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The notion of “learning by reason” rather than “learning by rote” has
long been a focus of creative teaching. In writing the oft-quoted paper
on “instrumental understanding” and “relational understanding”,
Richard Skemp (1976) is a significant link in the chain of those who
developed notions of “meaningful learning”. Skemp, however, had
wider goals in life. For him, relational learning was part of a broader
plan of developing a “long-term learning schema” for life-long
learning (Skemp, 1962).

In his publications Understanding Mathematics (1964) for
secondary school and Structured Activities in Learning Mathematics
(1993–4) for younger children he developed learning schemas for
children’s learning over long time periods. He also developed a rich
theory of human learning that has proved significant in shedding light
on how the cognitive processes of human thinking can lead to the logic
and aesthetic beauty of formal mathematics.
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It is the purpose of this paper to consider the development of long-
term learning. The logic and rigour of mathematics is such that it
seems that a curriculum can be built in successive stages where each
stage builds on preceding learning. Indeed, the British National
Curriculum for children aged 5 to 16 is formulated in ten levels where
each level is seen as developing a coherent set of ideas building on
earlier levels. This would suggest that a well-designed curriculum
could be continuous in the sense that each stage builds smoothly on
those already experienced. Such a “self-evident truth” is, in fact, false.
This paper will show that there are many points in learning in which
cognitive discontinuities occur. Thus the building of a long-term
curriculum is likely to need to face various situations in which
difficulties arise and need to be conquered.

Skemp was aware that appropriate schemas need to be developed
that are appropriate to a given learning task:

Since new experience which fits into an existing schema is so much better
remembered, a schema has a highly selective effect on our experience.
What does not fit into it is largely not learnt at all, and what is learnt
temporarily is soon forgotten. (Skemp, 1986, p.41)

A major problem occurs when what may be highly appropriate at one
stage may be unsuitable later. Skemp formulated this in his overall
theoretical position saying:

… not only are unsuitable schemas a major handicap to our future learning,
but even schemas which have been of real value may cease to become so if
new experience is encountered, new ideas need to be acquired, which
cannot be fitted in to an existing schema. A schema can be as powerful a
hindrance as help if it happens to be an unsuitable one. (ibid. (my italics))

An example of a schema of short-term value is the use of so-called
“fruit salad” algebra, in which meaning is given to expressions such as
4a+3b by thinking of the letters as standing for actual objects such as
“4 apples plus 3 bananas”. This will give support in manipulation of
expressions such as 4a+3b+2a to give 6a+3b by simply thinking in
terms of manipulating the numbers of each fruit. However, this short-
term gain soon leads to difficulties in interpreting expressions such as
7ab. Does it mean 7 apples and bananas? Is 3 apples plus 4 bananas
equal to 7 apples and bananas? Is 3a+4b = 7ab? Initial simplistic
approaches to subjects that subsequently lead to inappropriate links
may harm long-term development. My contention takes this
observation a step further: even well-designed learning tasks can—at a
later stage—harm future understanding.
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In the remainder of this paper I begin by considering the general
problem of discontinuities in a long-term curriculum, followed by a
range of examples of discontinuities occurring at various stages of
school mathematics. Since every journey begins with a single step, I
start with what I term a cognitive root; this is a starting point having
meaning for the learner at the beginning of a learning sequence, yet
containing the possibility of long-term meaning in the later theoretical
development. I then question whether a successful beginning will
necessarily lead to long-term success, considering various aspects of
the calculus, where visuospatial ideas can act as a long-term
foundation in a range of different possible approaches.

But I also reveal that the different representations—symbolic,
algebraic and numeric—do not always have obvious links between
them. The consequence is that different parts of the subject may
benefit from different kinds of representations and pose different kinds
of problems for different students. A powerful tool to address these
problems is the willingness of the student to reflect carefully on new
ideas, to see how they are similar and how they differ from earlier
meaningful ideas. Learning by rote may allow the student to cope with
similar problems, but reflecting on the nature of the mathematics is
more likely to support flexible long-term learning.

Continuities and Discontinuities
in Long-Term Learning Schemas

On the assumption that the long-term curriculum designer should be
more concerned with ultimate coherence and successful learning than
settling for a short-term gain, a good solution would seem to be a long-
term curriculum that builds steadily and continuously on previous
experience. This seems to be the underlying aim of much curriculum
design, after all, mathematics is a
coherent and logical subject, so its
teaching should be amenable to
coherence and logic.

A quarter of a century ago I
remember, as an earnest young
mathematically oriented educator,
suggesting long-term learning
schemas based on my interpre-
tation of Skemp’s ideas. For me at
this stage the quest entailed Figure 1. 1+2+3+4 is half of 4 times 5.
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looking for ways in which I could present subtle mathematical ideas in
simple ways at appropriate times and revisit them later in successively
more sophisticated ways—for instance, seeing the sum of an
arithmetic sequence 1+2+3+4 as a triangular array of dots which could
be fitted to an identical array to give a rectangle of four rows and five
columns. Thus the sum 1+2+3+4 is half of 4 times 5. This could be
written as an arithmetic sum by adding 1+2+3+4 to 4+3+2+1 in pairs
to get 4 lots of 5:

Figure 2. Two lots of 1+2+3+4 give 4 lots of 5.

