote:

If it is the case that ... conceptual schemas – and indeed concepts in general
– cannot be conveyed or transported from one to the other by words of the
language, this raises the question of how language users acquire them. The
only viable answer seems to be that they must abstract them from their own
experience. (p. 35)
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So if talk alone and repeated practice do not suffice for the formation
of schemes, and if students must abstract them from their own
experience, where does this leave a teacher? Many students, in the
process of counting or carrying out elementary operations on numbers,
focus their attention on what we, as observers, deem to be peripheral
properties of objects, such as their colour or size (Gray, 1991; Gray &
Pitta, 1996; Gray & Pitta, 1997a, b; Gray, Pitta & Tall; 1997).This
focus of attention necessarily occupies a student’s working memory
with detail that is known to be irrelevant to the formation of higher
order mathematical schemes. We don’t usually care whether the chairs
we are counting are red or blue, for the purposes of determining
whether a given collection of people will be able to be seated. This
filling of working memory with irrelevant detail has two effects. First
it slows the student considerably: they are able to consider fewer
examples in a given time than those students whose focus is not on
irrelevant detail. Consequently, such students have considerably fewer
examples to categorise. Second, with each example they encounter
there is less room in working memory for those aspects that we do
consider relevant for the establishment of higher order schemes. As a
result these students are seeing fewer examples, and less that is
relevant in each example they encounter. Consider, for example, a
student at secondary level who is engaged in expansion of the
algebraic square of a sum or difference of terms. Examples such as
( )a b+ 2 , ( )c d+ 2, ( )e f- 2 , ( )s t+ 3 2 , ( )x y z- + 2, might well be seen
by a student as unrelated things to do – unrelated actions which they
do not categorize as similar instances of a single phenomenon. The
most likely purpose of a collection of exercises like this is to give a
student practice in algebraic expansion, and to give them enough
examples to enable them to categorise the exercises as examples of
algebraic squaring of a sum or difference. If a student continues to
focus on the actual letters, or whether there is a sum or difference, or a
coefficient “3”, then they are unlikely to attain the categorization a
teacher intended. They remain stuck at the level of individual actions,
instead of forming schemes. Consequently, algebra becomes, for such
students, a hard subject, with many detailed and unrelated calculations.
What a student needs to do is to learn to throw away much of the
perceptual information available to them. This involves a focus of
attention on a different aspect of the algebraic expressions.
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Schemes as Mental Objects

Perceptual categorization gives rise to our feeling for prototypical
named objects in the world. The fact that we can talk about chairs, or a
chair, without referring to or pointing at a particular world-thing is a
result of a process of perceptual categorization. The concept “chair” is
a mental concept, and not a corporeal world-thing. Nevertheless, it is
extremely convenient for us to think of “chair” as an object. We
cannot even count “chairs” unless we see certain world-things as
instances of “chairs”. In other words, we reify our conceptions
obtained through perceptual categorization. This should give us cause
to suspect that schema formation, which we have defined as
categorization based on action schemes, also leads to mental objects.
These mental objects are based not on world-things, as in perceptual
categorization, but on world-actions.

Dörfler (1993) casts doubt on the nature of mathematical objects.
He writes:

My subjective introspection never permitted me to find or trace something
like a mental object for, say, the number 5. What invariably comes to my
mind are certain patterns of dots or other units, a pentagon, the symbol 5 or
V, relations like 5+5=10, 5*5=25, sentences like five is prime, five is odd,
5/30, etc., etc. But nowhere in my thinking I ever could find something
object-like that behaved like the number 5 as a mathematical object does.
But nevertheless I deem myself able to talk about the number "five"
without having distinctly available for my thinking a mental object which I
could designate as the mental object ‘5’. (pp. 146–147)

This, however, is to miss the point of categorization. Where, in our
heads do we see the object “chair”? As Dörfler intimates, we may see
images of particular chairs, and even be capable of forming images of
chairs we have never seen. The point is that “chair” is the name of a
category to which we agree that certain world-objects belong. As such,
it acquires object status: that of a mental object, a conception, resulting
from perceptual categorization. Likewise, the word “dealing” refers to
a category of world-actions, and as such it is a mental object resulting
from conceptual categorization.

Perceptual, Social and Conceptual Categorization

Perceptual categorization is, as we have noted, common not only
among different peoples, but also among animals of many sorts. Social
categorization is also very common among mammals. This form of
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categorization is exemplified by the “them and us” syndrome:  the
division of a group into two on the basis of a perceived difference,
such as skin color, accent, behaviour, speech, or indeed almost any
perceived difference (Harris, 1998). These types of categorization are
so common, occurring almost obligatorily in human society, that we
often overlook them as mental constructions and take them to
represent significant differences given by the phenomenal world.

