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The transition to formal mathematical thinking involves the use of
quantified statements as definitions from which further properties are
constructed by formal deduction. Our quest in this paper is to consider
how students construct meaning for these quantified statements.
Dubinsky and his colleagues (1988) suggest that the process occurs
through reflective abstraction, in which a predicate with one or more
variables is conceived as a mental process that is encapsulated into a
statement (a mental object) by the process of quantification.

In this paper we report a case study of a student who constructs the
formalism not from processes of quantification, but from his own
visuospatial imagery. Rather than construct new objects from cognitive
processes, he reflects on mental objects already in his mind and refines
them to build his own interpretation of the formal theory. This example
leads use to consider the development of theory in the literature, in
particular Piaget’s notions of pseudo-empirical abstraction (focussing on
processes encapsulated as mental entities) and empirical abstraction
(focussing on the properties of the objects themselves).

It has often been noted that highly successful mathematics researchers
show strong preferences for different kinds of approach (e.g. Poincaré,
1913; Hadamard, 1945; Kuyk, 1982; Maclane, 1994; Sfard, 1994). Some
have a broad problem-solving strategy, developing new concepts that
may be useful before making appropriate definitions to form a basis for a
formal theory. Others are more formal from the beginning, working with
definitions, carefully extracting meaning from them and gaining a
symbolic intuition for theorems that may be true and can be proved.

In a recent research study of novice mathematicians’ styles of doing
mathematics we found analogous differences between students’ strategies
for learning mathematics (Pinto 1998, Pinto & Tall, 1999). Some worked
by extracting meaning—beginning with the formal definition and
constructing properties by logical deduction. This strategy is consonant
with the theory of Dubinsky, in which multi-quantified statements are
grasped by working from the inner quantifier outwards, converting a
predicate (as a process) into a statement (as a mental object).
                                                
1 The authors wish to thank CNPq (Brazil) for generous partial support in the
preparation of this paper.
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However, our research shows that there are students who use an
entirely different strategy. In this paper we focus on one successful
student who builds from his imagery, giving meaning to the definition
through producing a highly refined image that supports his formal
arguments. We suggest he is not encapsulating a cognitive process into a
mental object, he progresses by refining and reconstructing his existing
imagery until it is in a form that he can use to construct the formal theory.
He uses both visual and symbolic coding of ideas in a complementary
manner that is characteristic of the dual-coding theory of Paivio (1971,
1976). His thinking processes resemble those of mathematicians using
broad problem-solving strategies rather than those who focus more
particularly on purely formal deduction.

Methodology

The data presented here is part of a larger qualitative research study of
students’ understanding of real analysis (Pinto 1998). A group of
mathematics major students were followed during their first two terms
studying analysis, participating in an hour’s individual interview every
two weeks. Interviews were recorded on tape and fully transcribed for
detailed analysis.

Procedures of data collection were compatible with those used in
Strauss’s method of building up a theory from the data (see Strauss, 1987;
Strauss and Corbin, 1990). It followed a plan where each set of questions
formulated for successive interview was build upon results of the analysis
of data from previous interviews, enabling a gradual transformation and
enrichment of the theoretical viewpoint.

The Case Study

Chris is a UK mathematics student (and a native English speaker) who
appears to have a consistent background in elementary mathematics, with
well-formed concepts and an ability to construct formal arguments. He is
one of a small minority of first year mathematics students who obtained
full marks on a questionnaire designed for selection of a spectrum of
students for the full study. He was considered a gifted novice
mathematician who later fulfilled his promise by obtaining a first class
degree.

His initial difficulty with the definition of a limit of a sequence was
formulated in his first interview in the fourth week of the course as
follows:

“... after the first time, I mean, in the first lecture on limits, I didn’t
quite get it [the definition of limit of a sequence].”

 (Chris, first interview)
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He then commented that he searched for an explanation in other sources
than his lectures and lecture notes:

“... But then I looked it [the definition of limit of a sequence] up in a
book and understood ... and then ... I don’t know umm it seems now
okay.” (Chris, first interview)

He appears to be looking for other presentations of the concept definition,
attempting to make it more concrete for himself in the sense of Wilensky
(1991), where ‘concreteness’ involves a richer quality of relationship
between the individual and the concept.

In the first interview, Chris is able to write down a correct definition
of the limit of a sequence:

(Chris, first interview)

His definition is verbalised without symbolic quantifiers and is already
accompanied by a visual representation. This visual representation is not
a simple picture of an “increasing sequence” bounded above or a
“decreasing sequence” bounded below or an alternating sequence
oscillating above and below the limit. It moves up and down in a more
general manner. He uses it not at a specific picture, but a generic picture
that represents the sequence in a manner that is as general as he possibly
can make it.