At a later stage this could be generalised algebraically to give

1 2 3 11
2+ + + º + = +n n n( ),

and finally proved by induction when, and if, this may be considered
appropriate.

The logical development from physical objects, through arithmetic,
algebra and formal proof seemed to me an ideal part of a continuously
developing long-term learning schema that can be revisited at
successive times in more subtle ways. However, such an “ideal”
coherent sequence of activities proves to have an Achilles’ heel.
Although the sequence of development may be apparent to an
experienced teacher, at the time of learning the links may not be so
readily apparent to the growing child.

The reality is that one must build on the ever-changing cognitive
structure of the individual. Achieving a continuous and coherent
development proves far more elusive than one might expect. The
problem is essentially that the brain works by building connections
between neuronal circuits, evoking many internal links, most of which
are unconscious:

Conscious thought is the tip of an enormous iceberg. It is the rule of thumb
among cognitive scientists that unconscious thought is 95 percent of all
thought—and that may be a serious underestimate. Moreover, the 95
percent below the surface of conscious awareness shapes and structures all
conscious thought. If the cognitive unconscious were not there doing this
shaping, there could be no conscious thought.

(Lakoff & Johnson, 1999, p. 13)
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These links, deeply embedded in our biological brain, produce a
complex mental image of concepts (termed the concept image by Tall
& Vinner, 1981), which operates in many subtle ways. Vinner (1997)
speaks of pseudo-conceptual thinking in which students learn to do the
things that give satisfactory immediate success but may not plumb
deeper conceptual issues. These deeper mathematical structures may
have no meaning or purpose for the learner at the time so that—even if
the curriculum is presented in a manner that is (to the teacher)
coherent and logical—it can fail to be understood by the learner.

Skemp was a master at formulating theories to cover such
phenomena. He referred to the difference between learning which is an
expansion of current knowledge—where new ideas fit easily with
current schemas—and reconstruction of knowledge, where the old
schemas must be reflected upon and modified to fit with the new ideas.
In a given context, conceptually well-structured learning may be based
upon mental images that “fit” the context. Yet these self-same images
may later fail in new, as yet unknown, situations.

In designing long-term learning schema, it becomes important to
consider if and where reconstruction is likely to be necessary, even in
instances where previous learning has been relational. It is my
contention that shifts of context causing cognitive conflict occur far
more widely in the mathematics curriculum than might at first be
apparent.

Cognitive Discontinuities Throughout the Curriculum

To get a sense of the kind of difficulties that occur, I begin with a
number of examples encountered personally at different points in the
mathematics curriculum.

John, a “slow learner” aged 12, could not imagine negative
numbers. In primary school his early number experience began with
counting objects and the number track consisting of distinct unit
blocks. He continued to think of number in terms of counting and
found it impossible to imagine a “minus number” of objects. How on
earth can anyone imagine minus two cows? To him, it didn’t make
sense.

My son Christopher, then aged 8, was easily able to conceive of
“minus numbers”. The temperature in the winter measured in
Centigrade often went below zero, and he enjoyed playing in the snow.
But he could not perform arithmetic with minus numbers. When his
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younger brother tried to explain to him that 5 take away minus 2 is 7,
Christopher stamped around in a temper. He refused to believe that
when something is taken away the result could be bigger.

Jane, aged 12, could not make sense of multiplication of fractions.
In particular she could not believe that the product of two fractions
could give a smaller answer. All her previous experience of whole
numbers had intimated that multiplication always leads to a (much)
larger number.

Rachel, aged 13, did well at arithmetic and could calculate
accurately and efficiently. But her first encounter with algebra was a
disaster. The teacher explained that a letter such as x could be used to
stand for a number, so that if x is a number, then x+3 is “the number
plus 3”. For instance, she explained, if x is 2, then x+3 is 5, if x is 3,
then x+3 is 6, and so on. But Rachel didn’t understand why ‘x’ had
been introduced or what it meant. If she didn’t know x, she couldn’t
calculate x+3 and if she did know x, she didn’t need algebra, it was far
easier just doing arithmetic. Why complicate things by using letters?
At a later stage when asked to simplify 3+2x+1, she wrote 6x, by
adding together all the numbers (after all, they do have an addition
sign between them) and “leaving the x” because she didn’t know what
to do with it. Algebra, for her, became a meaningless manipulation of
symbols using arbitrary rules.

Robert, aged 14, did well with arithmetic and algebra. He
understood that 3¥3 was written as 32, 3¥3¥3 as 33, 3¥3¥3¥3 as 34 and
so on. He could even see that 3n means n lots of 3 multiplied together
and xn means

 

x x x
n

¥ ¥ ¥K1 244 344
 times

From this it was a short step to see that

  

x x x
m

x x x
n

x x x
m n

¥ ¥ ¥ ¥ ¥ ¥ ¥ = ¥ ¥ ¥
+

K1 244 344 K1 244 344 K1 244 344
 times  times  times

or that

x x xm n m n¥ = + .
He had a clear relational idea about the meaning of the power notation
in the context, but when he was shown that x1/2 must be √x because

x1/2 ¥ x1/2 = x1 = x,

he suddenly became confused because he could not make sense of the
notation x1/2. If xn means “n lots of x multiplied together”, what does
“half a lot of x multiplied together” mean? For the expert, the familiar
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formula is just being “generalised” to apply to fractional exponents.
For Robert, such a strategy had no meaning whatsoever.