Why then should the sort of categorization that we postulate as the
basis of scheme formation seem to be so difficult for individuals to
establish? Why should it require an elaborate apparatus of cultural
transmission – classrooms, teachers and textbooks, not to mention
psychologists and mathematics education researchers? The answer,
one might suspect, lies in the everyday nature of perceptual and social
categorization. Perceptual categorization is vital for animals that move
around looking for food, shelter, and mates, in a potentially dangerous
world. Social categorization is an inevitable consequence for humans
who have warring social ancestors (Harris, 1998). Conceptual
categorization, one might imagine, arises as a possibility, and only as a
possibility, with the development of language. However, the recency,
in evolutionary terms, of conceptual development does not provide a
sufficient reason why conceptual categorization should be so difficult,
at least in the field of mathematics.

What seems, from the empirical evidence, to be a much more
compelling reason for the difficulties we see in scheme formation in
mathematics is the general lack of awareness that humans have of
action schemes. By “lack of awareness” we mean inability to articulate
action schemes as distinct from their outcomes. Steffe, among others
has remarked on this lack of awareness of action schemes, as we have
noted above. Granted this lack of awareness, it is almost clear that we
should have difficulty categorizing action schemes: we are not aware
of them as schemes. Instead, what we are aware of is the outcome of
those schemes: the results of sharing by dealing, or the results of
counting, the results of an algebraic calculation. Why this should be
the case is, as far as we are cognisant, not known. However, granted
that it is the case, it provides a considerable obstacle for conceptual
categorization of action schemes. As Steffe has remarked on other
occasions, this provides a supremely important role for a teacher of
mathematics in helping students to be able to articulate their action
schemes regarding number, space, and arrangement – the basic
elements of mathematical experience.
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The question of why humans should not naturally find it
straightforward to articulate an awareness of action schemes therefore
assumes a great importance in the study of the acquisition of
mathematical conceptual thought. A simple reason suggests itself,
namely a separation between the language and motor centres of the
brain. The neurologist Ramachandran (1998) highlights the problem of
putting actions into words as a translation problem. He writes, a

… fundamental problem arises when the left hemisphere tries to read and
interpret messages from the right hemisphere. … crudely speaking, the
right hemisphere tends to use an analogue – rather than digital– medium of
representation, emphasizing body image, spatial vision and other functions
of the how pathway. The left hemisphere, on the other hand, prefers a more
logical style related to language, recognizing and categorizing objects,
tagging objects with verbal labels and representing them in logical
sequences (done mainly by the what pathway). This represents a profound
translation barrier. (p. 283, author’s italics)

This translation barrier is particularly evident in adults who have
damage to the right brain or a disconnection of the two hemispheres.
This happens, for example, when the corpus callosum, the bridge
connecting the two hemispheres, is damaged or cut (as used to happen
in cases of severe epilepsy). How might this explain why young
children have difficulty articulating their action schemes? After all,
only in rare cases will children have such sever dislocation between
their two brain hemispheres. Yes, but the fact is that the corpus
callosum is quite undeveloped in young children: the nerve fibres
connecting the two hemispheres have not yet been fully myelinated, so
nerve impulses in young children do not conduct between the left and
right hemispheres as well as they do for older children and adults
(Joseph, 1993, p. 353 ff). Whilst this might suggest a reason for young
children’s relative inability to articulate awareness of their action
schemes, it does not explain why older children, and indeed many
young adults, are equally incapable of such articulation. It is not
uncommon, even in university level mathematics, for students to be
able to carry out taught procedures – such as solving simultaneous
linear equations by Gaussian elimination – and yet have an almost
total inability to articulate how the procedure is carried out. Often the
best they can do is to ask for an example, which they then proceed to
calculate.

A further clue to the relative difficulty in articulating action
schemes comes from work of Ullman et al (1997) on language
difficulties in sufferers of Alzheimer's disease on the one hand and
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Huntington’s and Parkinson’s on the other. Their work suggests that
word memory relies on areas of the brain that handle declarative
memory – memory of facts and events. These areas appear to be the
temporal or parietal neocortex. However, rules of grammar seem to be
processed by areas of the brain that manage procedural memory, the
basal ganglia, which are also involved in motor actions. That there
seem to be two distinct brain areas for procedural and declarative
memory must make us suspicious. In mathematical settings, at least,
the region devoted to declarative memory may have difficulty – that is,
few mechanisms for – taking as its basic material the activities of the
region responsible for procedural memory. If so, the role of teacher
becomes even more evident: as an external conduit to allow
declarative memories to be formed from the raw material of stored
procedural memories.