His picture is not perfect (for instance, he uses a continuous curve to
represent the wanderings up and down rather than a sequence of distinct
values). Nor is it possible for this picture to cover all possible cases in his
imagination. For example, it shows a sequence wandering all over the
place, but seems inappropriate for the case of a constant sequence.

When Chris was presented with the constant sequence 1, 1, 1, …, he
laughed nervously. He realised that a constant sequence clearly satisfies
the definition (so it is convergent) and yet he felt it clashed with his
current imagery:

“(Laughter) I don’t know really. It definitely it will ... it will always be
one ... so I am not really sure (laughter) ... ... umm ... it’s strange,
because when something tends to a limit, you think of it as never
reaching it ... so if it’s ... one ... then by definition it has a limit but ...
you don’t really think of it as a limit (laughter) but just as a constant
value.” (Chris, first interview)
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Such clashes, and their ultimate resolutions, are an inevitable part of the
strategy of “giving meaning” that Chris used to construct meaning for the
limit concept.

When he works with the definition of a convergent sequence, his
generic picture of a wandering sequence gives him a visual image
sufficiently general for him to construct the definition and build the
theory, even though he needs to also consider variants such as constant
sequences. It allows him to reproduce the definition in a correct
formulation that is not a direct reproduction of the definition given in
class. For instance, he used the terminology “for all” instead of the term
“for any” given in the formal definition during the lectures. He also later
prefers to use “if and only if” in his definitions, rather than just “if”, as
was generally written by the lecturer.

The verbal definition comes from the picture, not the picture from the
definition.

 “I don’t ... memorise that (the definition of limit). I just ... think of this
(picture) every time ... I work it out ... and then you just get used to it,
so ... I’m very much getting used to it now, I can ... near enough write
that straight down.” (Chris, first interview)

He “sees the general in the specific” (Mason & Pimm, 1984), as a thought
experiment. His combination of mental imagery, its verbal equivalent,
and its ensuing properties all fit together as a powerful cognitive unit (in
the sense of Barnard & Tall, 1997).

He has control of the language he uses to express his meaning. As he
draws the graph, he explains:

“I think of it ... graphically ... I think of it ... so like you’ve got the
graph there ... and you’ve got like the function there, and I think that ...
... it’s got the limit there ... ... and then e, once like that ... and you can
draw along and then ... all the ... points after N there ... are inside of
those bounds. ... ... It’s just ... err when I first ... thought of this, it was
hard to understand, so I thought of it like this, like ... that’s the n going

across there and that’s an ...”

Notice that he refers to “all the points after N there are inside those
bounds”. It is as if he is looking at the points with ordinates in the range L
± e and scanning from left to right to find the value N for which every
point afterwards is in the desired range. He is so focused on the imagistic
behaviour of the sequence going up and down that he draws a continuous
graph representing the movement, not a sequence of distinct points.

When asked about the domain, he suddenly corrects his error:
“... ... Err this shouldn’t really be a graph, it should be points.”

(Chris, first interview)

Chris’s mistake in the midst of perceptive observation and analysis is
typical of the way in which the human brain works. He is at the time
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focusing on certain vital elements in his argument and, as he does so, he
is less aware of peripheral elements. In thinking about the movement up
and down and homing in on the limit value, he is not concentrating on the
means by which he achieves this in his physical drawing. To be able to
realise his error and self-correct requires him to build a stable schema in
which dissonant elements can be perceived and corrected whilst other
parts remain coherently in place. It is precisely such a mental schema that
Chris builds by manipulating his imagery and adapting it as his ideas
mature. He has a broad enough grasp of the principles to be able to deal
with errors and misconceptions, and to reconstruct them in his quest for a
coherent whole.

Notice that his visual representation is both analogical (in the sense of
Eysenck & Keane, 1997) and also enactive. As he draws the picture he
goes through a specific sequence of construction, first drawing the axes
and the graph, then labelling it. The graph represents the given sequence.
Its wandering path represents a general sequence rather than just an
increasing, decreasing, or alternating sequence. He then puts in the
horizontal line representing the limit L and, for given e, the lines a
distance e above and below L to represent the range in which the
sequence is desired to lie. He then marks the value N, gesturing at the
“points after N”, which lie in the required range between L–e and L+e. He
therefore begins with the whole gestalt in mind, reproducing it
sequentially in the order given in the definition.