James was a successful fifteen year old being taught the rudiments
of calculus. First the teacher explained ideas in terms of a picture, with
a secant approaching the tangential position, then he went through
some numerical examples for y = x2, focusing first on the secant
through x = 1 and x = 2, then successively calculating slopes from 1 to
2, from 1 to 1.1 and from 1 to 1.01. He showed that these slopes get
closer and closer to 2, and then moved on to consider the ideas
algebraically using (x+dx)2 – x2 divided by dx. After calculating the

slope for y = x2 and y = x3, he revealed the general pattern of the
derivative for xn as nxn–1 and showed how the rule worked for general
polynomials. “That’s typical,” said James to the teacher after the class,
“you always show us the hard ways first before getting down to the
simple way to do it.” In James’s class all of the pupils learned to
differentiate polynomials but none could give any relational explan-
ation of the process. They knew from experience that their teacher
would always help them by teaching them a simple rule. The rest of
the performance was to please him, not them.

Alec, aged 16, never did understand all that stuff about limits, but
he knew that the derivative of 3x4+5x2 is 12x3+10x. The derivative of a
sum is just worked out by adding the resulting derivatives. He used the
“same” rule for a product such as x2(x3+x), to give the “derivative of
the product” as the “product of the derivatives”, namely 2x(3x2+1).

The incidents discussed in this section show children of various
ages finding difficulty with a variety of aspects of mathematics in new
situations. Even if children have previously been successful through
several sequences of learning they may eventually meet a situation that
makes no sense. Although these examples arise in a range of different
contexts, an underlying story can be uncovered.

Sources of Cognitive Discontinuities

Several of the examples just considered clearly involve a new context
in which previous ideas cause a conflict—for instance, John’s inability
to conceive of negative numbers, or Christopher’s ability to give them
a meaning but inability to perform arithmetic with them, or Jane’s
difficulty with a product of fractions giving an unexpected smaller
result. The reality of the growth of neuronal connections reveals a vast
complex of growing connections that operate in a range of ways to
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support our human activities. The coordination required for counting
involves seeing, pointing to the things seen, performing it in a
sequence that includes each object once and once only, saying the
number sequence at the same time. This involves a vast number of
neural connections, the majority of which are subconscious. Initially
the act of counting involves physical objects in physical situations,
linking numbers inextricably to real world referents. When a new
situation occurs which causes a dissonance with these connections, the
individual may feel confused yet be unable to pinpoint the reason for
the confusion. Negative numbers “feel wrong” because “you can’t
have less than nothing.” Even if one can envision positive and
negatives as credits and debts, or temperatures above and below
freezing point, these particular embodiments carry no sense of a full
array of arithmetic operations. One may “start at a positive
temperature +2°C and go down 3°C to end up at the negative
temperature –1°C.” This may give a sense of difference between
temperatures, perhaps even linking to a conception of subtraction. By
talking about “taking away a debt” one may even give a sense that
“taking away a minus” is the same as “adding a plus”. But these are
straining the meaning of the original neuronal links involving
combining and removing physical objects. The idea of multiplying
negative numbers is, for most, a bridge too far.

My son Christopher was able to conceive of negative numbers in
terms of temperature at the age of eight but had no sense of how to do
arithmetic with them. His younger brother Nic, then only five years
old had, without any prompting, actually asked how to multiply minus
numbers. He too knew about the concept of minus number in terms of
temperature. He reasoned that “ordinary numbers” could be added and
multiplied so why couldn’t you do the same with “minus numbers”.
On discussing the concept of lending him pocket money and putting
pieces of paper with minus numbers in his purse to record the
operation (in denominations of –10 pence), I asked him how I could
give him 50 pence if I had no money at the time. He said “you could
take away five of the ‘minus tens’.” He then thought for a moment,
smiled, and said “… oh, so two minuses make a plus.” He could then
do any sum, difference or product involving plus or minus numbers.
His one generative idea enabled him to do them all in a consistent
manner without any further teaching.

How can two children brought up in the same environment be so
different? My interpretation of this situation is that Nic happened to
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think about arithmetic by focusing his attention on the essential detail
of the symbols and operations. He probably did not link operatively to
physical reality at the time. For him, therefore, it was natural to work
in his cognitive context and seek how to do the same operations on
minus numbers. I conjecture that such a conception was not possible
for his brother Chris because of his neuronal links to physical
situations where multiplying negatives clashed with his own meanings.
Nic was faced only with a (pleasurable) task of cognitive expansion,
building on his existing manipulation of numbers. Chris was faced
with a (difficult) task of cognitive reconstruction that challenged his
very relationship with the world as he perceived it. For him new ideas
did not make sense. They did not fit.