Let us look again at Stephanie’s categorizations in this light,
because Stephanie is a child who was able to make higher order
categorizations beyond the commonplace. First, Stephanie was
motivated to seek reasons for things mathematical (Maher & Speiser,
1997). Indeed this was a prime reason for Carolyn Maher and Bob
Speiser’s focus on Stephanie. However, if we are right about the need
for procedural memory to be externalized before it can become
declarative then Stephanie must have had some external influence on
the formation of her declarative memories of building towers. Did she?
Indeed she did: Maher and Speiser report how Stephanie was engaged
in elementary school with a group of children who built towers
together, and engaged in argument and reasoning about their activities.
So Stephanie’s external agent in this case was her group of classmates
who not only built towers with her, but also argued with her. What
about Stephanie’s 2nd-order categorization, in which she linked in
considerable detail building towers with the binomial and multinomial
theorems? We have to suspect, from the records of interviews, that her
external agent for utilising procedural memories to create declarative
ones, was the pair of interviewers. Through the questions asked by the
interviewers Stephanie was able to take her procedural memories and
turn them into objects of reflection, which then created declarative
memories for her.

The decisive force in the creation of higher-order schemes,
therefore, may be an appropriate agent who can externalize procedural
memory and utilize it, consciously or not, so that a child can form
declarative memories. The reason for this, we hypothesize, is that the
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temporal and parietal neocortex  has, in young children, or young
adults, few mechanisms for taking the memory activities of the basal
ganglia as raw data for the formation of new declarative memories.
What has to happen, we suspect, is that an external agent needs to
externalize those memories of motor actions from the basal ganglia
and recast them in a form suitable for the temporal or parietal
neocortex to process them as procedural memories.

Connections with APOS Theory

Dubinsky and colleagues (Dubinsky, 1992; Cotterill et al, 1996) have
proposed an Action-Process-Object-Schema theory in which schemes
feature as the end result of  a structural organization. In the APOS
setting, an action is a physical or mental transformation of objects to
obtain other objects. A process arises from an action when a person is
able to reflect upon and establish conscious control over the action. A
process becomes an object when “the individual becomes aware of the
totality of the process, realizes that transformations can act on it, and is
able to construct such transformations.” (Cottrill, et al, 1996). Schemas
enter into this theory as structural organizations of actions, process and
objects.

Our proposal is that this “structural organization” is obtained
through conceptual categorization in the sense of Edelman (1989). The
essential point, for us, is that some mechanism must be postulated to
facilitate the structural organization central to APOS theory. In line
with Skemp’s emphasis on brain activity and brain models of
mathematical thought we believe that the process of conceptual
categorization provides such a mechanism. Skemp discussed the
connections between categorization and schema in Intelligence,
Learning and Action: indeed he regarded them as practically
synonymous. The only extra highlight we wish to stress is that, in line
with Skemp’s emphasis on intelligent, goal-driven, action (an
emphasis he shared with many other seminal thinkers in mathematics
learning), the focus on scheme formation in mathematics is on
categorization beginning with action schemes.

Dedication

We owe a debt to Richard Skemp. Apart from pioneering work in
schema, he began the process of modelling what it is that the brain is
doing when it’s thinking mathematically. Skemp concentrated on
fundamental issues of models for brain operations in mathematical
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thought, and for intelligent thought more generally. Recent
developments in psychology and neurology have been reinforced the
gems of principles and models that he elucidated so clearly. He
established a solid link between intelligent human actions and the
operations of our brains, and regarded the study of mathematics
learning as a way to develop models for higher-order intelligence in
general. As Anna Sfard has written (this volume) “ Skemp ... came to
an empty field and left it with an impressive construction.” Skemp,
himself, wrote:

... it seemed that by studying the psychology of learning mathematics, the
improved understanding of intelligent learning which can be gained by
working in this area should be generalisable to give a better understanding
of the nature of intelligence itself: with a potential for applications
extending over a very wide range of activities. (1979, p. 288)

This gentle man treated human beings as intelligent creatures who
have a capacity to reflect on their actions and learn from them. In so
doing he was led to examine models for brain functioning that might
allow us to think in this way. His excursion into brain models was an
intellectually necessary part of his quest to understand what it is that
allows human beings to think as they do, and to behave with the
intelligence they are capable of manifesting. We are forever grateful to
Richard Skemp for these pioneering efforts. They laid a clear and firm
foundation for a subject whose time has now well and truly come – the
nature of the mathematical brain, its relation to mathematical
intelligence, and to intelligence in general.
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