He does not concentrate on the symbols alone to build successively
from the inner quantifier out, as postulated in the genetic decomposition
suggested by Dubinsky et al, (1988). To build the definition, he follows a
sequence of actions that is the same as the presentation of the written
definition from left-to-right.

Note that the picture already includes a representation of both the
limiting process and the limit value. The picture and his actions in using
it therefore already display the duality of process and concept contained
in the procept notion of Gray & Tall (1994). For him, it is not a matter of
first the process, then the object, rather he has a dynamic gestalt which
comprises them both.

His approach can be framed in the embodied sense formulated by
Lakoff & Johnson (1999), relating the limiting process to the limit
concept in what Mason (1989) terms “a delicate shift of attention”. This
is suggested not only by his visual representation of a convergent
sequence, but also by his explanation (given above) which includes the
remarks “you’ve got like the function there” and “it’s got the limit there.”

In describing his initial struggle (which referred to a ‘null-sequence’
tending to zero), Chris explained:
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 “I didn’t realise that you had to ... just find an N ... like such that ...
modulus of an is less than epsilon. I didn’t quite ... grasp that last bit.”

[How do you get the N, or the meaning?]

“The fact that actually you get one. (laughter) I didn’t quite understand
it. ... ... I looked it up and then once I realised ... that ... you have to just
find ... a value that might depend on epsilon ... then ... [I could] see
what the definition meant.” (Chris, second interview)

Chris’s focus on “the fact that you actually [need to] get one” value of N,
and his earlier mentioned analogical handling of the “points after N”
shows him focusing first on the finding of N with the required property
for a given value of e, and only then realising that “a value [of N] might
depend on epsilon.” His strategy therefore has a subtle complexity. It
does not always build strictly left to right, as he did in his explanation of
the definition from a dynamic interpretation of the picture. Here he
temporarily fixes e in the diagram, looks along to see where the points
cease to wander outside the range L±e, and finds the value N. Only then
does he allow e to vary and note that the value of N may then depend on
e . One thing is certain, his sequence of operation is not to start at the
inner quantifier and move outwards in a symbolic propositional manner.

As late as his seventh interview, three months later, he still speaks of
convergence of a sequence in the same terms:

 “Umm … the thing is … when you think about why … why you are
actually doing it ... then ... that’s when it becomes clear. You find out
why you are choosing the N so they lie all there in, so ... it gradually
tends towards that limit. ... (Chris, seventh interview)

He explains that, at the time, he was dealing with only one value of e,
“I think it was that ... I wasn’t thinking ... generally about that ... I
wasn’t thinking that generally it works for any epsilon ... I was just
thinking ... of one case.”

[Interviewer: Yes, just fixing one.]

“Yes.” (Chris, seventh interview)

He completes his argument by remarking that although you only need one
N at a time, (and so this may not force the terms to get any closer to the
limit), the closeness can be achieved by varying the value of e:

But ... it’s where ... you are just choosing one value of N ... so all the
points after that could do whatever they like inside, and when you
actually ... think that you can, ...you make epsilon small.”

(Chris, seventh interview)

His building of meaning involved a considerable struggle. In his first
interview he explained that he experimented with the definition by first
giving N and then attempting to find a related e:

“... you decide how far out ... and you can work out an epsilon from
that ... or if you choose an epsilon you can work how far out.”

(Chris, first interview)
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Moving N to the right and determining e allows a dynamical feeling that
the sequence is tending to a limit. However, he realised that just finding e
does not ensure that the terms get as close as is desired, for e need not be
forced to be small. Such an experiment may have helped him focus on the
correct definition and why epsilon must be given first to find a
corresponding value of N.

At the end of the course in the second term, Chris reiterates that he has
not just sought to learn the definition by heart, but to give it meaning in
his own terms. When asked once more to give the definition of a limit of
a sequence, he said:

“I can write down that definition ... without making it formal.”

He then wrote:

 
(Chris, seventh interview)

As it stands, this statement could intimate the epistemological obstacle
that a convergent sequence does not ever ‘reach’ the limit as was present
in his earlier discussion of convergence before he met the constant
sequence. However, he is also able to reproduce the formal definition
and, in doing so, he attempts a more complex task than simply
reproducing a remembered formulation. He uses colloquial language, and
metaphors, to explain his visual imagery in a way he can translate into
formal terms. His link between visual and verbal involves active
construction rather than just reproduction of a formal definition. We
suggest that Chris has built a powerful structure of knowledge, constantly
being reconstructed, which will surely be of assistance to him in other
contexts.