The primitive brain has a way of reacting to perceptions that
appear strange or threatening. The lower limbic system unconsciously
produces neuro-transmitters that affect the operation of the brain,
encouraging some activities and suppressing others. The child who
finds certain concepts “do not make sense” is therefore likely to be at a
disadvantage in attempting to process the information. I conjecture
that, not only are the ideas harder because they are more diffuse and
more difficult to co-ordinate, the emotional activity of fear generated
by the limbic system suffuses the brain with neurotransmitters that
makes the contemplation of these ideas even harder.

The case of Robert reveals an individual with relational understand
of the power law for whole number powers, who is then confused
when he he is faced with the need for cognitive reconstruction in the
new context where the powers are fractional. We may hypothesise that
his relational understanding was neuronally connected to the idea that
the power represents repeated multiplication. Raising x to the power 1

2

makes no sense because he has no idea what it means to compute “half
an x multiplied together.” An idea, which an experienced mathema-
tician sees simply as a“generalisation” of a formula to apply to a larger
range of examples, is not meaningful for a learner who has meaningful
understanding of the power notation in its whole number
manifestation.

It is salutary to realise that children may develop a relational
understanding in a given context and yet encounter new contexts
where the old links no longer work and new links must be forged. This
occurs widely when a child meets an extension of the number system,
say from counting numbers to negative integers or from whole
numbers to fractions, or from real numbers to complex. Old intuitive
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rules that are part of the essential being of the individual are often
deeply embedded in the psyche. The deep belief that “you cannot have
less than nothing” in an everyday sense may prove too strong even in a
world of bank accounts and credit cards where negative quantities
become readily available. The practical solution in this case has been
to continue to use ordinary numbers but widen the system to allow the
same numbers to act separately as debts. In cognitive terms, this
practical solution permits a cognitive expansion, rather than requiring
a cognitive reconstruction.

In a long-term learning schema, such a focus on expansion rather
than reconstruction may work in the short-term, it may even work for
the life-time of a bank teller, (or at least until that teller is made
redundant by technology). But in the long-term mathematical
development towards the full deployment of real numbers, the need for
some kind of cognitive reconstruction is inevitable. Faced with a new
context which causes internal cognitive conflicts, the child must either
make a serious cognitive reconstruction or take the line of least
resistance by learning a new rule by rote to “get the right answer.” The
latter strategy leads to (temporary) survival in the mathematics class.
This is seen in the example of the student James, who was perplexed
by the teacher’s attempt to introduce the limit concept in the calculus
but realised that the teacher would later give “the simple way” to
differentiate a polynomial using the formula.

Regrettably it does not take many such set-backs before the
standard response is to learn “rules without reason” in Skemp’s
memorable phrase. When Alec learnt to “use the rules” in calculus, he
extended them in an inappropriate manner, thinking that the same rule
would work for multiplication that worked for addition.

The fall-back to “learning the rules” is widespread.
I was interviewing a number of students about how they worked
through their mathematics. What became very clear was the desire of
the students to ‘know the rule’ or ‘the way to do it’. Any attempt on my
part to provide some background development or some context was
greeted with polite indifference – ‘Don’t worry about that stuff; just tell
me how it goes.’ (Pegg, J. 1991, p. 70.)

I conjecture that the vast majority of learners reach this point at some
stage. I further suggest that the “polite indifference” not to wish to
“worry about that stuff” is not just an attitude of mind, but a sign that
the student may not be able to talk or even think about “it”, because
there is no “it”. A cognitive structure built on procedures to “do”
mathematics may not have the mental concepts to “think” about
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mathematics and therefore may not be amenable to relational
understanding.

As an example, consider a straight-line graph through (1,5) and
(–3,–3). Its gradient can be found by the formula

( )
( )
y y

x x
2 1

2 1

3 5
3 1

8
4

2
-
-

= - -
- -

= -
-

=

which, for many students, involves using meaningless “rules” such as
“a minus over a minus is a plus”. The equation is now y = 2x+c where
c can be found by substituting one of the points. But which point is
substituted? One has minus numbers in it, the other has positive
numbers, and for students who are struggling, the latter may seem
more attractive. This gives

y = 2x+c where x = 1, y = 5,
so

5 = 2+c
c = 3

and the equation is

y = 2x+3.

Having followed such a sequence of procedures, does the student
genuinely identify this equation with “the line through (1,5), (–3,–3)”?
Are the two notions different ways of viewing the same conceptual
entity, or are they different entities, loosely connected in the brain?
Many students appear not to link them at crucial points of an
argument. When asked whether a third point, say (2,4), is on the same
line, instead of substituting this into the equation, some students, who
are struggling, go back to calculating the equation of the line through
(2,4), (1,5) to see if it gives the same equation (Crowley & Tall, 1999).

We suggest that these students do not readily see all the different
forms of a linear equation as being different versions of one mental
entity and so they have no mental entity in their minds to manipulate.
They cannot talk about “it” because, for them, there is no “it”. As long
as they remain fixated on the detail of the procedures, they may work
very hard but with little reward. For example, in their case we cannot
speak of the various ‘representations’ of the function concept for there
is no function concept to represent. All they can do in this state of
mind is to learn an increasing collection of procedures to do specific,
but limited, tasks that may grow increasingly difficult to relate in any
coherent overall structure.
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Long-term Learning Schemas and Cognitive Roots

In devising initial activities for long-term learning schemas that
encourage conceptual ideas rather than just procedural competence, I
had the privilege of being Richard Skemp’s last PhD student (Tall,
1986). Given the possibility (even probability) of discontinuities in the
learning process, a long-term learning schema needs to take into
account that cognitive reconstruction is likely to occur at various
times. At the outset, I decided that the journey should begin by
building an inner cognitive sense of the concept that carried the
potential of long-term development. I formulated the notion of a
cognitive root as a concept that a student meets at the beginning of a
period of study that is familiar to the student at this stage, yet contains
the seeds of long-term learning of the formal theory (Tall, 1989).

To start from “where the students are” to build to what you wish
them to learn is quite different from building a curriculum which
focuses on “where the students are desired to get”. Many curricula in
the calculus build towards a logical meaning of differentiation and
integration and therefore decide that they must begin with the limit
notion as this is the logical foundation of the formal theory. But it is
not a good starting point for the learning of students.

I found that few students would naturally invent the limit concept
for themselves. For instance, Tall (1986) presented a graph of the
parabola y=x2 with a line drawn through the points (1,1) and (k,k2) and
asked first to write down the gradient of the line and then to explain
how they might calculate the tangent at (1,1). Only one out of over a
hundred students produced a limiting argument as kÆ1, and he was
part of a minority who had already been taught the limiting notion.

On the contrary, every piece of research I have ever seen
underlines how difficult the limit concept is to the beginning student
(Cornu, 1991). Discussed in a dynamic sense, in terms of “getting
close” or “getting small”, it builds up intuitive notions of variable
quantities that are “arbitrarily small”, giving a number line of
constants and quantities which act like infinitesimals. This gives a
system different from the real number line that is desired by the
mathematical community.
For the first step in my own long-term learning schema for the
calculus, therefore, I decided to build on human foundations that were
widely available to all individuals, the sensori-motor facilities of
vision and action. I alighted on the notion of magnifying a small
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portion of the graph to see the gradient. Specifically I considered those
graphs which, when drawn on a computer screen and magnified highly
(maintaining the relative scales on the axes), eventually “look
straight”.

I emphasise that this is at a more fundamental cognitive level than
that adopted by many curriculum builders in the calculus reform
movement who start with “local linearity”. Local linearity already
demands a facility to handle the equation of a straight line that is the
“best” approximation to the curve at a point. Local straightness is a
direct appeal to perception, in which the limiting notion is implicit in
the action of magnification.

When the first group of students who ever used the software were
asked to draw any graph they fancied and to see what happens when it
is magnified, the first comment was that “it looks less curved as you
magnify it”. The notion of magnification to “look straight” proved an
appealing idea to everyone in the class.

At first I followed the mathematical route of “fixing x” to find the
gradient at a point, but then realised that the students were able to do
something more intuitive—to look along the graph to “see” its
changing slope.

Software was designed the student to move a “magnifying glass”
along a curve to see the locally straight gradient change (Tall et al,
1990). This aided students to get a gestalt idea of the gradient function
using a sensori-motor feeling of “tracing along the graph” of a “locally
straight” function.

The visual computer approach drew a numerical chord from x to
x+h for fixed h and to plot the gradient of the curve as x moves along
the curve. For small h the gradient graph can be seen to stabilise. This
can be linked directly to the symbolism. For instance, in the case of
f(x) = x2, the gradient of the segment between x and x+h is

f x h f x

h

x h x

h
x h

( ) ( ) ( )+ - = + - = +
2 2

2  (since h ≠ 0).

The graph drawn for the gradient is y  = 2x+h. For small h, this is
indistinguishable from the graph y = 2x. Thus at a sensori-motor level,
the student has the opportunity to sense that the gradient of the
parabola f(x) = x2 is indistinguishable from 2x. The subtleties of
mathematics are linked to deep primitive modules in the brain that are
part of the essential being of the human psyche.

At the time I remember being very pleased with myself, but was
surprised that the students simply took up the idea as if it were



174

“obvious”. In one school I set up the computer software on a single
computer intending to demonstrate it to the students studying calculus.
I ended up sitting alone in the corner of the room, completely
neglected by a large group of students standing round the computer to
“see” how to do their homework. I found to my surprise that many
students found it to seem so simple as to be “obvious”. It was as
though my great discovery (which was largely unused by the
mathematical community) was evident to the student mind. The
explanation, to me, is that it is obvious, because it links with deep
cognitive structure that is part of the essential being of the individual.

To compare the mental imagery generated with that of students
following a more traditional course, both kinds of student were asked
to sketch the derivatives of various graphs, including those in Figure 3.

There are at least two possible routes to a solution. One is to
proceed symbolically by guessing the formula, differentiating it, and
drawing the derivative. This is easier for graph (a) (which looks like
the familiar y=x2) than for graph (b) whose formula is not familiar to
the student. A second approach is to proceed visually, looking along
the graph to see its changing gradient. For instance, graph (b) starts
with a positive gradient decreasing to zero and then stays zero.