Chris showed a powerful ability to deal with formalism. For instance,
when he was asked what it means to say that a sequence does not have a
limit, he wrote the following straight down:

(Chris, second interview)
Note his minor alterations at the end, replacing part of the phrase

beginning “whenever n ≥ N …” (from the definition of convergence) by
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“for some n  ≥ N  for all N  Œ N” (required for the negation of the
definition). What is impressive is that this struggle for meaning was not
performed by writing the quantified definition and negating it by
swapping quantifiers. He seemed genuinely preoccupied with the
meaning of non-convergence rather than manipulating the syntax of the
definition. This focus on meaning involves extremely subtle thinking
processes. Chris’s construction of a prototypical mental picture of
convergence, together with his sense of its limitations, afforded him a
powerful interplay between thought experiment and formal proof, which
for him provides a way to translate imagery into formal linguistic terms.

Case study summary

This case study reveals a student grappling with imagistic ideas to
translate into a formal definition. He constructs the concept of
convergence through thought experiments that respond not only the
syntax of the definition but also attempt to give an imagined meaning for
the definition. He first attempts to understand the statement as a property
satisfied by his mental image of the object to be defined. He then gives
meaning to the statement from his image by exploring and verifying how
it works. The crucial idea is to understand how his image characterises
the mental concept of convergence that he is attempting to construct. This
mental construction involved playing with the image in various ways.

At one stage he conceived a thought experiment moving N to the right
to force e to decrease. This gave him a dynamical feeling that the
sequence tends to the limit. However, making N bigger does not
necessarily force e to become smaller as the generic sequence he
imagines goes all over the place and does not move successively closer to
the limit. He therefore confirms that he must first select e > 0 and then
find the N for which the following terms of the sequence are within e of
the limit. As he can then make e small, the graphical image reveals terms
ultimately within any prescribed value e of the limit. This guarantees him
that the sequence converges to the limit. It suggests a reconstruction of
his understanding of the formal definition, now acquired as a criterion
that characterises the concept of limit. The sequence of actions performed
by Chris in his exploration appears to involve mental actions with a
mental object that is successively refined rather than actions o n
encapsulated processes.

To summarise, Chris interprets the definition in terms of his old
knowledge, explores the concept through thought experiment and
reconstructs his understanding of the concept definition. He compresses
information in a picture, which he evokes when writing down the
definition. He is operating in a context that has both limit processes and
limit objects and he explores and refines his existing prototypical image
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of limit rather than encapsulating the limiting process into a limit
concept.

Alternative frameworks for analysis of the data

In developing a wider theory that takes into account the data in this case
study in addition to other approaches, we refer to various theoretical
frameworks that have been formulated in the literature of advanced
mathematical thinking (e.g. Tall, 1991, and subsequent developments).

In particular, Dubinsky and his colleagues (Dubinsky, 1986; Dubinsky
et al., 1988; Cottrill et al. 1996) suggest a genetic decomposition for
definitions having several quantifiers, which we understand as follows.

The definition of convergence of a sequence an( ) to a limit L might be
given formally as a three–level quantification either as

" > $ " ≥ fi - <e e0 N n n N a Ln: ( )

or

" > $ " ≥ - <e e0 N n N a Ln: .

Dubinsky et al, (1988) suggests that student copes with such quantified
statements by building up from the inner single-level quantification to
successive higher level quantifications.

Their theory is closely related to the internal structure of the
programming language ISETL, which offers a metaphor for how we may
think of quantifiers. ISETL deals with finite sets, and so can test
quantified statements by considering all the elements in turn. A single
quantified statement is of the form

" Œx S P x: ( ), written in ISETL as “forall  x in S | P(x)”
or

$ Œx S P x: ( ), written in ISETL as “exists  x in S | P(x)”

where P(x) is a predicate that is either true or false for each x in the finite
set S. In ISETL, the truth of quantified statement

forall x in S | P(x)

is found internally by running successively through the elements x1, … xn

of S and testing each statement P(xr). If one of the P(xr) is found to be
false, the value “false” is returned at once, on the other hand, if the tests
are completed and every P(xr) is true, the value is returned as “true”. In a
similar way,

exists x in S | P(x)

tests each statement P(xr) in turn, returning “true” if one is found to be
true and “false” if all are found to be false.
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A predicate P(x,y) with two variables can be handled by a successive
application of this principle. The statement

" Œ " Œx S y T P x y: ( , )

is handled in two steps. First fix x and consider the inner statement

" Œy T P x y: ( , ).

By iterating through all values of y, the truth of this statement can be
tested, to give a statement in the single variable x:

Q x y T P x y( ) [ : ( , )]= " Œ
which is found to be true or false for each value of x.

By iterating through all the values of x, the truth of the statement

" Œx S Q x: ( )

can be tested which gives the truth of

" Œ " Œx S y T P x y: ( , )

The method extends to a statement with several quantifiers by working
successively from the inner quantifier outwards.

Dubinsky theorizes that students may similarly handle a multi-
quantified statement by working form the inner statement outwards. Each
application of a quantifier turns a predicate P(x) into a statement.
Dubinsky regards a predicate P(x) as a process (for variable x) and a
quantified statement "x P x: ( ) or $x P x: ( ) as an object. This relates the
quantification of a predicate to the cognitive notion of encapsulating a
process as an object, which he regards as of fundamental importance in
cognitive development:

the major cognitive skill (or act of intelligence) that we feel is required
here is the ability to move back and forth between an internal process
and its encapsulation as an object. (Dubinsky et al., 1988, p.48).

Successive application of quantifiers from the inner quantifier outward to
determine the truth of a quantified statement gives an inductive method of
steady reduction of complexity. However, even though the logic is
evident, the cognitive complexity of this process of encapsulation for a
multi-quantified statement is enormous. We should therefore ask whether
students do follow this attractive method of working from the inner
quantifier out, at each stage going through “all” the values of a variable to
test the truth of a multi-quantified statement.

Mathematicians try various ways to enable students to grasp the multi-
quantified definition of convergence. For instance, instead of attempting
to mentally go through “all” the values of the variables, a more usual
alternative is to consider each variable as having a given generic property
(such as n≥N) and using this property to make sense of the full statement.
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Another approach, used in both ISETL and in non-computer courses is
to begin with numerical examples to give meaning to the definition. For
instance one might consider a given sequence, (say an=1/n), a specific
value of e (say e=1/1000), then seek a value of N (say N=1001) such that
if n≥N, then an£e. Such an approach often gives the student a “sense” of
the definition in numerical terms, but it may not give a full picture of the
meaning of the definition itself.

In our research we find students who can write down the definition,
perform numerical computations of the type given above, but cannot cope
when there is a mixture of specific and general values. For example,
given that a (general) sequence (an) converges to the (specific) value 1, to
prove that after a certain value of N, the terms satisfy an > 3

4 for n ≥ N.
The problem here is that there are some numerical values given, but not
enough to perform an actual calculation. The student may be able to
handle the definition with all-numeric examples but not be able to cope
with the general definition.

Furthermore, the sequence in which attention is focused on the
quantifiers is affected by the way in which it is presented in the
curriculum. A common approach to deal with the definition of limit is to
first fix e>0, and focus on the two inner quantifiers:

$ " ≥ - <N n N a Ln: e .

This reduces the complexity so that the student is seeking (for a specific
value of e), a value of N for which a Ln – < e  whenever n N≥ . When
this has been achieved, the initial e is then allowed to vary. In our case
study, Chris used such a broad general procedure to grasp the meaning of
the definition. In this approach the order of consideration of the
quantifiers is N, n, e, which is neither “inside-to outside”, nor is it the
left-to-right order in which the quantifiers are read.

Individuals simply do not always read and write quantifiers in the
order that seems evident in the written statement. In an earlier study (Bills
& Tall, 1997), an able student Lucy wrote the definition of continuity of a
function f in and interval [a,b] in the following (1), (2), (3):

  

"x, x0 Œ[a,b]

(2)
1 244 344

"e > 0 $d > 0 s. t.

(1)
1 2444 3444

| x - x0 |< d fi| f (x) - f (x0 )|< e
(3)

1 244444 3444444 .

She explained that she does not remember the definition by rote, but
reconstructs it from its constituent parts:

I write down everything and say, “no that’s wrong”, and then I work
backwards. (Bills & Tall, 1998, p. 107)

Our studies of students coming to term with proof (Pinto, 1998, Pinto &
Tall, 1999), reveal a range of very different approaches. Some appear to
construct meaning by successive quantification from the inner quantifer
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outwards as suggested by Dubinsky. Others, such as Chris, start from
mental images and refine them to give a sufficiently generic image that
can be used to build up the formal statement of the definition.

Thought experiment and propositional proof

Given a range of different ways of building up the notion of proof, our
major challenge is to build a theoretical framework that encompasses the
range of student approaches. We draw from several distinct sources. One
is rooted in the classical difference between analogical and propositional
mental representations (see, for example, Eysenck and Keane, 1997).
Analogical representations are considered as typically representing things
simultaneously, in an implicit manner without separate symbols to relate
various aspects. They have loose rules of combination of information and
are tied to specific instances that are being represented. They may involve
sensory images or mental thought experiments using visual or spatial
configurations. Propositional representations are verbal or symbolic,
with relationships established by explicit rules of combination.