It is reasonable to hypothesise that students with less visual insight
would find problem (b) significantly more difficult and this is
supported by the statistics (table 1). Three experimental classes in
school (A, B, C) using computer software to visualise the gradient
succeed in both problems significantly better than control classes D, E,
F, G) following a standard text. The difference in problem (b) was
even greater. The experimental classes also perform better than control
group H of highly able students studying double mathematics, and on
a par with first year university students, group I.

Figure 3. Sketching the gradient graphs for given graphs.
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Table 1
 Student Responses to Sketching Derivative Graphs

Experimental Groups (a) (b)

School 1, group A 100% 70%

School 2, group B 99% 87%

School 2, group C 92% 89%

Control Groups (a) (b)

School 1, group D 82% 31%

School 2, group E 73% 16%

School 2, group F 47% 3%

School 2, group G 39% 0%

Others (non-experimental) (a) (b)
School 2 (double math), group H 91% 56%

University year 1, group I 91% 89%

Not only did the idea of “local straightness” help many students to
build a richer concept image of the idea of derivative, it can also be
used later on in differential
equations—“knowing the steep-
ness of the function at each
point, and requiring to build a
function with that slope.” Again,
computer software was designed
to allow the student to imagine
physically building a solution of
a (first order) differential
equation by placing short line
segments of the appropriate
gradient end to end (Figure 4).

These ideas again provide a visual conception of the solution
process, based on sensori-motor activity. They also provide a sense of
existence and uniqueness of solutions. Everywhere that the gradient
dy/dx is defined, the direction of the solution is given as a small
segment. This supports the sense that, through every point where there
is a defined direction there is one, and only one solution. Thus the

Figure 4. Enactively building a solution
of a differential equation.
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existence and uniqueness of solutions can be conceptualised before
any techniques of solution have been introduced. It allows conceptual
links to be formed in an intuitive sensori-motor sense which may later
motivate the formal aspects of the theory when and if it is studied.

Does a Cognitive Root Guarantee Long-Term Success?

Having found a starting point that seems to be able to provide some
motivation for later theory, the question arises as to whether this will
necessarily lead to later success. The answer is that although a
cognitive root has a potential for development into a long-term formal
theory, it does not guarantee that such a foundation will lead to the
later formalism for all those who attempt to study it. The cognitive
root operates in a sensori-motor manner that can be visualised,
verbalised and discussed. But this does not provide a basis for all
possible formal links.

As an example, consider the symbolic rules for differentiation and
integration. The derivative of a product f(x)g(x) is not easily seen by
looking at the visual notions of the derivatives of f(x) and g(x). For
instance, if one can visualise the derivative of sinx by looking along its
graph to see its changing gradient as cosx, and can similarly “see” the
gradient of the graph of ex  how does this allow one to “see” the
gradient of their product e xx sin ? It is certainly not obvious by looking
at the graphs of the two functions and “seeing” an easy relationship
with the graph of the product function.

The usual visual method is to look at the product uv of two
quantities as an area and to see the increment in the area caused by
increas-ing u to u+du and v to v+dv as being two strips area vdu+udv

and a rectangle in the corner of area dudv (Figure 5).

u

dv

v

du

udv

vdu

dvdu

uv

Figure 5. The change in uv is vdu+udv +dudv.
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This visual representation corresponds precisely to the following
symbolic manipulation:
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There is therefore a direct link between this rectangular representation
and the symbolism, but no simple visual link between the locally
straight graphs and the gradient of their product function.

The School Mathematics Project asked me to provide such a
graphical link for the product function. I could not see one. I did
provide a graphical link for the composite of two functions, by seeing
y = f(g(x)) in terms of the functions u = f(x), y = g(u) and plotting the
three graphs in three dimensions with axes x, u, y. Figure 6 shows the
software I developed to show this idea (Tall, 1991) in the case using

u = x2,  y = sin u ( = sin(x2)).

There are four different windows: the x-u plane in the bottom right
corner, with u = x2, the u-y plane in the bottom left corner, with
 y= sin u, and the x-y plane in the top right, with y = sin(x2). Each of
these is a projection of the curve in three dimensions in which u = x2

and y = sin(x2).
Seen as a static picture in a book this may be quite difficult to

visualize, but an option to turn the three dimensional graph around
gives a sensation of space, making it easier to visualise it as a three
dimensional object.

The tangent to the curve has components dx, du, dy in directions x,
u, y and the chain rule for differentiation becomes:

dy

dx

dy

du

du

dx
= .

as a relationship between the lengths of the components of the tangent
(Figure 7).
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Figure 6. A composite function represented in three dimensions.

Figure 7. The gradient box for the composite of two functions.



179

This idea is best seen as a perspex model of a cuboid sides dx, du, dy.
Such a model could be turned by hand to see the projection of the
diagonal onto each of the sides where the latter have gradients dy/dx,
dy/du and du/dx respectively.

These examples reveal that, although the various “rules of the
calculus” can all be handled in a similar symbolic manner, each one
has various visual images providing support which do not have simple,
direct links between them.

The symbolic differentiation procedures themselves operate on the
symbolism seen as a sequence of steps of evaluation (such as sums,
products, quotients, composites etc). This calculation is not
represented in the gestalt visual picture of the graph. Thus the
processes of “seeing” the relationships between the differentials and
the procedures of symbolic use of rules focus on totally different
aspects of the activity.