We contend that these distinctions can lead to different forms of
proof:—thought experiment and propositional proof. A thought
experiment is a natural way of thinking for Homo sapiens, and does not
require any formal knowledge. To satisfy ourselves of the consequences
of taking a certain position, we simply imagine a situation in which the
assumptions hold and think through the possible consequences.

For instance, in arithmetic, to ‘see’ that multiplication of whole
numbers is commutative, one might draw an array of objects, say 3 rows
of 4, and switch to seeing it as 4 columns of 3 objects. The total number
of objects is 3¥4 in one case and 4¥3 in the other, and these are just
different ways of seeing the same objects whose number 3¥4 is therefore
equal to 4¥3.

This thought experiment has a vital ingredient. Although it uses
specific numbers (3 and 4), it would be just as easy to perform the same
experiment with any other pair of numbers (say 2 and 5, or 7 and 3). The
experiment is a prototype for any pair of whole numbers. The individual
sees the general argument embodied in the specific case. Such an
example is called generic (Mason & Pimm, 1984); it uses a specific
example to represent a whole class of examples.

Classical Euclidean geometry is another theory that builds using
thought experiments. Consider, for example, the theorem that an isosceles
triangle has two equal angles. Any picture drawn of an isosceles triangle
standing on its third side makes it seem patently obvious that the base
angles are equal. But can we be sure that this will always be so? We
might try various thought experiments. For instance, what happens if we
vary the position of the vertex A of an isosceles triangle ABC where
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AB=AC? We may see that, as one side becomes longer than the other, the
angle opposite the longer side becomes larger than the angle opposite the
shorter side. At the balance point, when the two sides are equal, then we
can “see” that the angles are equal. (Figure 1.)

�ABC
grows

smaller

�BCA  
grows
bigger

A

B C

  move vertex A

Figure 1: A thought experiment moving the vertex of an isosceles triangle.

Another method might involve imagining the isosceles triangle being
folded over the axis joining the vertex to the midpoint of the base.
Because the two triangular halves have corresponding sides equal, the
two halves will exactly match lying one on the other, so the angles B and
C must be equal.

          

A

B C

A

C
B

Fold over
A

C

B

Figure 2: A thought experiment folding an isosceles triangle.

Both of these thought experiments give profound intuition that the
theorem is true. The first is an experiment that can be performed with the
software Cabri, enabling the individual to sense that the theorem is true.
The second can be performed physically by folding a piece of paper in
the shape of an isosceles triangle, allowing the individual to see that the
theorem is true.

Mathematicians, however, feel more secure with an argument if it is
translated into a verbal-symbolic form. Both of these thought experiments
can be translated into Euclidean proofs. The second happens to be easier.
It suggests a construction joining A to the midpoint M of BC and proving
that triangles ABM and ACM are congruent (three corresponding sides).
Hence, by the theory of congruence, the angles B and C are equal.
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A

CB M

Figure 3 : Two congruent triangles

This reveals Euclidean geometry as a verbalised form of a thought
experiment. It involves imagining and drawing constructions by adding
lines where necessary to reveal congruent triangles. The constructions are
described verbally and the congruency specified verbally, revealing
equalities between other corresponding sides and angles. In this way
geometric constructions can be built from concept images of geometrical
figures, and translated into a deductive verbal form. In Euclidean
geometry we move from thought experiment to verbal proof.

This translation from visual to verbal suggests a possible method of
moving from visual mathematics to formal mathematics. What is required
is the ability to see the general in the particular images (Mason & Pimm,
1984) to give meaning to the corresponding formal definition and to use
the resulting links between imagery and formalism to formulate and
prove theorems.

Natural and Alien Thinkers

Our second major theoretical influence is the difference between
contrasting ways in which individuals react to a given context. Duffin and
Simpson (1993, 1994, 1995) found that their individual thinking styles
proceeded in quite different ways, one of which they termed natural and
the other, alien.

A ‘natural’ learner always attempts to ‘make sense’ of experiences by
connecting them immediately to existing mental structures, looking for
explanations and reasons based on those connections. An ‘alien’
learner, on the other hand, is willing to accept new experiences in an
‘alien’ way, building up isolated structures which deal with just those
experiences, only constructing understanding out of connection made
much later between these often mature, but isolated, mental schemas as
a result of conflict. (Simpson, 1995, p. 42)

The transition to formal mathematical thinking is accomplished in
different ways by natural and alien learners. The natural learner is more
likely to use current concept images to attempt to build on them or
modify them through thought experiment. The alien learner accepts the
“rules of the game” and plays them for what they are, with little attempt
to connect them to previous experience.

For the alien learner, success follows through building up a coherent
theory of proven theorems and techniques for handling the formal
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concepts. Regrettably, many students following this direction fail to cope
with the complexity of the quantified statements and are unsuccessful in
building the formal theory.

The natural learner, on the other hand, builds on a variety of previous
experiences—including enactive, visual and symbolic representations—
to attempt to give meaning to the formalism. For some this may be
successful but others may find that their thought experiments are so
powerful that they “believe” the theorems to be true without any need for
a formal proof. For instance, mental imagery of the limit concept may
make it seem absolutely clear that “if an gets close to a and bn gets close
to b, then an+ bn must get close to a+b.” Such a “truth”, for them, requires
no further proof, especially when that proof involves complex machinery
of definition and deduction that they fail to understand.

The road to success from analogical thinking to deductive formalism
is sometimes a difficult one. The imagery may occur as a simultaneous
gestalt that is difficult to translate into a logical sequence. There are also
subtle differences between intuitive imagery and formal deductions that
can prove very difficult to identify and rationalise. However, in the case
of Chris we have a student who thinks in a natural way but is able to
transform his natural thinking into a formal presentation.

Object-based and process-based cognitive construction

In our discussion so far, we are beginning to distinguish between object-
focused theory building—where the student physically and mentally
manipulates objects to build up understanding of their properties and the
relationships between them—and process-based constructions involving
the encapsulation of processes as objects. Such a distinction has a long
pedigree in cognitive psychology. Piaget distinguished clearly between
the child’s construction of meaning through empirical abstraction
(focusing on objects and their properties) and pseudo-empirical
abstraction (focusing on actions on objects). Later reflective abstraction
occurs through mental actions on mental concepts. This allows the mental
operations themselves to become new objects of thought that may then be
acted upon in more sophisticated theories (Piaget, 1972, p. 70)

Dubinsky (1991) took this view of reflective abstraction as a basic
tenet of the APOS theory that he developed with his colleagues. This
hypothesizes that actions (consisting of a sequence of successive
activities) become interiorized as processes conceived as a whole without
performing them step-by-step, to be encapsulated as objects; these are
then manipulated mentally as entities in a newly developing mental
schema (Asiala et al., 1997).

Confrey and Costa (1996) criticized the single focus on process-object
construction in advanced mathematical thinking, claiming a method of
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construction where “rather than demanding departure from activity, the
act of seeing similarities in structure across different contexts would be
the basis for abstraction.” This abstraction of similarities from a range of
contexts has a well-established pedigree. Skemp (1971) proposed it to be
the essential method of construction of higher order concepts.

These two views of mental growth focus on two distinct ways of
building knowledge. In each case there is a complex context involving
the individuals reflection on their actions and perceptions. For Dubinsky
the theory grows from a focus on actions, which become interiorized as
processes, then encapsulated as mental objects. For Skemp the theory is
developed from a focus on the concepts, their properties and
relationships.

Sfard (1991) provided a theory that resonates with both of these forms
of mental growth. She postulated an operational approach focusing on
mathematical processes (which later are “reified” as mathematical
objects) and then a structural approach focusing on the mathematical
objects and their properties and relationships. She also proposed that
operational activities invariably precede the development of structural
theories (Sfard & Linchevski, 1994).

The two strands appear widely in the literature. In later developments
of APOS theory (Czarnocha et al., 1999), the methods of object
construction are seen to occur not just by process-object construction
(through the A-P-O sequence) but by encapsulating schemas as objects
(which we term S-O). In this paper the strict sequence of construction
was formulated in a more flexible manner:

… although something like a procession can be discerned, it often
appears more like a dialectic in which not only is there a partial
development at one level, passage to the next level, returning to the
previous and going back forth, but also the development of each level
influences both developments at higher and lower levels.