This difference between the use of symbols and visualisation and
the failure of one representation to link easily with the other is
widespread and goes back to the earliest operations on functions. For
instance, to express the line through (5,3) with gradient 5 in the form
y=mx+c begins with

y – 3 = 5(x – 4)

then the brackets is multiplied out and 3 added to both sides to get:

y – 3 = 5x – 20
y = 5x – 17.

We found that students remarked that, when manipulating symbols,
they could not “see” what is going on (Crowley & Tall, 1999).
Reflection on what is happening reveals that, as the symbols change,
the graph remains the same. In a very real sense, a student would not
be able to “see what is going on” because nothing is happening
visually to the graph. Of course, to an expert, the fact that nothing is
happening to the graph has real meaning because the line remains
invariant under the symbolic manipulations. But for the student who
lacks the conceptual links between disparate cognitive structures, the
situation may be meaningless.

In each of these examples we see that the desired coherence of
different ways of looking at a particular mathematical activity do not
necessarily fit together in a precise correspondence. Some
representations represent some aspects better than others, and some
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processes in one representation may not be mirrored in a one-to-one
way to processes in the others.

The corollary of this discussion is that the cognitive development
of the calculus cannot ever hope to lead to a totally coherent theory
without encountering the need for various cognitive reconstructions on
the way. To cope with the meaning of the calculus requires the student
to reflect on the various situations to understand them in their own
terms and to fit them together in a way which “makes sense”. If this
does not happen, then the default position is liable to involve
instrumental learning of procedures without supporting conceptual
links.

However, the cognitive root of local straightness can be used for a
wide range of students to provide a platform with the potential to lead
to various different approaches to the calculus. It can provide sensori-
motor support for applications in physics, biology, economics and so
on, including a mental image of notions such as the solution of a
differential equation. It can be used as a based for the theory of formal
analysis, either in terms of the standard “epsilon-delta” definition or in
terms of an alternative “non-standard” theory using infinitesimals
(Tall, 1981).

It may not be possible for all students to come to terms with all of
the mathematics, but it may certainly prove possible for students who
have great difficulty with some parts of the theory (eg symbol
manipulation) to have conceptual insight into the nature of the theory.
For instance I have had experiences with students who are not strong
in mathematics being able to imagine functions that are continuous
everywhere but differentiable nowhere, or to visualise functions that
were differentiable everywhere once but nowhere twice, based on the
notion of “local straightness” (Tall, 1995). But these self-same
students were not necessarily able to cope with complicated symbol
manipulation or to make the transition to fluent use of formal proof.

In this sense a cognitive root cannot guarantee that all students will
understand all the theory which is to come. However, an idea such as
local straightness is a “cognitive root” that appears to make sense to
most learners, and also has the potential to be used as an introduction
to various highly subtle aspects of formal theory encountered later on.



181

Pandora’s Box

One feature of the use of local straightness as a cognitive root showed
a profound difference between the conceptual structures of those that
used this approach and those that followed a traditional course.

The idea of a tangent to a
curve has long been known to
contain cognitive conflicts
requiring reconstruction. For
instance, in the geometry of a
circle, it is a line which touches
a circle just once and it is often
envisaged as a line which
“touches” a curve but does not
cross it. When a curve with an
inflection point is encountered,
students often misconceive the
notion of tangent. For instance, the tangent to y=x2 at the origin is seen
by many, not as a horizontal line through the origin, but as a line that
“touches but does not cross”. This gives what is sometimes termed a
“generic tangent” as reported by Vinner (1991), (Figure 8).

A B C D E

The right
answer

A generic
tangent

two tangents Another
drawing

No
drawing

18% 38% 6% 10% 28%

Figure 8. Drawing the tangent to y = x2 at the origin (Vinner 1991).

The “locally straight” visual approach did not completely eliminate the
belief in a generic tangent, for instance, the graph:
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+ ≥
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Ì
Ó

0

02

presents a cognitive problem at the origin. A tangent exists but it
coincides with the graph to the left and therefore does not intuitively
“touch” the graph. A generic tangent is drawn a little to the right to
show it as “touching” the curve. (Figure 9.)

Figure 9. A generic tangent.
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The students responded as in Table 2. This reveals that the
experimental students are significantly more likely to link the nature of
the tangent to its standard form with less influence from the earlier
concept image of “touching” the graph.

Table 2
Responses to the Tangent in Figure 9

Yes No

Standard Generic Other  2 0

Experimental (N=41) 31 8 0  2 0

Control (N=65) 22 30 2 15 1

University (N=47) 29 14 0 4 0

In terms of developing a long-term learning schema, it is helpful for
the imagery to be developed in a way that encourages manageable
reconstruction at a later stage. An example of this is to look forward to
the existence of left and right derivatives, which is usually considered
far too technical to discuss in a first course. However, zooming in to
see a “corner” with different left and right gradients is available using
the graphical software. This allowed discussion of different left and
right gradients to occur simply and naturally. To test the effect of this
introduction, experimental and control students were asked to consider
the graph of the function

y x x x= - + +2 1

given also in the alternative form:

y
x x x x

x x x x x

x x

x
=

- + - = -
- - + - = - -
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1 2 1

1 1

1 1
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for 

Formally it has no tangent and the slope and derivative are undefined
at x=1. The students were asked to say (with reasons) how many
tangents, derivatives, slopes the graph has at x = 1 from the following
possibilities: 0, 1, 2, more than two, other (e.g. “infinity”). The
response deemed formally correct was zero in each case. In addition
there were many other reasons that were possible to give, say “two”
(to refer to the different cases on left and right) or even “infinity”
tangents which are capable of touching and not crossing through the
point (1,1).
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In Table 3 we see that, although
only 6 out of 14 students in
experimental group A gave the
accepted answer (none), in the
other two groups there were 9
out of 12 and 13 out of 16.
However, in the control groups,
only 6 out of a total of 52 gave
the accepted answer.