(Czarnocha et al, 1999, p.98)

Tall (1999) suggested that this APOS scheme could be seen as having
two parts A-P-O and O-S. The second part (O-S) places an object within
a broader schema, giving it greater meaning and applicability. For
Dubinsky the object O in the O-S sequence must be built either through
A-P-O or O-S encapsulation. Tall suggested that this view contradicted
the manifest evidence that the brain is highly devoted to perceiving
objects directly, tracing their edges, their movement and considering
them as distinct entities. Therefore, he claimed that the brain was
naturally constructed for direct perception of objects. In this light the O-S
construction can be in the form of thought experiments in which the
individual imagines objects and investigates their properties and
relationships to form a wider schema.
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A more detailed analysis of these ideas is given in Tall et al. (2000).
This takes a broader view in which the theoretical ideas build from the
fundamental abilities of Homo sapiens to perceive, act, and reflect. The
mental constructs based on perception correspond to empirical
abstraction. Those based on action correspond to pseudo-empirical
abstraction. Those based on reflection correspond to reflective
abstraction. However, in the latter case, we do not believe that reflection
only consists of acting on objects to routinize actions as processes and to
encapsulate them as objects. The mental activity of reflection involves a
variety of mental objects, actions, properties, relationships, theorems and
so on. In mathematics it leads not only to the encapsulation of processes,
such as counting, into mental objects, such as number, it also focuses on
mental objects and their properties, using thought experiments, as in
Euclidean geometry.

Tall (1995) observes that elementary mathematics involves both
empirical abstraction in geometry and pseudo-empirical abstraction in
counting and arithmetic, using symbols to represent the embodiment of
actions interiorized as mental processes. The move from elementary to
advanced (or formal) mathematics was there characterized in terms of
shifting attention from the objects and actions/processes towards useful
properties that are formulated as axioms in a propositional theory that
deduces new properties by deduction from axioms and definitions.

However, the manner in which this shift is accomplished was not
specified. Pinto (1998) provided empirical evidence that the transition to
formal proof can occur successfully in different ways, one broadly
following the encapsulation theories of Dubinsky and Sfard, another
building and refining mental objects as in this case study of Chris.

Refining properties of objects, rather than encapsulating processes is a
central tenet of other theories. Wilensky writes:

The more connections we make between an object and other objects,
the more concrete it becomes for us. The richer the set of
representations of the object, the more ways we have of interacting
with it, the more concrete it is for us. Concreteness, then, is that
property which measures the degree of our relatedness to the object
(the richness of our representations, interactions, connections with the
object), how close we are to it, or, if you will, the quality of our
relationship with the object. (Wilensky, 1991, p.198)

Our case study highlights an individual who refines his own quality of
relationship with a mental object to represent and translate his images and
actions into the notion of convergence of a sequence. Such a process
builds ideas that are, for him, concrete in the sense of Wilensky.
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Conclusion

This report unfolds qualitative aspects and strategies of individual’s
construction of knowledge. It presents data showing that the symbolic-
propositional model generally adopted to understand learners’
constructions of quantified statements (see, for example, Dubinsky et al.,
1988) does not capture the development of a successful ‘natural’ route of
learning, such as the one pursued by the student Chris. Rather than
constructing a concept image from a defined object, through abstracting
from ‘actions on objects’, this successful natural learner exhibits how an
defined object may be consistently understood by just reconstructing it
from the concept image. For such a student, there seems to be no harm if
(s)he still understands the concept definition as a description, provided
that that the property, or properties, which are ‘describing’ the object,
must also characterise it completely. In particular, this study expands the
theory of natural learning presented in Duffin and Simpson (1993, 1994,
1995).

An alternative explanation that fits the “process-object” sequence of
development could be proposed. It is as follows. The student has an
image of the process of convergence. He carries out cognitive processes
on this image to refine it and encapsulate it into a formal symbolic
definition. This is a way of describing the development that seems to be
consonant with the A-P-O part of APOS theory. The lecturer imposes a
construct on him (the notion of convergence of a null-sequence) which he
sees as being external. This is an action conception of convergence. He
carries out his own cognitive processes (looking up alternative
definitions, carrying out thought experiments) to make his own internal
construct. This interiorizes the action as a process. He then encapsulates
his experiences into the mental object called ‘limit’.

We have no quarrel with such a description. Indeed, Pinto (1998)
reports students attempting to follow an APOS sequence of extracting
meaning from the formal definition by formal deduction. What we find
problematic is the beginning a learning sequence on proof which begins
only with externally imposed actions, without attempting to get some
kind of global grasp of what is going on at the outset. There is an
alternative route used by Chris in this case study. It begins with an
embodied representation that already includes the process of convergence
and the concept of limit approached dynamically. Chris was able to take
this concept image and use thought experiments to transform it into a
formal approach.

Curriculum frameworks which are mainly concerned with
‘encapsulation of processes into objects’ as the basis for extracting
meaning from a definition do not capture the whole complexity of the
cognitive demands of a learner who builds his or her internal structures
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through giving meaning to definitions using thought experiments. This
global alternative, which sees the large informal picture and reconstructs
it as a symbolic sequential theory is not only viable, it is also a ‘natural’
way for some students to learn.
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