The amazing statistic is that,
in three out of four control
groups, there were almost as
many different responses as there were students. Pandora’s box opens
and reveals all the variety of possibilities in the students’ minds. In
experimental group A the teacher (myself) had encouraged discussion
and participated actively, but had not given explicit instruction.

Table 3

Student Responses to Tangents, Derivatives, Slopes
at a “Corner” Point

Experimental Groups none two
Other

solutions
Total number of

different solutions

School 1, group A (N=14) 6 1 7 9
School 2, group B (N=12) 9 0 3 3
School 2, group C (N=16) 13 0 3 4

Control Groups

School 1, group D (N=9) 0 0 9 8
School 2, group E (N=13) 2 2 9 9
School 2, group F (N=17) 3 4 10 10
School 2, group G (N=13) 1 1 11 13

Others (non-experimental)

School 2, group H (N=12) 5 0 7 8
University year 1, (N=57) 14 8 35 14

Figure 10. The graph of
y = abs(x(x–1))+x+1.
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There was a combination of discussion and more explicit instruction in
Group C leading to a greater uniformity in (correct) response. We thus
see the power of the software to encourage discussion and the value of
the directed participation of the teacher. By teaching in the traditional
way the students had been left with a wide variety of possible
connections as yet unassigned. The response of the university students
shows the consequences of this. Some students had discussed left and
right derivatives in class and 8 gave a response consistent with this, in
addition to the 14 giving the response “none” to all three parts. But
there were still 14 different possibilities given in total, leaving a wide
range of beliefs to be brought together in teaching the notion of
differentiability and non-differentiability at university.

Conclusions

In this paper we have looked at the long-term building of learning
schemas. Many examples have been given of discontinuities in the
curriculum in which a change in context requires considerable
cognitive reconstruction from many children which may prove too
difficult for many of these. These include many contexts which occur
in the English National Curriculum which provoke difficulties for
children and cause many of them to take the line of least resistance and
learn ideas which are meaningless to them by rote.

Even when long-term curricula are carefully designed using a
cognitive approach, some of the conflicts persist. If they are directly
addressed by the teacher as mentor in a meaningful context then it is
possible to give a wider spectrum of students more coherent insights
into the nature of the mathematics. A standard curriculum which takes
things in a steady order, avoiding difficulties till later can create a
Pandora’s box of different ideas that need to be rationalised (but are
more probably, ignored) later on.

In all this development of long-term learning schemas, it becomes
eminently clear that individual children make cognitive links in a wide
variety of ways. To address this requires mutual activity on the part of
the teacher and learner. The learner must become increasingly aware
of his or her own part in reflective thinking about the concepts and
helped to grow in confidence in dealing with the mismatches that
occur in new contexts. The teacher, as mentor, must be aware of
several different facets that may not be so clear to the pupil. One is the
pupil’s need in cognitive growth, the second is an awareness of those
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things that are mutually agreed in the mathematical community and
the third is the balance between pupil need and the focus on those
aspects of mathematics that give long-term power.

I do not believe it is sensible or practical to attempt to design a
smooth long-term curriculum in which each idea builds easily on
previous ones. New contexts will always demand new ways of looking
at things and often require significant cognitive reconstruction.

Awareness of the essential nature of cognitive reconstruction is
vital in long-term curriculum design. The National Curriculum for
England and Wales, for instance, consists of a sequence of ten levels
which are to be taught successively over the years of schooling from
the age of five to the age of sixteen. It is expected that some children
will move quicker and more effectively through the levels whilst
others may take it at a slower pace. The aim of the British government
is to “raise standards” by getting a greater percentage of children to a
given level. There is even a concept of “value added” namely the
average improvement in grade level of the children in a given school.
This metaphor of development presupposes a sequence of successively
more subtle ideas and a naïve assumption that less successful children
can move through the same sequence of ideas but at a slower pace.

However, the notion of discontinuity suggests an impediment to
such progress. If a child meets a point requiring cognitive
reconstruction and this reconstruction does not occur, then any later
developments are hampered by subsequent misconceptions. These
misconceptions arise not only from mistakes or misunderstandings in
earlier mathematics, but also in the failure to adapt to new contexts
where the old ideas are no longer completely appropriate. Far from
being an occasional problem in learning, I claim that discontinuities in
development are widespread in the curriculum and must be taken into
account so that more children are able to succeed in personal
reconstruction of the powerful mathematical ideas that may bear fruit
in later life.
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